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Abstract— An excitable membrane is described which
can perform different visual tasks such as contour detec-
tion, contour propagation, image segmentation and mo-
tion detection. The membrane is designed to fit into a
neuromorphic multi-chip system. It consists of a single
two-dimensional layer of locally connected integrate-and-
fire neurons and propagates input in the sub-threshold
and the above-threshold range. It requires adjustment
of only one parameter to switch between between the
visual tasks. The performance of two spiking membranes
of different connectivity is compared, a hexagonally and
an octagonally connected membrane. Their hardware and
system suitability is discussed.
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I. I NTRODUCTION

a) : An excitable membrane is a two-dimensional
sheet of neurons which propagates activity to all direc-
tions. It has been employed to model motion detection
phenomena [1], motion speed estimation [2], contour
detection in gray-scale images and contour propagation
for shape recognition networks [3], [4], [5]. Glaser and
Barch’s ’Excitable Neuronal Array’ employs non-spiking
units [1]. In contrast, the here presented membrane, also
called map, consists of spiking units, which allow 1) for
a wider range of propagation properties and 2) for the
possibility to emulate the maps in a neuromorphic multi-
chip system (e.g. [6], [7], see [8] for alternative architec-
tures). Neuromorphic multi-chip systems communicate
by exchanging spikes and the output of an excitable
map has therefore to represent a spiking format. Here,
two variants of such a spiking membrane are presented:
their propagation properties are characterized and their
suitability for an analog hardware implementation and
orientation extraction is discussed.

It will be shown that an excitable map can be adjusted
such, that it acts as a contour detection mechanisms. In
some sense, that is what certain silicon retinae already
perform [9], [10], [11], [12]. For instance, the retina
by Mahowald and Mead [9] detects the contours of a
moving stimulus. Whereas their retina generated only
analog output values, more recent silicon retinae, such
as Boahen’s version [10], generate also a spiking output
suitable for a multi-chip system. The contour detection
process presented here shows the important difference
that it can occur using a still-image, an issue hardly
addressed in computational neuroscience. Other map
properties will be shown, which are useful for other
visual computations. It is then discussed how these maps
may form part of a neuromorphic multi-chip system.

II. M ETHODS

b) Map connectivity:A map consists of a 2D grid
of neural units, each unit horizontally connected to its
immediate neighbors by resistors. In a hexagonal grid,
hereafter called thehex-grid, the neurons of every 2nd
row (or column) are shifted by half the unit-spacing (as
compared to the oct-grid) and each neuron is connected
to its six neighbors (figure 1a, [shift in row shown]). This
is also the preferred connectivity for two-dimensional
(2D) electrotonic propagation, because it allows for even
propagation and it is therefore easy to tune [13]. This
hex-grid is one connectivity variant. But we also inves-
tigate another variant, an octagonally connected grid (the
oct-grid, figure 1b), because it offers some advantages
over the hex-grid. An octagonal grid is more difficult
to tune but if one uses unidirectional resistors then it
becomes robust. In the oct-grid, the neurons are aligned
within an orthogonal coordinate system and each unit
connects to its eight neighbors (figure 1b).
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Fig. 1. Connectivity for the discussed maps (a-c). a. Hex-grid: a unit
’c’ has 6 neighbors. b. Oct-grid: a unit ’c’ has eight direct neighbors
(not all horizontal connections shown). c. Oct-grid with unidirectional
connections (only connections to the center unit are shown).

c) General dynamics:A neuron is modeled as
an I&F unit (see e.g. [14]). Instead of simulating the
neuronal voltage and current dynamics explicitly, we
merely model an activity variable,V , corresponding to
the neuronal membrane potential. In the sub-threshold
domain (V < Vthres [spiking threshold]), the activity
level of a neuron at location (x,y) at the next time step
t + 1, is given by its present activity level plus the
input Ih(t) of its neighboring neurons via the horizontal
connections:

V (x, y, t+1) = V (x, y, t)+Ih(t)+Iext, for V < Vthres,
(1)

wherebyIext represents external input to the map. The
term Ih consists of the sum of activity differences for
each of the N neighboring neurons, multiplied by the
axial (or horizontal) conductancegh:

Ih(t) = gh

N∑

k=1

(Vk(t) − Vc(t)), (2)

whereVc is the activity level of the center neuron and
Vk is the activity level of the neighboring neurons. The
two map variants, oct-grid and hex-grid, differ basically
in their termIh(t).

When horizontal (synaptic) or external input drives
V above the spiking thresholdVthres, then a spike of
durationdts is triggered - registered at timeton - during
which the activity level is clamped to a maximum value,
ENA, representing the reversal potential for sodium:

when V > Vthres : ton = t, V = ENA for dts, (3)

During this ’high state’, the activity level will signifi-
cantly contribute to its neighbors due to the large differ-
ence in equation 2 and that may cause the neighboring
units to spike as well. This can lead to initiation of a
spike wave. Following the high state, the activity level
is reset to a minimum valueEK for a short whiledtr
starting att = ton + dts. EK represents the reversal
potential for potassium. This ’low state’ serves as a
refractory period prohibiting the bounce back of activity

during spike wave propagation:

when t = ton + dts : V = EK for dtr. (4)

This set of equations (1 to 4) fully describes the map’s
dynamics and roughly represent the dynamics as they
would occur if the map was implemented in a neu-
romorphic system [13], [7] (see also discussion). In
previous literature the term ’wave’ was used to describe
the traveling activity of waves of decreasing amplitude
[13]. The sub-threshold behavior described in equations
1 and 2 corresponds to that term. Because in the present
study the focus lies on the propagation of spiking waves
- for which all equations are involved -, the termwaveis
only used for this actively propagating operating modus.
An alternative expression could be traveling wave.

d) Parameter values and tuning:ENA, EK and
Vthres are set to values 5.0, 0.0 and 2.0, respectively
in accordance to voltage values often chosen in analog
circuits (e.g. [13]). The simulation time step is set to a
value of 0.2 and can be interpreted as milliseconds.dts
and dtr are set between 0.6 and 1.2, also interpretable
as milliseconds.dts is usually set to a value of 1.0,
which would correspond to the general pulse width
in neuromorphic systems [6]. The map then requires
the adjustment of only two more parameters, the axial
conductancegh and the refractory perioddtr. Given the
value ofdts, there exists a minimum value fordtr, which
is required to be slightly larger than the value fordts,
in order to ensure spike wave propagation without the
bounce back of activity. The only parameter that then
requires tuning isgh, which is generally set between
0.04 and 0.18 depending on the specific application.

e) Hexagonal grid (hex-grid):In the hex-grid, the
neighboring inputIh is as described in equation 2, with
N being equal the 6 immediate neighbors.

f) Octagonal grid (oct-grid): In an oct-grid, spike
wave propagation is uneven, because during outward
propagation of a point-source for example, the diagonal
directions (toward units 2,4,6,8 in figure 1a) do not
receive the same amount of input as the lateral units
(toward units 1,3,5,7). One can attempt to alleviate the
problem by giving a higher conductance value to the
diagonal connections but this map variant is generally
difficult to tune, for example achieving stable spike wave
propagation is intricate, and that is why this specific
version is not discussed any further. However, a variant
of the oct-grid connectivity provides robust spike wave
propagation: this variant assumes that activity flows
only toward the lower side, an unidirectional connection
(figure 1c). For this specific oct-grid versionIh is the
sum of positive membrane differences multiplied by the
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axial conductance,gh, for each of its 8 neighboring
neurons:

Ih(t) = gh

8∑

k=1

max[(Vk(t) − Vc(t)), 0], (5)

Because of this unidirectional flow, there is no decay of
activity in this map: Input will integrate and never fade
away unless a spike occurs, which would reset the unit;
or unless a leakage conductance is added to a unit.

g) Contour detection:The maps can be used to
detect contours in a gray-scale image. This has already
been shown for the oct-grid [3] but is here shown to work
also for the hex-grid. It is assumed that the proposed
edge detection process takes place in two stages: in a first
stage, the image intensity distribution (gray-scale image)
determines the activity level and spiking threshold of
the excitable membrane. In a second stage, the activity
level starts spreading in the sub-threshold domain and
that eventually will trigger spikes where there is a large
difference - a contrast edge - between two neuronal
activity levels.

The first stage is mimicked as follows. The image
intensity distribution,I(x, y) (0 black, 255 white), is
scaled to a range between values 0 and 4.0, denoted as
Is. Is is then assigned to the activity level of the map
at time 0: V (x, y, 0) = Is(x, y) (or: Iext = Is(x, y)
at t=0; Iext = 0 for t>0). In addition, the threshold
value of each neuron is individually adjustable and set
above the individual activity level of each unit by a
constantc: Vthres(x, y) = V (x, y, 0) + c. Given an
offset of c = 0.5, the spiking thresholds would vary
from 0.5 to 4.5 as opposed to the fixed threshold of
2.0 in the ’regular’ map. In the second stage, the activity
level is propagated according to equations 1 to 4. Firstly,
the activity will propagate in the sub-threshold domain
(equations 1 and 2), which eventually will trigger spikes
at high-contrast edges. Once spikes are triggered, the
above-threshold equations come into play (equations 3
and 4) and the contours start propagating as a spiking
wave. A biophysical motivation and discussion of this
process can be found in [3].

h) Motion detection:The excitable maps can also
be used to detect a moving input. This is not related
to the contour detection mechanism and represents a
different operation modus of the map. To transform
the map to a motion-sensitive modus, the value for
the horizontal conductance is decreased rendering the
map’s dynamics inert as opposed to the propagation
modi discussed above: for instance, a unit that spikes
will not trigger spike wave propagation; the map will

only react repeatedly if there is continuous input along
a certain direction - a motion input.

Because there is no activity decay in the oct-grid
version simulated here, such motion input can raise
this map’s activity to a level where it causes excessive
spiking. To prevent that, a leakage termL is introduced
to each unit: equation 1 becomesV (x, y, t + 1) =
V (x, y, t)+Ih(t)+Iext−L. We hereafter refer to this as
the leaky oct-grid. The leakage conductance is chosen to
be fixed for reason of simplicity - it can be implemented
with a single transistor in analog hardware.

To test this map, the following type of motion stimulus
is employed: a series of input spikes stimulates the
map from left to right. The input spikes are assumed
to arrive from another chip, such as a silicon retina
generating spikes in response to observed contours (e.g.
[10]). The spikes would be fed to synaptic circuits in
the corresponding neurons and trigger an excitatory post-
synaptic potential (EPSP). In this simulation, the EPSP
is emulated as a pulse-shaped response of amplitudea
and a duration of a single time step:Iext(xs, ys, ts) = a,
with xs, ys andts being selected locations and time steps
that correspond to the motion stimulus.

i) : When we discuss the general propagation prop-
erties in the subsequent section, we refer to three maps:
1) the hex-grid; 2) the oct-grid; or non-leaky oct-grid; 3)
the leaky oct-grid, which is the oct-grid used for motion
detection.
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Fig. 2. Sub-threshold propagation for the leaky oct-grid. 4cases
are plotted with a combination of two values (high and low) for the
horizontal conductance and the leakage conductance. highgh=0.12;
low gh=0.04; high L=0.16; low L=0.08. Y-axis: activity level; X-axis:
space: neuronal unit number.

III. R ESULTS

j) Sub-threshold behavior:The value of gh de-
termines the rate of decay in time and space (the
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time and space constant) [13], [14]. In the hex-grid
either decay occurs exponential [13]. For the leaky
oct-grid, the propagation properties are different and
they are non-linear due to the specific connectivity
pattern and the fixed leakage. Figure 2 illustrates the
spatial decay for combinations of low and high val-
ues for both the leakage and the axial conductance:
The spatial decay is generally slower as compared to
an exponential decay. The temporal decay is constant
due to the fixed leakage conductance. In contrast to
those maps, for the non-leaky oct-grid (in which there
is no decay) the axial conductance rather determines
how fast the map builds up activity. In summary:

decay in space decay in time
hex-grid ∝ gh (exp) ∝ gh (exp)
leaky oct-grid ∝ gh, L (non-lin) = L (const)
(non-leaky)
oct-grid

none (build up) none (build up)
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Fig. 3. Above-threshold propagation of a pixel source in a 20x20
map. Black pixels represent spiking units, gray pixels represent units
with sub-threshold activity above 0. Left column: hex-grid(gh=0.12;
ww ≈ 1.8). Middle column: oct-grid (gh=0.06; ww ≈ 1.2). Right
column: leaky oct-grid (gh=0.12; L=0.08;ww ≈ 2.0). Snapshots of
V at time steps 1,5,9,13 and 17 are shown. For both grids:dts=1.0;
dtr=1.2. Partly reprinted with permission from Springer [5].

k) (Spike) wave propagation:The properties of
spike wave propagation were firstly tested using a pixel
source that is turned on for a single time step and that is
large enough (aboveENA) so that it triggers an outward-
growing annular wave.dts is set to a value of 1.0;dtr is
set to a value slightly larger, 1.2, to prohibit the bounce
back of activity. It is then onlygh that needs some
adjustment.

Hex-grid: There exists a minimum value forgh

(≈0.105) that will trigger the annular wave. Around

this minimal value the wave widthww extends more
than one neuronal unit, meaning that two neighboring
neurons will be active simultaneously for a short period
(figure 3, left column). The hex-grid pattern is plotted in
a regular orthogonal grid, which means that every 2nd
row is shifted by half a unit. The contours for a hex-grid
can therefore look aliased: this can be best understood in
figure 4 for a vertical line. The wave speedws is about
one third of a neuronal unit. Increasing the value forgh

increases both, wave width and wave speed. A change in
spike durationdts modulates the wave width and does
so more significantly than a change ofgh, but it does
not change wave speed. A decrease inVthres increases
wave width and wave speed, because units at the wave
front exceed the spiking threshold earlier and because
the activity difference across units (equation 2) is larger.
An increase inVthres has the reverse effect.

Oct-grid: The above discussed effects of parame-
ter changes for the hex-grid basically apply to the
oct-grid as well, for both the leaky and the non-
leaky version. The minimal wave speed is slightly
higher - approximately half a unit per time step -
than for the hex grid. For the leaky version, the
wave width and wave speed are inversely propor-
tional to the value ofL because it determines sub-
threshold integration time (figure 2). In summary:

wave width,ww wave speed,ws

hex-grid ∝ gh, 1/Vthres,
dts

∝ gh, 1/Vthres

leaky oct-
grid

∝ gh, 1/Vthres,
1/L, dts

∝ gh, 1/Vthres,
1/L

(non-leaky)
oct-grid

∝ gh, 1/Vthres,
dts

∝ gh, 1/Vthres

For the hex-grid, the outward-propagating wave is
exactly annular; for the oct-grid it is near annular and for
larger values ofgh (≈ 0.18) the wave becomes diamond-
shaped. Changingdtr also influences the wave width
but its effects are minor as compared to the summarized
parameter changes.

l) Waxing and waning propagation:A piece of
contour can be propagated in two modi. In one mode,
a contour piece can trigger an outward-growing prop-
agation wave. This mode has already been shown in
figure 3 for the point source, and it is hereafter called
the ’waxing’ mode. It is shown again in figure 4 for
a vertical line (1st and 3rd column for the hex-grid
and leaky oct-grid respectively). The waxing propagation
can fill gaps in a contour image by mere propagation,
which will be shown for contour detection. In the other
mode, the contour propagates but gradually diminishes
and this is referred to as the ’waning’ mode (2nd and 4th
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Fig. 4. Propagation of a vertical line. 1st column: hex-grid, waxing
propagation (gh=0.12). 2nd column: hex-grid, waning propagation
(gh=0.07). 3rd column: leaky oct-grid, waxing propagation (gh=0.08;
L=0.08). 4th column: leaky oct-grid, waning propagation (gh=0.08;
L=0.38). For both grids:dts=1.0; dtr=1.2. Display same as in figure
3.

column in figure 4). The waning mode can be obtained
by lowering the value forgh (below 0.1). In this mode
a contour starts to shrink from its contour endpoints.
A closed contour triggers an inward- and an outward-
propagating wave. The outward-propagating contour is
broken up into pieces each of which shrinks: the inward-
propagating contour does not diminish because there are
no endpoints that nourish the waning effect. In this mode,
it is not possible to trigger propagation of a pixel-source.

The non-leaky oct-grid can not provide waning propa-
gation because no decay is modeled in that map variant.

m) Contour detection:Figure 5 illustrates the con-
tour detection mechanism. The top row shows the gray-
scale image of an object, a desk (plotted twice). The
rows below depict how the contours evolve during the
propagation process. For the oct-grid (left column)c was
set to a value of 0.5, for the hex-grid (right column) the
value was set a little lower, 0.3, because the decay of
(sub-threshold) activity occurs faster in this map. There
are a number of characteristics to this detection process:

1) High-contrast contours are signaled first, followed
by lower-contrast contours, because a steep edge reaches
the neighboring spiking threshold faster than a shallow
edge.

2) A contour triggers a wave towards both sides as
expected from the above simulations. If one of these
contours travels across a darker area, then its wave width
and wave speed is larger due to the larger difference in
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Fig. 5. Contour detection with the excitable map. Left column:
oct-grid (gh=0.11,c=0.5). Right column: hex-grid (gh=0.09,c=0.3).
For both grids:dts=0.6; dtr=1.2. Snapshots of spiking activity only
are shown at time steps 1, 2, 4 and 6 (no sub-threshold activity is
displayed).

equation 2, which is equivalent to an increased value
of gh. This can be seen at time steps 4 and 6 for the
large dark area in the middle of the desk object and
the triangular area in the lower right: for both areas, the
width of the inward-propagating wave is larger and the
’opposing’ waves separate faster than other contours, like
the contours between drawers.

3) The detected contours may propagate in a waxing
manner, as it is the case for the oct-grid shown in the left
column. For low values ofgh, the contours are signaled
but only propagation across the dark areas takes place.
Other contours are not propagated further, and thus this
does not exactly represent a waning propagation as stated
above.

There is no substantial difference in the contour
detection process between the two grids: both grids
detect most contours, which can suffice for an object
hypothesis.

For the given parameter set, the contour detection
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mechanism perform possibly for all images with regular
illumination. The study in [3] contains more examples
for the oct-grid map. Figure 6 shows the result of the
hex-grid for images containing ’fuzzy’ contours. The
parameters are exactly the same as for the stimulation
in figure 5 (the hex-grid). In the example of the tree,
the signaled contour image is granular during the first
four time steps due to the image texture. The contour
image is then segmented by the (waxing) propagation of
contour pieces. In the animal picture, the first four time
steps return the clearest contour image, later it becomes
unrecognizable. These pictures show that the detailed
evolvement of the contour image is individual to each
picture.

Different values for the offsetc change the amount
of contours detected: a high value of c selects higher-
contrast contours only, a lower value includes lower-
contrast contours (figure 7). For lower values wave width
and speed is faster as discussed above.
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Fig. 6. More contour detection examples with the hex-grid. Parameters
are as in figure 5. Snapshots are taken at time steps 2, 4, 6 and 8.

n) Motion detection:In order to run the excitable
map as a motion-sensitive map, the propagation dy-
namics are made inert by decreasing the value forgh.

A decrease ingh has already been applied in order
to switch from waxing to waning propagation. For the
motion-sensitive map, the value is decreased even more
(smaller than 0.07). The motion stimulus drops a series
of EPSP into a 10x20 map every 2nd time step, along
row number 5, starting with column number 2. Figure 8
shows the response of a hex-grid, whereby snap-shots of
every 2nd time step are taken until time step number 24.
The EPSP amplitude is 1.9, so just below the height of
the spiking threshold. The map responds with a growing
mound of increasing diameter and amplitude. Once the
mound’s amplitude has reached the spiking threshold
(with the 3rd EPSP drop, see plot number 3 in 1st
column), then the generated spike increases the diameter
even further and helps to maintain continuous spiking
with each successive EPSP drop of the motion stimulus.
Results for the oct-grid have been presented somewhere
else [2].
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Fig. 7. Varying the offset (c) in the contour detection mechanism (hex-
grid). Parameters are as in figure 5 and 6 except for c (0.3, 0.2, 0.1,
respectively). Only time step number 4 is shown for each simulation.

IV. D ISCUSSION

o) : An excitable map was presented, which can
perform different visual functions if tuned appropriately.
To switch between some of the functions, only the
horizontal conductance value has to be adjusted: the
map can propagate contours in a waxing and a waning
mode; it processes motion stimuli; and it can detect
contours using adjustable spiking thresholds. Each of
these mechanisms can be analyzed in greater detail. This
would make sense once a specific map is implemented
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into analog hardware. The present study shows the
versatility of such a map and that with either map (oct-
grid or hex-grid) the same effects can be generated.
The choice of grid depends on the application and is
discussed subsequently.
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Fig. 8. Motion detection with the hex-grid (gh=0.03). Excitatory
post-synaptic potentials are ’dropped’ from left to right.Black: spiking
activity; gray: sub-threshold activity. Left column: snapshots starting at
time step 2, continuing every 2nd time step. Right column: continuation
of left column.

p) Contour detection:The contour output is ad-
justable by a single parameter, the offsetc. Once ad-
justed, the contour detection mechanism operates on
many images with ’normal’ luminance distributions. This
is similar to computer vision algorithms (e.g. [15]),
which also operate on many images once the appropriate
parameters have been choosen. The network is therefore
as robust as any algorithm generating contour images.
But of course there always exist some images in which
the luminance distribution is uneven enough, such that
the fixed parameters do not capture the essential contours
- whether this is a computer vision algorithm or the pre-

sented network. An importance difference to computer
vision algorithms is that the presented network generates
the contour image dynamically. How a visual system can
deal with that is discussed later.

q) Analog hardware suitability:1. Excitable map.
The currently existing silicon retinae consist of hexag-
onal (passive) maps made of a variety of resistor types
[9], [7]. To render those excitable, some spiking mech-
anism had to be inserted which does not only sense the
membrane voltage, but which would also contribute to
its neighboring units when a spike occurs. This may be
intricate for some of those maps, but a resistor variant
that has already been tested for such dynamics are the
switched capacitor circuits [16], [17]. Specifically, the
study by Rasche and Douglas uses a spiking mechanism,
which would cause back-propagation of a (somatic)
spike signal into the neighboring compartments of a
dendritic tree. The circuitry of that spiking mechanism
is large because it emulates the sodium and potassium
conductance, but simpler spiking mechanisms, e.g. a
mere I&F neuron, may suffice as well. The equations
in this study correspond most closely to the use of such
a map. The shortcoming of this method is that it requires
a fast clock and that renders the implementation rather a
mixed analog-digital circuit using also more power than
pure analog circuits.

An oct-grid has not been implemented yet and would
pose the problem of constructing uni-directional resis-
tors. One could achieve that using follower-connected
amplifiers, which however require much design space.

2. Contour detection. To ensure that the first stage
occurs before the second stage starts, it may be necessary
to inhibit the lateral propagation initially. In case of the
switched capacitors, one way to ensure this inhibition
would be to stop the clocks. To implement the individual
adjustment of the spiking thresholds, a follower with
offset could be used, which would set the threshold
voltage, but which would be turned off as soon as the
second stage starts.

r) Embedding into a multi-chip system:1. Contour
processing. Because the contour image is generated
dynamically (e.g. figure 6) subsequent processing had
to deal with this dynamic output in some way. One may
think of stabilizing or ’snatching’ the contours in some
way, but one may also render subsequent integration
dynamics slower, e.g. the integrating neurons would
possess large time constants (slowly decaying excitatory
post-synaptic potentials). An alternative would be to
employ the propagation directly for region encoding, see
item 2 next.

A future goal is to extract the local orientation of
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propagation waves from such maps as it has already
been done for certain recognition architectures [4], [18].
The hex-grid offers 6 orientations (3 ’unaliased’ and 3
aliased) per ’elementary’ subfield (figure 1b). But due
to the existent alternation of the wave front into one
direction (figure 3), a higher resolution is necessary to
distinguish between orientations. In contrast, the oct-
grid offers 8 orientations (4 unaliased and 4 aliased)
per elementary subfield and those orientations do not
alternate into a given propagation direction. Thus, the
oct-grid allows for a larger number of orientations per
subfield and can be easily used to compute direction-
selectivity, whereas for the hex-grid one had to chose a
higher resolution to obtain the same robust orientation
measures.

2. Region processing. The main purpose of contour
propagation is the encoding of regions, as for exam-
ple used in Blum’s symmetric-axis transform [19]. A
neuromorphic plausible architecture of this process has
already been implemented [4]. The system used the
presented propagation map to propagate the contours
and during this propagation process the fragmented
contours would simply fuse. In that specific simulation,
the starting point for propagation was the contour image
obtained from a computer vision algorithm. A next step
would be to demonstrate the operation of the transform
with the presented contour detection mechanism, but
for such a single continuous system to work, one had
to adjust the orientation detectors in that system (see
paragraph above). Furthermore, in that simulation the
kind of propagation was of the waxing ’unlimited’ type,
which possesses the advantage of closing gaps in a
contour image. It also can lead to segmentation if the
inside of a shape contains contour pieces from texture.
But the downside of this process is that noisy contour
streaks can also perturb the proper development of those
symmetric axes. An alternative would be to use waning
propagation, which represents a ’controlled’ propagation.
Using that form of propagation, small contour pieces -
which can result from speckled noise - are given less
importance. However, the symmetric axes would not be
fully generated and subsequent processing had to take
that into account.

3. Speed estimation and detecting flow patterns. The
propagation maps could also be used to estimate speed.
Different maps tuned to different, inert dynamics would
detect different motion speeds: a motion speed would
then be signaled by the activity of a specific map or a
combination of them [2]. The advantage of this form of
speed estimation is that it is independent of a directional
read-out. Another value of these inert map dynamics lies

in exploring the use of different strength values for the
individual connections. This was already exploited in a
study where such motion-sensitive maps served to store
certain flow patterns [18]. In both applications, the input
to such maps would come from a silicon retinae or the
here presented contour detection mechanism.

4. Segmentation. In computer vision, the processes
of image segmentation and texture segregation are often
carried out using different filter sizes (e.g [20]) which is
size costly if one would attempt to transform them into
a neuromorphic multi-chip system. The segmentation
process shown in figure 6 does not compare to those
elaborate and refined computer studies, but it shows that
the excitable map can principally perform this process
using only a sheet of interconnected neurons. It remained
to be worked out of course, whether this principal can
be extended to for example segregate the textures as
discussed in Malik and Perona’s study [20].

s) Biological plausibility: The biological plausibil-
ity of excitable membranes has already been exhaustively
discussed in previous studies. A general justification
of excitable membranes can be found in [1], [5], a
justification of the individual mechanisms is given in the
respective studies (e.g. [3], [4]). Here, the arguments are
summarized in key words.

Visual processing occurs blazingly fast [21], [22] and
if propagating waves would be involved in recognition
then they had to occur reasonably fast, for example on
a time scale of tens of milliseconds. Fast waves have
not been observed yet, they may however be difficult to
detect [1]. Fast wave propagation may occur on a neu-
ronal/map level as simulated here. The retina propagates
waves by either the electrical gap junction coupling of
ON bipolar cells [23], [24] or by coupling of horizontal
cells (see [25] for a more detailed discussion). In the
primary visual cortex such propagation has not been
found yet, but there is also the possibility that waves are
propagated at a more ’global’, neural signal, for instance
at the population level in which thousands of neurons
would represent a small patch of the excitable membrane
[26].

Because the excitable maps do not make use of any
specific neural code, such as rate or synchronization
code, one may wonder how realistic that aspect is. Again,
given the high processing speed, it may be that single
spikes are employed between maps, as it is implied in
this study. Others have already proposed codes that com-
pute with mere single spikes [27], [28], which belong to
the class of timing codes. The excitable maps do not
require any specific spike timing, they employ merely
wave propagation and the generated spikes would be
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projected to other maps.
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