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Abstract A neural architecture is presented that encodes the
visual space inside and outside of a shape. The contours of
a shape are propagated across an excitable neuronal map
and fed through a set of orientation columns, thus creating
a pattern which can be viewed as a vector field. This vec-
tor field is then burned as synaptic, directional connections
into a propagation map, which will serve as a “shape map”.
The shape map identifies its own, preferred input when it is
translated, deformed, scaled and fragmented, and discrimi-
nates other shapes very distinctively. Encoding visual space is
much more efficient for shape recognition than determining
contour geometry only.

1 Introduction

One may divide approaches to visual shape description into
two classes, one pursuing a description by contour infor-
mation, the other attempting to describe the region (or 2D
space) that a shape engulfs. Contour-based approaches are
abundant and come, for example, in the form of structural
descriptions like part-based descriptions or neural networks
like feature-integrating architectures (Palmer 1999; Rolls and
Deco 2002). Region-based approaches in turn are rare: there
exists the “filter” approach, which bears the idea to encode a
visual image by some sort of Fourier transform (DeValois and
De Valois 1988), but this approach has not pursued a specific
model that attempts to encode shape in a neuronal network.
An alternative region-based approach is contour propagation,
an idea based on the Gestaltists’ proposal to encode a shape
by letting it “self-interact”. We here follow this latter type
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because shape can be more distinctively represented from
other shapes when region information is included.

Early Gestaltists like Koffka have already suggested that
visual shape may be described using the shape self-interact by
contour propagation (Koffka 1935). McCulloch had the idea
that size-invariance of a shape could be encoded by concen-
tric propagation of its contours (McCulloch 1965) (Fig. 1a),
but he did not propose a specific model that would explain
this type of shape representation. Blum was the first to have
a specific model: the contour propagation process would find
the so-called symmetric-axis of a shape, which are vectors
that completely describe the space engulfed by a shape (Blum
1973) (Fig. 1b). We have already implemented this transform
using a neuronal architecture (Rasche 2005b). However, the
symmetric-axis transform only encodes the interior of a shape
or contour form, but it does not encode the exterior, as for
example, the space outside of a rectangle.We have considered
extending Blum’s symmetric-axis transform but that seems
difficult to us. Rather we propose an architecture that remem-
bers the flow of the outward- and inward-propagating con-
tours as a whole (Fig. 1c): if one looks at the propagation
direction of each contour point for each point in time, then
one observes a pattern of vectors, which we now call the con-
tour propagation field (CPF). This field is analogous to the
optical flow field postulated in motion studies. If one obtains
such a CPF for a specific shape and burns this CPF as synaptic
weights into a propagation map, then this map will respond
only to this shape and thus behave as what one could call
a shape-sensitive (propagation) map. This idea is elaborated
next by introducing the propagation map and by discussing
modifications of it, which help to build an architecture that
performs the envisioned recognition process.

(1) A propagation map is a layer of locally interconnected
neurons that lets contours travel as a spiking wave. One
can simulate such an excitable membrane using a mesh-
work of integrate-and-fire neurons connected by horizon-
tal resistances, which allow for sub- and above-threshold
spread of activity (Fig. 2a; Rasche 2005b). If the activity
level in the map is raised across the spiking threshold then
the input – the contour usually – will be actively prop-
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Fig. 1 Shape encoding techniques. a McCulloch’s idea of concentric shape propagation to encode size-invariance (1965). b Blum’s symmetrix-
axis transform (1973). c The here proposed idea of encoding the contour-propagation field (CPF) – shape outlined in black, propagating contours
outlined in gray: two ‘virtual’ time steps are shown; the vectors delineate the local propagation direction of the inward- and outward-propagating
contour creating so an inward- and outward-pointing vector field

Fig. 2 Map connections. a Propagation map: integrate-and-fire neu-
rons (circle) connected by horizontal resistors. b Same as a but with
reciprocal, unidirectional connections. c Only one of the ‘directed con-
nections’ is turned on (black), the others are turned off (gray): this map
will prefer input moving toward the right only

agated across the membrane: for instance, a dot source
triggers an annular outward-propagating wave, or a line
triggers an oval-shaped outward-propagating wave.

(2) If the dynamics of such a propagation map are made inert,
then the input will not be actively propagated but rather
passively: it limitedly spreads through the subthreshold
domain of the map. The parameters can be adjusted such
that the map will only respond to continuous input – a
motion input or – as in our case – a propagating contour:
initial input will be firstly propagated and integrated in the
subthreshold domain, but when the map’s activity level
has reached the spiking threshold, then the map starts
spiking regularly – if the map continues to receive motion
input. This map can be termed a motion-sensitive map.

(3) One can modify the motion-sensitive map such that it
preferentially responds to a certain contour propagation
(or motion input). To obtain this, firstly, the horizon-
tal resistors are replaced by reciprocal but unidirectional
resistors of equal strength (weight) (Fig. 2b). That alone
would not change any of the propagation characteristics
as described in point 2. But if one, secondly, started to
tweak on the strength of the resistors, then only certain
motion input patterns are preferred. For example, if all
resistors are turned off but only the ones pointing toward
the right are turned on (Fig. 2c), then only motion in-
put toward the right leads to spiking in the motion-sen-
sitive map. Thus, by selectively modifying the synaptic
weights of the unidirectional resistors, the map can be
made selective for certain contour-propagation input.

With these ideas, one can now put a shape-sensitive map
together. A CPF can be obtained by continuously looking at
the propagation dynamics of a shape through a set of orien-
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tation columns – like they exist in the primary visual cortex
(Hubel and Wiesel 1968; Hubel 1995) – at each point in
time. This shape-specific CPF is then burned into a map as
described in (3): each vector turns on the corresponding uni-
directional resistor in the map; all other synaptic connections
at that location are turned off. This weight-burning action
represents a one-shot learning process. After that, the map
serves for recognition: it will preferentially respond to con-
tour-propagating input whose shape is identical or similar: it
will show a certain degree of size and translation invariance.
Such a shape-sensitive map is hereafter called simply a shape
map (SM).

We now describe an architecture and its simulation that
performs the described processes. We then discuss in more
detail why we pursue this type of region-based description.

2 Methods

Architecture The specific system that was developed is illus-
trated in Fig. 3. It consists of a propagation map (PM), a
set of orientation columns (OCs), a set of direction-selective
columns (DCs) and a set of SM, one for each shape. The
graphical illustration describes the information flow within
the architecture and the functionality of its components: it
does not represent any specific anatomical findings; the term
DCs merely expresses the use of a set of direction-selective
cells, it does not suggest the actual existence of such columns
in primary visual cortex.

Propagation map The PM behaves as described under point
number (1) in the introduction and has been already described
in (Rasche 2005b). We here only review the equations. It is
a layer made of I&F neurons.

The neuronal voltage VPM at location (x,y), at its next
step, t + 1, is given by its present potential plus the input of
its neighboring neurons, In(t), and initial external input Ie,
the visual shape or other stimulation:

VPM(x, y, t + 1) = VPM(x, y, t) + In(t) + Ie. (1)

In is the sum of positive membrane differences between
the center neuron at location (x,y), V c

PM and each of the
eight neighboring neurons, V k

PM , multiplied by the conduc-
tance, ga:

In(t) =
8∑

k=1

max[ga(V
k
PM(t) − V c

PM(t)), 0]. (2)

(The positive membrane difference is calculated for rea-
sons of simplicity: it allows for an equally propagating spik-
ing wave in an orthogonal grid. A possibly more realistic
simulation is better done in a grid with hexagonal connectiv-
ity but that required major reprogramming of the following
maps.) When VPM exceeds the spiking threshold, Vthres, a
spike of short duration is triggered, followed by a refractory
period of short duration. The refractory period prohibits the

bounce back of activity and ensures propagation into only one
(local) direction. The activity of each PM neuron is binarized,
SPM(x, y, t) = [ 1 if VPM(x, y, t) > Vthres, 0 otherwise].
SPM represents the set of spikes, which generally delineate
the outward- and inward-propagating contours at each point
in time.

Orientation Columns The propagating contours, SPM , feed
into a set of OCs responding to different ‘wave’ orientations
running across the propagation map. A single OC consists of
a set of cells whose receptive field (RF) consists of an excit-
atory and inhibitory part, taken from a 3 × 3 pixel field. The
four 3 × 3 grids on the right side in Fig. 3 show the first three
distinguishable orientations (0,22.5,45). The excitatory input
is made of three sequentially aligned pixels (black pixels in
grid), giving 24 aliased (‘discretized’) orientations, of which

Fig. 3 Architecture. From bottom to top: the input shape (input) is
dipped into the propagation map (PM), where it propagates inward
and outward (gray outlines). The orientation columns (OCs) and the
direction columns (DCs) determine the contour-propagation field (CPF)
which is then fed into each shape map (SM). None of the components
attempts to reflect any anatomical detail
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only 16 are distinguishable (0, 22.5, 45, 67.5, 90, ... 337.5
degree). The inhibitory input (gray pixels in grid) consists of
the pixels to one side of the excitatory pixels. The inhibitory
input is necessary, because it ensures that only edges are sig-
naled and not any cluster of excitation in the RF field, which
may occur, for example, when the propagating contour wave
is two pixels wide. Because of the use of this single strip of
inhibitory inputs, the orientations range from 0 to 360 degrees
and not only until 180 degrees.

An orientation-selective neuron (or OC neuron) is mod-
eled as a leaky (or forgetful) I&F unit (Koch 1999).A leakage
current is necessary in order to detect coincident input only.
The voltage of an OC neuron at location (x, y) and orientation
selectivity o is described as:

VOC(x, y, o, t + 1) = VOC(x, y, o, t) + IRF (t) − L, (3)

where L is a constant amount of leakage, IRF (t) is the RF
input that is expressed as follows:

IRF (t) =
3∑

k=1

SPM(ik, jk, t) ∗ Ae − SPM(mk, nk, t) ∗ Ai,

(4)

with indices i, j corresponding to the three excitatory pixels,
and indices m, n corresponding to the three inhibitory pixels,
centered around the index (x,y) of the receiving OC neuron
(x, y corresponds to the center of the 3 × 3 RF field). Ae

and Ai are the respective synaptic amplitudes for the excit-
atory and inhibitory input. Their values are set such that an
OC cell fires if all excitatory inputs are on and all inhibitory
inputs are off simultaneously. When VOC exceeds the spiking
threshold, a spike is triggered, followed by resetting VOC to
0. No refractory period is modeled in this unit. The voltage
of OC neurons is binarized, SOC = bin(VOC), where bin is
the threshold function as described for SPM above. SOC is
then fed into the direction columns.

Direction Columns A piece of propagating contour will cause
two OC cells to fire, one for each side of the contour wave,
whose orientations are set apart by 180 degrees. Thus, the OC
cells do not sense the direction of the propagating contour.
One obtains this desired direction-selectivity by correlating
two neighboring OC cells of the same orientation: if they
have been activated sequentially into one direction, then that
signals the direction of a piece of propagating contour. One
could implement such direction selectivity in a single neuron
by, for example, either using logic, synaptic interaction or
by creating a direction-selective dendrite made of two com-
partments (Koch 1999). We have omitted such a biophysical
simulation for reasons of simplicity and the correlation is per-
formed in a mere ‘bit-wise’ manner. The correlation result is
then placed into a set of DCs whose output can be expressed
analogous to the OCs output: SDC(x, y, d, t). SDC is then
fed into each shape map. If this spiking output is observed

over the entire time-course of contour propagation, then that
‘flow-pattern’ represents the CPF:

CPF =
end∑

t=1

SDC(x, y, d, t). (5)

The number of directions remains the same as the number
of orientations: there are 24 aliased directions of which only
16 are distinguishable (0, 22.5, 45, ... 337.5 deg).

Shape maps An SM is structurally and functionally basi-
cally the same as a propagation map, except that it possesses
two unidirectional resistors between two neighboring neu-
rons and that each resistor is individually adjustable in its
strength (Fig. 2b, and c; see also point 3 in the introduction).
The formalism is therefore very similar to the propagation
map: the neuronal voltage VSM at location (x, y), at its next
step, t + 1, is given by its present potential, the input of
its neighboring neurons, In(t) and the input from the DCs,
IDC(x, y, t):

VSM(x, y, t + 1) = VSM(x, y, t) + In(t) + IDC(x, y, t). (6)

In is the sum of positive membrane differences between
the center neuron at location (x,y), V c

SM and each of the
eight neighboring neurons, V k

SM , multiplied by a conductance
of certain magnitude. The conductance pattern (or weight
pattern) is expressed as G(x, y, k), whereby k denotes the
incoming connection that a neuron shares with a neighbor:

In(t) =
8∑

k=1

max[G(x, y, k)(V k
SM(t) − V c

SM(t)), 0]. (7)

The input from the direction columns, IDC , is the sum of
activity of each direction column at each location (x, y):

IDC(x, y, t) =
24∑

d=1

SDC(x, y, d, t). (8)

The activity level of a shape map is also binarized,
SSM(x, y, t) = bin(VSM(x, y, t)). The conductance G(x,
y, k) is generally adjusted lower than in the PM to make the
SM dynamics inert to a certain degree (as discussed in point
2 in the introduction). The SM should only respond when it
is continuously stimulated into the direction of the adjusted
weights.

The architecture suffers from the problem of a coarse
connectivity, in particular the SM. Specifically, a direction
column provides 16 distinguishable directions, whereas an
SM neuron has only eight neighbors and thus eight direc-
tions, which is too coarse for representing simple shapes dis-
tinctively. It would therefore make sense to explore PMs (or
shape maps only) with different connectivity, but in our cur-
rent simulation we stick to the current wiring for reason of
convenience. The problem is therefore solved by using two
propagation layers for each SM, SL1 and SL2, which are
hereafter called shape layers in order to distinguish them from
the term shape map. Each shape layer propagates the input
from eight different directions. SL1 bears the eight angles
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0, 45, 90,..., 315 degrees, SL2 contains the eight remaining
angles 22.5,67.5,112.5,...,337.5 degrees. Hence, Eqs. 6, 7 and
8 are used twice, once for each layer, whereby in Eq. 8, the
directions from the corresponding set of angles are used. The
use of two shape layers, allows to distinguish between 16
directions.

Learning A novel shape is learned by placing it on the PM
and obtaining its specific contour propagation field, CPFs

(Eq. 5). Learning is done with the centered shape – when it is
placed into the middle of the PM (see also ‘testing’ below).
This CPFs then determines the connection strengths in a
novel shape map, SMs : CPFs → Gs . This assignment is
more explicitly expressed as follows:

SDC(x, y, d, t) → G(x, y, k). (9)

Because two separate propagation layers are used for each
shape (SL1 and SL2), there are also two different connection
patterns. The specific correspondence between the 16 direc-
tions, d, and the specific synaptic connections, k, is made
according to the two sets of directions as named above. The
above process can be called a one-shot learning process and
because it occurs with the centered shape, the connection
pattern G therefore represents a centered CPF.

Recognition Recognition occurs by placing a learned shape
onto the PM and letting it run through the orientation and
DCs, whose activity is fed into each SM. The columns, how-
ever, serve then only to determine which (OC or DC) cell
activity is fed into which shape layer, SL1 or SL2, of each
SM: thus, the full range of directions is not exploited but
merely used to classify them into the two sets of angles. Most
SMs respond to most shape inputs to a small extent but the
SM that bears the most similar centered CPF, will respond
stronger than any other SM and thus signal the presence of the
shape. To differentiate between the responses of each map,
we monitor the entire spiking activity of each map during the
time course of recognition. We call this the population activ-
ity, P(t), of the SM and it is the sum of spiking activity of
all neurons of both shape layers (SL1 and SL2) in that map:

P(t) =
W∑

x=1

H∑

y=1

SSM(x, y, t). (10)

The parameters W and H are the width and height of the
map.

Testing Five shapes were used, see Fig. 4: a rectangle, a cir-
cle, a triangle, a cross and a shape consisting of the super-
position of the rectangle and the cross, which we now call
square board. The first column is the centered shape, which
was used for learning. The second column is a translated
version of the shape, shifted to the lower right by 5 pixels
in each dimension, which represents about 10 – 12% of the
shape’s width and height. The third column is scaled version
of the (centered) shape, made smaller by 6 pixels in each
dimension. The fourth column is the (centered) shape with a
‘disturbance’, a straight line extending from the right side of

the image center to the upper right. The fifth column contains
the shape made of a dotted contour, an input that is hereafter
called fragmented.

The ability of a SM to identify was tested with its own cen-
tered, shifted, scaled (smaller), ‘disturbed’ and fragmented
shape. The ability to discriminate was tested by placing the
other, centered shapes on it.

3 Results

The operation of the system is demonstrated using the exam-
ple of two straight orientations of different angle in a 15×15
pixel field (Fig. 5). The left two columns show how the SM
for a vertical orientation responds to a vertical (preferred)
and diagonal (non-preferred) input. The right two columns
shows the reverse, how a diagonal-bar SM responds to diago-
nal (preferred) and vertical (non-preferred) input. The top row
shows the CPF for the vertical and diagonal orientation (plot-
ted twice each). There are no vectors in the proximity of any
contours, because they were intentionally omitted: the initial
period of the inward and outward propagating contours gen-
erates unnecessary vectors. The CPF patterns are then burned
into the connection pattern of two separate, novel SMs (each
having two shape layers) destined to be sensitive for only this
propagation pattern. The bottom four rows in Fig. 5 visualizes
how shape layer one (SL1) responds to its preferred input.
Time steps 2, 4, 5 and 6. Shape layer two (SL2) does not
contain any activity because no angles matched with those
set of directions. At t = 2, the first contour input is dropped
into the shape layer. Continuous input gradually increases the
activity level through subthreshold propagation and eventu-
ally causes the shape layer to spike at t = 5, if the contour
input matches the pattern connectivity (stored CPF). Spik-
ing is marked as black pixels and those units ‘turn white’ in
the next step due to the I&F reset. The diagonal input does
not cause any spiking in the shape layer with vertical con-
nectivity pattern (2nd column). The second and third column
illustrate that a wave of 45 degree (or 135 deg) orientation is
propagated exactly to its next, aliased orientation, skipping
the one in between. The fourth column illustrates a limitation
of the current architecture: there is spiking although the non-
preferred (vertical) input has been fed to the shape layer. It
can be seen at t = 4, that the activity is integrated across the
diagonal direction and leads to spiking of every second unit.
This does not happen for the ‘reversed’ case (2nd column)
because a diagonal wave skips orientations (see 2nd and 3rd
column again) and does not lead to integration in a horizontal
connectivity pattern. Thus, there is a certain degree of overlap
between some orientation pairs.

Moving on to the testing shapes, Fig. 6 visualizes the
centered CPFs for the rectangle and the circle. A CPFs is
determined from the first ca. 22 time steps. For shapes with
closed contours, there is an inward- and outward-pointing
vector field, for the interior and exterior space respectively;
for shapes without closed contours, there is only an outward-
pointing vector field, for example, for the cross (not shown).
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Fig. 4 Shapes used for testing. From top to bottom: rectangle, cross, triangle, circle, square board. The first column shows the centered shapes.
The second column shows the translated shapes, which were shifted by 5 pixels into both axis directions (shifted to the lower right), which is
about 10 – 12% of the shape width. The third column is a down-scaled (smaller) version of the (centered) shape. The fourth column shows the
(centered) shape with a “disturbance”, a straight line extending from the right of the image center to the upper right. The fifth column is a dotted
version of the shape, called fragmented

As in the previous example, there exist no vectors in the prox-
imity of the contours for technical simplicity. The vectors in
the corner of the rectangle-CPF lie between the axes of the
coordinate system, because the outward-propagating corner
of the rectangle is rounded. Angles along the exact diago-
nals were sparse because at that location the corner is too
sharp for any orientation to fit. The vector field for the cir-
cle is uneven at some spots: vector angles gradually change,
but sometimes alternate back and forth. That is because the
outward- and inward-propagating contours (on the PM) can
locally change between angles due to the aliasing problem.
This is especially true for vector angles close to either diag-
onal axis (45, 135, 225, 315 deg), which are only sparsely
captured.

Figure 7 shows the response of the SM for the rectan-
gle for its preferred, centered input (left column) and for a
(centered) circle (right column). For the rectangle input, the
horizontal and vertical (contour) sides cause the SM to fire
(activity of SL1 shown only). There is also integration along
the diagonal but it is not sufficient to cause firing. The circle
input causes the map also to fire, in particular those sec-
tors with vertical or horizontal orientation. It does so with
a delay for the inward-propagating contours, because they

start further outside in the outward-pointing vector field for
the rectangle, due to the slightly larger diameter (width) of
the circle.

Figure 8 illustrates the summarized activity of the SM,
P(t) (Eq. 10), in response to various stimuli. The identifica-
tion responses are discussed first.

The response to its ‘centered’ shape, called the signature
now, is denoted as a thick, solid line: it rises steeply and stays
well above the response activity for any other identification
response. Its amplitude is determined by the length of the
shape contour. It may increase or decrease during the prop-
agation process depending on whether contours cancel each
other out (e.g. square board) or whether they are only grow-
ing (e.g. cross). Part of the fluctuations are due to the aliasing
problem (coarse nature of our network).

The response of a shape map to its ‘disturbed’ shape is
shown as a thin, dash-dotted line, which also rises steeply but
then runs below the signature: The ‘disturbing’ line causes a
subtraction because it ‘steals’ a piece of area.

The response to the fragmented shape starts with a delay
(of one time step) because it takes a short while for the PM
to fuse all the contour pieces to one continuous (inward- or
outward-propagating) contour.
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Fig. 5 Demonstration of the system on two orientations, vertical (0◦) and diagonal (45◦). Left two columns: the SM for the vertical bar was tested
with its own preferred, vertical input (leftmost column) and a 45-deg bar (2nd column). Right two columns: the SM for a 45◦ bar was tested with
its own, preferred column (3rd column) and a vertical bar (rightmost column). The top row shows the CPFs of the SMs (orientation indicated by
stars): the direction of a vector is indicated by a point. The following four rows show the activity of shape layer one, Vsm of SL1. Gray-scale:
subthreshold values; black color: spike

The response to the down-scaled (smaller) shape starts
immediately but reaches its peak stepwise because it takes a
short while until both inward- and outward-pointing vector
fields are covered, except for the cross shape.

The response to the shifted shape – plotted as thick, dashed
line – is slower and reduced compared to the other identifica-
tion responses. It also reaches its peak stepwise for the same
reason as for the smaller shape. A translation by 10 pixels
was also tested but those responses were not significantly
different anymore from the discrimination responses.

The discrimination responses – the response to other (cen-
tered) shapes – are plotted as thin, solid lines. All those re-
sponses are mostly below and sometimes minimal compared
to the identification responses. If, however, two patterns are

similar in their exterior space, as it is the case for the rect-
angle and the square board, then they may have overlapping
identification and discrimination response.

4 Discussion

4.1 Conceptual aspects

The presented architecture is a system that describes shape
by the region that it outlines, rather than by mere contour
geometry itself. The latter is often implemented as a contour
integration approach, as it is, for example, pursued in virtu-
ally most neural networks ( Rolls and Deco 2002). A contour
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Fig. 6 Contour propagation field (CPF) of the centered rectangle (top) and circle (bottom). An inward-pointing and outward-pointing vector field
is present

integration approach however suffers from the binding prob-
lem: at ‘higher’ stages of the recognition process, it is not
clear anymore which contour belongs where. This binding
problem is avoided by encoding the region. For example, the
Fourier transform does encode region in some sense by deter-
mining the spatial frequencies. But small changes in a shape
can introduce large changes in the power spectrum and the
Fourier transform is therefore less suitable for encoding cat-
egories (or classes) (see (Palmer 1999 for a more elaborate
discussion). A better solution might therefore be a contour
propagation description. Blum’s symmetric axis transform is
one specific solution: the evolved sym-axes are highly useful
for representation (e.g. Kovacs et al. 1998), but encode only
the interior of a shape, which is only half of the space.

We have therefore proposed the above architecture, which
senses the entire space inside and outside of a shape, thereby

generating very distinct representations. The architecture can
be labeled a template matching system, but the crucial differ-
ence to a traditional template matching system is that it senses
space by making its input dynamic, a dynamic template match-
ing system as one could call it. Sensing and encoding the
space (or region) by contour propagation has the advantage
of employing much more visual information than merely con-
tour geometry itself. Judging from our first results presented
here, we think that any shape can be easily distinguished from
any other shape, as long as they are not structurally too sim-
ilar. The architecture is therefore good for simple shape cat-
egorization: a learned shape can appear fragmented, scaled,
disturbed, shifted to some extent and still be identified; like-
wise, the learned shape may have minor deformations or
slightly different structure, it would still be recognized and
hence categorized. Consequently, the architecture is less
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Fig. 7 Activity of the rectangle SM (specifically Vsm of SL1), in response to its preferred, centered input (left column) and in response to a circle
shape (right column). Snap shots taken at t = 5, 10, 15 and 20

suitable for an exact identification, for example, it could
not discriminate between subtle shape differences. For that a
differentiation mechanism has to be built in, that specifically
learns minor structural details.

The architecture shows only a limited translation and size
invariance. Although some studies show that the object rec-
ognition process is translation and size invariant to a large
degree (e.g. Biederman and Cooper 1991), there are other
studies indicating that this invariance may be more limited
(see Dill and Fahle 1998 for a review). The difference in such
psychophysical experiments may also result from different,
specific conditions used. It may well be that (covert) atten-
tional shifts contribute substantially to translation invariance
in these experiments. The presented architecture does not
capture any such shifts and is only able to recognize shapes

that lie within the CPF, within the approximate focus in some
sense.

4.2 Comparison and possible refinement

The present region-based description compares to a typical
neural network (NN) performing shape recognition as fol-
lows (e.g. Fukushima and Miyake 1982; Riesenhuber and
Poggio 1999; Amit and Mascaro 2003):

(1) The ‘neural code’ of a, NN is typically a rate code (Rolls
and Deco 2002); recent networks employ timing codes
(Hopfield 1995; Thorpe 1990). In our architecture, propa-
gating waves are used, combined with single-spike detection
of wave orientation and wave direction.
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Fig. 8 Population activity, P(t), during recognition evolvement for the five different shapes. X-axis: time. Y -axis: spike activity of the entire
map (Eq. 10)

(2) An NN can hardly create such distinct (visual) shape rep-
resentations, because the units in an NN tend to share
information from different shapes, which leads to con-
siderable overlap in representations.

(3) Learning in an NN requires a few learning cycles, whereas
here it consists of a single cycle, namely the propagation
of contours across the map.

(4) In an NN the recognition aspects of scale and size invari-
ance are tackled by a local-to-global convergence and/or
a fine-to-scale pyramid, which may lead to the loss of
crucial information due to the merging of contour infor-
mation or the coarsening of the resolution across hierar-
chical levels. Here, those aspects are partly solved by two
processes: One is contour propagation, which allows for

an almost perfect translation of contours over a limited
distance. The other one is encoding space: even if the
same CPF is compared to its translated, or scaled ver-
sion, there is still considerable overlap between the two
CPFs and thereof space, than between CPFs of different
shapes.

Some of the NN are particularly tuned to carry out spe-
cific functions, like recognizing a few selected objects from
different viewpoints (Riesenhuber and Poggio 1999) or the
detection of objects by visual search (Amit and Mascaro
2003). The presented architecture is not designed for any such
task although distorted shapes that represent rotated shapes
in 3D space could be recognized to a certain degree due to the



Visual shape recognition with contour propagation 41

tolerance for structural variability. The architecture is espe-
cially good at learning any novel shape and recognizing it
without fault despite some variations in position, structure,
size and despite the presence of noise.

The present emulation is somewhat crude but, there are
several places where one can improve.

(1) The actual direction-selectivity step is solved with a mere
‘computer correlation’ and had to be implemented with a
neuronal mechanism to render this step biophysical more
plausible.

(2) Although there is some overlap between certain angle
pairs (Fig. 5, 4th column), this has not affected discrimi-
nation. Still, to refine the general ability to discriminate, it
is desirable to distinguish between more orientations (and
directions). To increase the number of orientations one
could increase the resolution of the PM and probe it with
larger RFs of, for example, 5 × 5 pixel RFs. To increase
the number of distinguishable angles in the SM, one may
also use a higher number of layers with different orien-
tations, which – on the downside – may be too elaborate.
Alternatively, one may make full use of the orientation
columns: During the recognition process, they are only
used to determine, which orientation activity is fed into
which shape layer (SL1 or SL2). But it may be possible to
use a single shape layer with a different connectivity that
allowed for a larger number of orientations and a selective
inhibition mechanism driven by the columns that allows
propagation into one direction only.

The system is potentially capable of dealing with gray-
scale images. Contours extracted from a gray-scale image
are fragmented and a recognition system must therefore be
able to deal with that. The example with the fragmented
shape showed, that the architecture, in particular the PM has
the ability to swallow fragmented input. Indeed, a next step
would be to test the architecture on gray-scale images in con-
nection with the retina developed previously (Rasche 2004).

4.3 Biological interpretation

We now discuss the biological plausibility of our architecture.
The first question that may be raised is whether a region-based
description exists in the brain. There is some psychophys-
ical support that a region process like Blum’s symmetric-
axis transform takes place (Psotka 1978; Kovacs and Julesz
1994). Some neuroscientists have interpreted some of their
neurophysiological recordings as an indication of some sort
of region processing (Lee et al. 1998). Given the representa-
tional efficiency of the here proposed network one can take
this study as a computational argument for the existence of
region-based processes. The next question is then how such
region processes may be implemented in the real visual sys-
tem. One may assume that region processes are hard-wired:
for instance Burbeck and Pizer presented a region-encod-
ing mechanism in which units in lower levels would con-
nect to units in higher levels to sense space (Burbeck and

Pizer 1995). But one may take this a step further and sug-
gest that contours are actually propagated in the nervous sys-
tem. This may take place in the form of traveling waves,
which have been observed in salamander retina (Jacobs and
Werblin 1998) and in primary visual cortex of monkeys and
turtles (Grinvald et al. 1994; Prechtl 1994; Prechtl et al. 1997,
2000; Bringuier et al. 1997; Senseman 1999). Most of these
described waves are slow (millimeters/seconds) and may suf-
fice, for example, to explain learning processes like the estab-
lishment of the CPF (although the turtle cortex does not have
orientation columns). But for recognition, traveling waves
had to be faster because recognition of shapes can occur blaz-
ingly fast (e.g. Thorpe et al. 1996). Fast waves have not been
observed yet, but may also be difficult to discover (Glaser
and Barch 1999).

The use of a vector field for representation was inspired
by the existence of orientation-selective cells in the primary
visual cortex (V1) covering the entire image. The majority
of V1 cells are motion-sensitive and react to an oriented
bar moving into a certain direction (e.g. Hubel and Wiesel
1968). In the current architecture, OC and DC cells are used
as wave detectors. The OC cells sense the orientation of lines
(or propagating wave fronts), whereby the full range of an-
gles (0.360◦) was used. As mentioned in the section, the term
direction columns was invented and does not refer to any
anatomical findings. No connections between columns were
simulated.

Therefore, our biophysical inspiration is certainly some-
what loose, but our primary motivation was to find an efficient
shape representation. What we specifically suggest is that one
role of the orientation– and direction–selective cells may be
to establish a CPF-like representation through wave propa-
gation. The real (biological) V1 is a much more intricate net-
work as compared to the one simulated here. It likely carries
out a number of different roles by performing several inde-
pendent perceptual analyses (Bruce et al. 2003). A biophys-
ically realistic simulation of this architecture would have to
account for several experimental findings, as for example, the
pinwheel-like organization of orientations (Blasdel 1992a,b),
their non-uniform distribution across cortex, the relatively
constant distance between columns. The latter may even have
an influence on translation and size invariance. There also
exist substantial connections between cortical layers: none
of these have been simulated here.

The here simulated SMs may exist in any visual corti-
cal area. They do not necessarily have to be retinotopic but
could be in a format that expresses different methods of shape
encoding. Some neurophysiological recordings have shown
that ‘feature’ columns exist in inferior temporal (IT) cor-
tex, with neurons that signal for different shapes and forms
(Tanaka 1996). Their activity could reflect the population
activity of SMs.

4.4 Addendum

1. I realized later that the recognition process described in
this study can be roughly thought of as a matching of
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orientations. The CPF describes a three-dimensional ma-
trix (the CPF matrix) with two dimensions corresponding
to the spatial dimensions (x and y) and the third dimen-
sion being orientation. During recognition, the CPF ma-
trix is cross-correlated against the orientation taken from
the input (or testing) shape. Whereas this would describe
an algorithmic way of thinking about this recognition pro-
cess, the here presented implementation can be regarded
as a biophysical plausible instantiation.

2. The idea to encode (2D) space has not been exploited
to the extent as originally intended. That is because dis-
crimination of simple shapes is not as challenging as the
discrimination of basic-level objects or textures, which
are generally more complex in their structure than mere
shapes. To discriminate, for example, more complex sha-
pes, we anticipate to encode more or even the entire space
in order to make full use of the visual space (Rasche
2005a).

3. The study describes the simulation presented in Chap. 10
of (Rasche 2005a).
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