
An evolving view of duplex vision: separate but interacting
cortical pathways for perception and action
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In 1992, Goodale and Milner proposed a division of labour in

the visual pathways of the primate cerebral cortex between a

dorsal stream specialised for the visual control of action and a

ventral stream dedicated to the perception of the visual world.

In the years since this original proposal, support for the

perception–action hypothesis has come from neuroimaging

experiments, human neuropsychology, monkey

neurophysiology, and human psychophysical experiments.

Indeed, some of the strongest support for this hypothesis has

come from behavioural experiments showing that visually guided

actions are largely refractory to perceptual illusions. Although

controversial, the findings from this literature both support the

original hypothesis and suggest important modifications. The

ongoing challenge for neurobiologists is to map these

behavioural findings onto their corresponding neural substrates.
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Abbreviations
AIP anterior intraparietal sulcus

area LO lateral occipital area

fMRI functional magnetic resonance imaging

LOC lateral occipital complex

MRI magnetic resonance imaging

RF rod-and-frame

ST simultaneous tilt

TMS transcranial magnetic stimulation

Introduction
Visual systems first evolved not to enable animals to

perceive the world but to provide distal sensory control

of their movements. Vision as ‘sight’ is a relative new-

comer on the evolutionary landscape, but its emergence

has enabled animals to carry out complex cognitive opera-

tions on mental representations of the world — operations

that greatly increase the potential for flexible, adaptive

behaviour. According to a proposal put forward by

Goodale and Milner in 1992 [1], the operating character-

istics of the more recently evolved ‘vision-for-perception’

system are quite different from those of the more ancient

‘vision-for-action’ system. Indeed, according to Goodale

and Milner [1,2,3�], it is this duplex nature of vision that

drove the emergence of distinct visual pathways in the

primate cerebral cortex (Figure 1). They argued that the

dorsal ‘action’ stream, which projects from early visual

areas to the posterior parietal cortex, provides flexible

control of more ancient subcortical visuomotor modules

for the control of motor acts. The ventral ‘perceptual’

stream, which projects from early visual areas to the

temporal lobe, provides the rich and detailed representa-

tion of the world required for cognitive operations, such as

recognition and identification. The division of labour

between the two streams posited by Goodale and Milner

has not only helped to organise a broad range of data from

monkey neurophysiology to human neuropsychology but

it has also stimulated a great deal of research on predicted

differences between vision-for-action and vision-for-

perception. In this review, we highlight some of this

research, particularly studies carried out over the past

two years, and show that the perception–action distinc-

tion has stood the test of time remarkably well.

Neuropsychology meets functional magnetic
resonance imaging
Patients with lesions in the dorsal stream, in the superior

regions of the posterior parietal cortex, can have problems

using vision to direct a grasp or aiming movement towards

objects (optic ataxia) even though many of these patients

can describe the orientation or relative position of those

objects quite accurately [4]. The opposite pattern of

deficits and spared visual abilities has been reported in

patients with visual form agnosia, in which the brain

damage is assumed to be in the ventral stream [5,6�].
The most compelling example of such a case is patient

DF, a young woman who suffered irreversible brain

damage in 1988 as a result of anoxia from carbon mon-

oxide poisoning [5]. Even though DF is unable to indicate

the size, shape, and orientation of an object, either

verbally or manually, she shows normal anticipatory open-

ing of her hand and rotation of her wrist when reaching

out to grasp that object [5,7]. A recent high-resolution

structural magnetic resonance imaging (MRI) study [8��]
revealed that the lateral occipital complex (LOC), a

structure in the ventral stream that has been implicated

in object recognition [9,10�], is severely damaged in DF

(Figure 2). The damage is largely localised to the lateral

occipital area (area LO) [11], in the more lateral aspect of

LOC. In addition, functional MRI revealed that none of

the LOC, even the regions in the fusiform gyrus outside
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the lesion in area LO, was activated when DF was

presented with line drawings of common objects, even

though healthy participants showed robust activation in

the same area (Figure 3). The lack of activation with line

drawings mirrors DF’s poor performance in identifying

the objects in the drawings. With coloured and grey-scale

images, stimuli that she identifies more accurately than

line drawings, DF did show some ventral-stream activa-

tion, particularly in the fusiform gyrus although the

activation was more widely distributed than that seen

in controls, and did not include area LO (Figure 3).

In DF’s dorsal stream, the structural MRI revealed

shrinkage of cortical tissue within the intraparietal sulcus

(IPS), a region that has been implicated in visuomotor

control [12,13,14�,15,16]. Nevertheless, as can be seen in

Figure 3, when DF grasped objects that varied in size and

orientation, she displayed relatively normal activation in

the anterior intraparietal sulcus (AIP), an area that plays a

crucial role in the visual control of grasping in both

humans [17–20] and monkeys [21–23]. Taken together,

these findings provide additional support for the idea that

perception and action are mediated by separate visual

pathways in the cerebral cortex, and confirm the respec-

tive roles of the ventral and dorsal visual streams in these

functions.

Different visual processing for perception
and action
According to the Goodale and Milner model, the dorsal

and ventral streams both process information about the

structure of objects and about their spatial locations, but

they transform this information into quite different out-

puts [1,2,3�,12,24�,25�]. Because the visuomotor systems

of the dorsal stream are responsible for the control of highly

skilled actions, it is imperative that these systems compute

the absolute metrics of target objects in a frame of refer-

ence centred on specific effectors (i.e. egocentric coding)

[14�,26�]. Visual perception has no such requirement for

absolute metrics, or egocentric coding. Indeed, object

recognition depends on the ability to see beyond the

absolute metrics of a particular visual scene; for example,

one must be able to recognise an object independent of its

size and its momentary orientation and position [3�,12].

Many recent psychophysical findings support the general

notion that perception and action are mediated by inde-

pendent visual systems that carry out quite different

computations on the information present on the retina.
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Schematic representation of the two streams of visual processing in

human cerebral cortex. The retina sends projections to the dorsal part

of the lateral geniculate nucleus in the thalamus (LGNd), which projects

in turn to primary visual cortex (V1). Within the cerebral cortex, the

ventral stream (red) arises from early visual areas (V1þ) and projects

to regions in the occipito-temporal cortex. The dorsal stream (blue)

also arises from early visual areas but projects instead to the posterior
parietal cortex. The posterior parietal cortex also receives visual input

from the superior colliculus through the pulvinar. On the left, the

approximate locations of the pathways are shown on a 3-D

reconstruction of the pial surface of the brain made from an anatomical

MRI. The routes indicated by the arrows involve a series of complex

interconnections.
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An event-related fMRI study of object recognition in DF [8��]. (a) The

lesions in DF’s brain were reconstructed from high-resolution MRI

slices and were then rendered on the pial surface. (b) The lesions in

the lateral occipital area (LO) were present on both sides of DF’s brain

and can be seen on the slice depicted here (reference line for slice is

shown in red on the 3-D reconstruction in [a]). (c) When DF was

presented with line drawings and scrambled versions in an fMRI

experiment, she showed no differential fMRI activation to the line

drawings. The absence of activation is evident in the slice shown in (b).

(d) In contrast, a control subject showed robust differential activation

to the same line drawings. The activation in the brain of the control

subject has been stereotactically morphed to fit onto DF’s brain. Note
that the activation to the line drawings in the control subject falls neatly

into the corresponding LO lesions on both sides of DF’s brain.

Abbreviations: INT, intact drawings; ISI, interstimulus interval; SCR,

scrambled drawings.
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Early evidence that visuomotor control depends on pro-

cessing distinct from that underlying conscious percep-

tion came from a study by Goodale et al. [27], in which

participants reached to visual targets that changed posi-

tion during a concurrent saccadic eye movement (i.e. a

double-step reaching task). Although participants demon-

strated no conscious awareness that the target had chang-

ed location, the endpoints of the reaching movements

reflected the new rather than original target position [28].

Interestingly, awareness of the target perturbation does

not influence the kinematics of manual adjustments [29].

This is consistent with the proposal of Pisella et al. [30]

that fast corrections to reaching movements are under the

guidance of an ‘automatic pilot’ in the posterior parietal

cortex [31–33] that operates on a different time scale than

the visual mechanisms underlying conscious perception

and volitional motor control. Fast, automatic manual

adjustments can be elicited by changes in the target’s

location but not changes in its colour, which suggests that

the visuomotor networks of the dorsal stream do not

process colour, but rather receive this input indirectly

through the perceptual mechanisms in the ventral stream

[34�]. Using a variety of tasks and responses, other inves-

tigators [35,36,37��,38–40] have shown important differ-

ences between the perception of visual stimuli and the

control of actions towards those stimuli, underscoring the

view that perception and action engage quite different

visual mechanisms. (At the same time, there is evidence

that the machinery our brain uses to understand actions in

others is also used to generate those actions in ourselves

[41�]. But even in this case, object-based perceptual

machinery has to be initially engaged to parse the scene

in which the action is embedded.)

Visual illusions: demonstrating a dissociation
between perception and action
A particularly intriguing but controversial line of evidence

in support of the perception–action hypothesis comes

from studies that investigate the influence of perceptual

illusions on the control of object-directed actions such as

saccades, reaching movements, and manual prehension

[42]. Over twenty years ago, it was shown that saccadic

endpoints are insensitive to a dot-in-frame illusion in

which the perception of a target’s location is shifted

opposite to the displacement of a large visual frame

[43,44]. This suggests that location is processed differ-

ently by the visuomotor and perceptual systems. In a

widely cited study, Aglioti et al. [45] demonstrated that

the maximal opening of a grasping hand is insensitive to

the robust perceptual illusion that a target disk sur-

rounded by smaller circles is larger than the same disk

surrounded by larger circles — despite the fact that grip

opening is exquisitely sensitive to real changes in the size

of the target disk. Peak grasping aperture is refractory

Figure 3
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An event-related fMRI study of grasping in DF [8��]. (a) While lying in the darkened scanner, DF was presented with rear-illuminated target objects

that she could view directly (i.e. no mirror was used). The orientation and size of the objects varied from trial to trial. Her task was either to reach

out and grasp the target shape or, in a control condition, to simply reach out and touch it with her knuckles. (b) The reference line for the slices
is shown in red on this pial-surface reconstruction of DF’s brain. (c) A slice taken through DF’s parietal lobe reveals selective activation in the

anterior lateral intraparietal sulcus (area AIP) when she grasps the target object. The activation is similar to that seen in control subjects. (d) The

graph shows the time course of AIP activation for grasping and reaching. Abbreviations: ITI, inter-trial interval.
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to a size-contrast illusion even when the hand and target

are occluded during the action [46], which indicates that

on-line visual feedback during grasping is not required

to ‘correct’ an initial perceptual bias induced by the

illusion. These seminal findings implicate different

object-processing mechanisms for the perceptual and

visuomotor systems, consistent with the perception–

action model [1,2,3�,12]. It is important to note, of course,

that the model does not depend on these illusion findings,

because it was originally derived from extensive neuro-

psychological and neurophysiological evidence.

Indeed, several recent findings have challenged the

notion that perceptual illusions do not impact the control

of object-directed actions. These challenges fall into

several categories including, non-replication [47], the

contention that early studies did not adequately match

action and perception tasks for various input, attention

and output demands [48–50], or the idea that action tasks

involve multiple stages of processing from purely per-

ceptual to more ‘automatic’ visuomotor control [51,52].

Most of these challenges can readily be accommodated

within the basic framework of the perception–action

hypothesis, yet each provides important new insight into

the nature of the processing mechanisms underlying

perception versus action.

Franz and co-workers [47] have failed to replicate the

early results of Aglioti et al. [45] and have argued that

visually guided actions and perceptual judgements access

the same visual processing mechanisms. Such an account,

however, cannot explain why the majority of illusion

studies find evidence for a dissociation between percep-

tion and action [42]. In addition, it cannot explain the

dissociations observed in patients with optic ataxia or

visual form agnosia — nor for that matter, the extensive

neurophysiological and behavioural work on the ventral

and dorsal streams in the macaque monkey that support a

distinction between vision-for-perception and vision-for-

action [1,2,3�,12].

Smeets and co-workers [49,53] have argued that the

control of grasping is formed on the basis of the com-

puted locations of points on the object’s surface, whereas

judgements of object size are formed on the basis of a

computation of extent. According to this view, dissocia-

tions between judgement and action occur because pic-

torial size illusions affect the perception of extent but not

location (e.g. [54]). Although reasonable, this argument is

difficult to separate from Goodale and Milner’s original

proposal [1,2,3�,12] that the visuomotor system com-

putes absolute (i.e. Euclidean) object metrics, whereas

the perceptual system utilizes scene-based (i.e. non-

Euclidean) metrics.

Glover and co-workers [51,52] have reported that visual

illusions have a larger effect on the early rather than late

stages of action, which suggests that on-line movement

control is refractory to perception, whereas movement

planning is not. Recent attempts to replicate these find-

ings using conventional tasks and data analyses have

failed [55], and neuropsychological evidence does not

support the contention that the early and late stages of

actions access different visual processing systems [56�].
Nevertheless, as we will argue later, there is good reason

to believe that perceptual mechanisms are important for

the guidance of action in clearly circumscribed situations;

Glover’s notion of ‘action-planning’ can be easily sub-

sumed under this framework.

Visual illusions: refining the perception–
action hypothesis
Two recent lines of evidence have helped to clarify the

relation between object perception and object-directed

action in the context of visual illusions. Dyde and Milner

[57�,58] have shown that the orientation of the grasping

hand is sensitive to a simultaneous tilt (ST) illusion —

similar to that used by Glover and co-workers [51] — but

not a rod-and-frame (RF) illusion, even though the two

visual displays have equivalent effects on judgements of

target orientation. Dyde and Milner [57�,58] argue that

the sensitivity of action to a perceptual illusion can be

understood in terms of the illusion’s presumed neural

origins. Illusions that presumably arise from ‘early’ (i.e.

area V1, area V2) stages of visual processing, such as the

ST illusion, should affect both action and perception as

the dorsal and ventral visual pathways share this input.

Illusions like the RF that presumably arise from later

stages of processing (i.e. in inferotemporal cortex) should

not affect action, as the dorsal stream does not have direct

access to this processing. Similar accounts have been put

forward to explain the fact that there are reliable direc-

tional anisotropies in the perception of the direction of

motion even though such anisotropies are not present in

smooth pursuit eye movements [37��], and the observa-

tion that fast reaching movements are sensitive to target

mislocalisation errors induced by distant visual motion

signals [40].

Several recent studies have highlighted the importance of

timing in dissociations between perception and action

[59]. Thus, in normal observers, perceptual illusions

influence the control of action when the programming

of those actions was formed on the basis of a memory of

the target stimuli [44,60–65]. These findings suggest that

the control of action after a delay depends upon a memory

trace of the target object that was originally delivered

by the perceptual mechanisms in the ventral stream.

Recently, Westwood and Goodale [66�] found that a

size-contrast illusion influenced the peak opening of

the grasp when vision of the target was occluded at the

same time the response was cued, even though the

illusion had no effect on grip aperture in trials in which

target vision was occluded at the moment of movement
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initiation (Figure 4). This finding strongly suggests that

the visuomotor networks in the dorsal stream operate in

‘real time’: these networks appear not to be engaged

unless the target object is visible at the exact moment

the response is required. In other situations (e.g. memory-

driven actions or advance movement preparation), the

control of action passes to other systems that access a

representation of the target object laid down by the

perceptual mechanisms of the ventral stream.

Neuropsychological evidence from visual form agnosia

[67] and optic ataxia [68,69,70�,71�] provides important

converging support for the contention that there are two

distinct modes of control for object-directed action: a real-

time mode of control that depends on the visuomotor

networks in the dorsal stream, and an off-line mode of

control that depends, at least in part, on the perceptual

mechanisms in the ventral stream. Presumably, such

interactions between the ventral and dorsal streams are

also responsible for the results of several neurophysiol-

ogical experiments that have found parietal neurons that

are sensitive to stimulus features such as colour [34�],
shape [72], duration [73], or motion [74] when these are

arbitrarily mapped to object-directed actions.

Conclusions
In summary, there is a wealth of psychophysical evidence

that is consistent with the general view that in specific

situations, particularly where rapid responses to visible

targets are required, visuomotor control engages proces-

sing mechanisms that are quite different from those that

underlie our conscious visual experience of the world.

Figure 4
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(a) (c)

(b) (d)

(i) (ii)

(i) (ii)

The effects of a size-contrast illusion on visually guided and memory-guided grasping [66�]. Results from Westwood and Goodale [66�]. Illustrated

are the difference scores for peak grip aperture for targets presented with smaller minus larger flankers (error bars are SEM). (a) No delay group,

in which grasping responses were cued immediately after the initial 500 ms target viewing phase. (b) Delay group, in which grasping responses

were cued 2500 ms after the initial 500 ms target viewing phase. (c,d) In the event sequences grey bars represent availability of target and limb vision,

(i) denotes auditory response cueing, (ii) denotes onset of hand movement, dashed curves represent movement unfolding. Vision and occlusion

trials were randomly intermixed for both groups. For both the no-delay and the delay groups, significant illusion effects were seen in occlusion but

not vision trials, indicating that target and limb vision between response cueing and movement onset are crucial for the resistance of grasping to

size-contrast illusions. Abbreviations: PGA, peak grip aperture.
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The ongoing challenge for neurobiologists is to map

these behavioural findings onto the brain and reconcile

them with what we already know about the dorsal and

ventral streams from primate neurophysiology and

human neuropsychology. Preliminary efforts have been

made in this regard in primate neurophysiology [75] and

human transcranial magnetic stimulation (TMS) [76�],
but much more work remains to be done. In particular, we

anticipate that important advances in understanding the

interactions between the dorsal and the ventral streams

will be made using TMS to disrupt neural processing at

precise points in a temporal sequence [77]. For example,

recent findings from TMS studies point to the impor-

tance of recurrent projections from extrastriate to striate

cortex in conscious perceptual experience [78��,79]. The

role of such recurrent projections in the visuomotor

networks of the dorsal pathway is much less clear, and

might represent a fundamental difference between per-

ception and action systems.

Update
Two recent papers provide additional evidence to the

debate about the differential effects of visual illusions

on perception and action. Stone and Krauzlis [80��]
showed that, on a trial-by-trial basis, there was a close

correspondence between the perceived direction of

motion and the control of pursuit eye movements. This

result supports the idea that the differences between

perception and action in motion processing that have

been previously demonstrated [37��] could arise after

common processing in early motion areas. A second

paper by McCarley et al. [81�] found that voluntary

but not reflexive saccades were sensitive to the

Müller-Lyer illusion, supporting the idea that percep-

tually driven responses are more likely to be affected by

scene-based relational cues than are more automatic

reflexive responses [66�]. Finally, the search for the

neural substrates of perception–action differences con-

tinues. In a recent paper, Schwartz and co-workers [82�]
provide evidence from single-unit work in the monkey

that activity in primary motor cortex reflects the actual

trajectory of a monkey’s hand movement, whereas activ-

ity in the ventral premotor cortex codes the perceived

trajectory of that movement.
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