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Abstract—We introduce a method to describe the geometry
of contours, which is potentially benefical for biological motion
perception. The method consists of systematic labeling of contour
segments for different window sizes, which allows to determine
high-curvature points and to derive a parametric description of
contours. The method is considered as complementary to existing
approaches of biological motion perception, with the particular
advantage of providing detailed structural cues, that are useful
for rapid detection and classification of biological motion in noisy
gray-scale scenes.

I. INTRODUCTION
Biological motion describes the movement of animals or

humans - or still-images thereof -, for instance the dynam-
ics of a walking person or the (static) pose of an athlete.
There exist already many algorithms which can reasonably
characterize biological motion. Two types are particularly
useful, algorithms which determine the motion flow field and
algorithms using the contour silhouette (see e.g. [1] for a
review). Both have their advantages and disadvantages but can
complement each other when one fails to perceive motion in
certain circumstances [2]. Here, we sketch an approach which
accurately describes contour geometry and which is therefore
beneficial for, the detection of typical person silhouettes, as
well as the detection of silhouette corners to estimate motion
speed.

II. MODEL
The biggest challenge of contour description is the detection

of segments which represent object-characteristic features.
To segregate meaningful segments, Fischler and Bolles had
already proposed a contour-labeling method [3]. We use a very
similar labeling method, but extend it to derive parameters
reflecting the contour geometry such its degree of curvature,
edginess, symmetry and so on.
1) Labeling, Signatures, Local/Global Space: A first step

toward the description of contour geometry is to iterate the
contour with a window that labels each selected segment.
Given a contour with arc length variable v, a chord (or window
or segment) of fixed length ω is selected and its endpoints
connected by a straight line �. The maximal deviation (or
amplitude) amax between the selected segment vω and the
straight line � is determined. If the segment lies primarily on
one side of the straight line �, the segment is labeled a bow
and the amplitude amax is assigned to a ’bowness’ signature
β(v) - otherwise the amplitude value is 0. If the segment lies

on both sides, it contains a critical point and the segment is
labeled an inflexion and the amplitude amax is assigned to an
inflexion signature τ(v). Iterating this labeling process through
the entire contour creates the signatures β(v) and τ(v). The
signatures are created for a range of window sizes, ω ∈ [1, lc]
(lc = arc length), leading to the local/global space also called
LG space hereafter:

βω(v), τω(v), ω ∈ [1, lc], (1)

The left column in figure 1 shows the LG space for a wiggly
arc: at a local level (for small window sizes), the contour
appears noisy and the bowness and transition signature appear
irregular (e.g. see window no. 3 and 4). At a global level
(large window size) the contour appears as an arc, which is
expressed by the presence of a single function block for the
bowness signature (e.g window no. 6 to 7). The term function
block describes a range of neighboring signature values which
are above 0, e.g. for window no. 5, the first function block for
the bowness signature extends from pixels 8 to 15.
A bowness-function block is then characterized more ex-

haustively. Its degree of circularity ζ� is given by the integral
of the function block β�: ζ� =

∫
β�. To distinguish whether

the block describes a L feature or arc, we define a parameter
edginess ε�. It is determined by multiplying the derivate of β�

by a normalized, ramp function F ramp, whose width is equal
to the block size (with center value equal 0): ε� = β�′

F ramp.
The edginess value is largest for a L feature, it is 0 for a perfect
arc. The block’s symmetry υ� is determined by integrating
the absolute difference between the first block half β�1 and
its reversed second block half β�̆2 , which then is normalized
(l�=block size): υ� = 1

2l�

∫ l�/2 |β�1 − β�̆2 |. A value of 0
means complete symmetry, an increasing value corresponds
to increasing asymmetry.
2) Contour Boundary Segregation: If a contour contains

an ’end’ - a turn of 180 degrees - it is segregated at its point
of highest curvature. An end can be detected by analyzing
the bowness signature from local to global: whenever its
amplitude exceeds the length of a half circle with radius equal
to half the window size (βω(s) > ωπ/2), then the location
of the maximum amplitude is selected as a potential point of
segregation. After application of this rule, any contour appears
either as elongated in a coarse sense, which can already be
described by the above geometries. But this rule will also
segregate a smooth arc, whose arc length is larger than 180
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Fig. 1. Local/global (LG) space of a wiggly arc. Top right: sample contour with starting and center points marked as asterisk. Left column: LG space:
signatures β(v) (black) and τ(v) (grey) for 8 different window sizes [x-axis= arc length variable v]. Function block characteristics (determined for large ones
only): triangle marker= ε� (edginess); diamond marker=υ� (symmetry); plus sign marker=ζ� (circularity). Fraction: fraction φ of bowness- and transition-
function blocks per window size. Spectra: Green diamond: maximum of symmetry value; black circle: maximum β amplitude; plus sign: maximum of ζ.
Dimension Values: straightness, arc, transition, alternation, bnd=curvature, edginess, symmetry. Integrated Signatures: top graph: bowness (black), transition
(gray); bottom graph: edginess (triangles) and straightness (squares).
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Fig. 2. Labeling output for 4 pedestrian images (row-wise). Contour endpoints marked by small squares; sharp corners marked by triangles; curved contour
segments marked by circles; symmetric segments marked by diamonds. Motion cues are given by pursuing the curvatures outlined by the dashed circles.

degrees. Such arcs are extracted and can be detected by
analyzing the symmetry of the corresponding function block.
Exemplifying these two segregation steps on the Ω shape; the
shape is halvened and its circular part is extracted. In a similar
way, any irregular contour may contain a ’symmetric’ segment
which outlines an object part (e.g. smooth arc, L feature or
straight line); those segments are extracted as well if they
are of a minimum arc length. Thus, the segregation process
does not strictly segregate the contours into separate segments,
but will create partially overlapping segments to some extent.
Taking the Ω shape as the example again, it is segregated into

7 segments: two inflexions representing the halves; one smooth
arc segment; two L features representing the corners; and two
straight segments (if of sufficient arc length).

3) Parameters for Representation: The LG space can be
exploited to extract parameters which describe the contour’s
global geometry. Three types of global geometries were pur-
sued: arc (L feature or smooth arc), inflexion (change of sign)
and alternating (irregularly or evenly), whereby the latter is
a sequence of arcs and inflexions. These geomtries can be
determined by looking at the fraction of the bowness and
inflexion signature as calculated for each window (figure 1,
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Fig. 3. Similarity-based contour search. The contour of the first image in each row is the selected sample contour, the remaining images in each row contain
the most similar contours. a. Two examples using the ALOI collection (4000 images, 4 viewpoints for all 1000 objects; >50000 contours). b. An example
for all contours of the entire Corel collection (60000 images; >1 mio contours). The percentage on the left denotes correct basic-level categorization for the
first 99 similar images. For this sorting, 5 appearance parameters were included (13-dimensional vector).

right column ’Fraction’). Other parameters are extracted, such
as the curvature of the contour (e.g. the maximum amplitude
of the bowness space), the edginess (e.g. the maximum value
of all function blocks), the symmetry, and so on. Those
parameters are then concatenated to form a multi-dimensional
vector with ca. 8 geometric dimensions (see figure 1, right
column, ’Dimension Values’ for some parameter values).

III. IMPLEMENTATION AND RESULTS

Window sizes were generated in increments of
√

2. The
smallest window sizes were ω = [5, 7, 9, 11, 13] (number of
contour pixels) for scale σ = 1. The signatures are normalized
by their window lengths (amax/ω) - this is a crude approxima-
tion but computationally cheap. For that reason, the threshold
for detecting potential ends was set heuristically (value=1.2) as
well as the threshold for detecting circularity (value=90). The
most time consuming part of our algorithm is the extraction
of the contour lists (Matlab algorithm), but the generation of
the LG spaces and the derived spectra and parameter values
requires much less time, as only computations with 1D signals
are performed. The total computation time is a fraction of a
second.
Figure 2 shows the contour labeling output on four pedes-

trian images. Salient silhouette points are either marked as
sharp corners (triangles) or were segregated as part of an end
(dashed circles). Figures 3a and b demonstrate the specificity
of the contour vector by performing a similarity search using
the ALOI [4] and COREL collection: A contour was selected
(depicted in the first image) and compared to all other contours
of all other images and then ordered by decreasing similarity
(increasing distance). In the sorting shown in figure 3a similar
contours were found in the same object seen under slightly
different views; in figure 3b shows that the key feature for
persons is a vertical alternating contour with sharp corners.

IV. CONCLUSION
Figure 3a demonstrated that the multi-dimensional contour

vectors are highly specific; figure 3b showed that (static)
biological motion can be detected relatively easily from a
large image collection. This high contour specificity could
be possibly further elaborated and exploited to estimate the
pose of humans. Figure 2 showed that the high-curvature
points of a silhouette are detected. Those points and the
segregated contour segments could provide essential hints
for motion description. If those high-curvature points and
segments were integrated in an intelligent manner, then those
features could serve as pedestrian detectors. The presented
method is relatively fast and could therefore be useful for the
rapid prediction of the presence of biological motion which is
essential for gaze-guidance systems [5].
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