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Abstract 
An algorithmic framework is presented, that is suitable for image categorization and 
scene understanding. The framework is based on a decomposition of visual structure into 
elementary contour segments, which then are synthesized to form structural relations and 
groupings. The output of the framework can explain all (structural) pop-out phenomena 
as observed in human visual search studies. This methodology is evaluated by carrying 
out a categorization task tested on image collections. The performance matches the one of 
computer vision approaches, but in contrast to such approaches, our framework allows to 
understand individual parts or even single contours of the image. A neurobiologically 
plausible model of this framework is envisioned, that can be implemented using 
neuromorphic networks. 

Introduction 
Visual recognition is typically initiated by firstly categorizing its input, i.e. by assigning 
the seen image to a basic-level category such as car, bird, office or tree. This assignment 
happens fast (within 150ms) and retrieves a memory structure with which a guided visual 
search using saccadic eye movements can be carried out. The saccadic search allows to 
fully understand the image by placing the fovea on selected objects and regions and to 
either verify hypotheses - which were made with completion of the categorization process 
-, or by even learning the peculiarities if it is a novel image. If one intends to build a 
neuromorphic system which can emulate such an image-understanding process then the 
primary goal should be to firstly model the categorization process. Without an 
understanding of this categorization process it is difficult to envision what exactly is 
required to build a saccadic visual search process. 

There exist two respectable systems that perform this categorization to some 
extent. The system by Oliva and Torralba works on 8 super-ordinate categories from 
urban and natural scenes such as mountains, forest, street, or highway (Oliva and 
Torralba 2001). Their system uses the Fourier Transform to preprocess the image, whose 
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output is then reduced by a principal component analysis, whose output in turn is 
discriminated by traditional classifier methodology. The system developed by Perona et 
al. (Fergus, Perona et al. 2007) also uses traditional computational methodology. It works 
well on sub-ordinate categories (leopards, soccer ball, cameras) shown from highly 
similar viewpoints. The short-coming with either system is that once the input image is 
categorized, the preprocessed image can not be used to interpret components/parts of the 
object or scene, that is, it can not be used to emulate a human visual search process using 
saccades. In order to do that one had to determine the geometry of individual contours for 
instance. For that reason, we pursue a categorization system which is based on contours 
and regions (relations between contours).  

Neural networks (NN) also attempt to describe structure by integrating local 
orientation segments (Riesenhuber and Poggio 1999; VanRullen and Thorpe 2002; 
Hansen and Neumann 2004). However, this integration essentially corresponds to 
template matching as the contour is not transformed: merely the relative spatial location 
of the local orientations is stored.  In contrast, our approach is based on a thorough 
parameterization of geometric structure (Rasche 2009). It distinguishes itself from other 
systems in the following ways: 
1) The parameterization is obtained from transformations that act specific to the 
individual image structures and the resulting parameters can potentially be used to buffer 
structural variability. Structural variability describes the fact that different shape 
instances are often slightly different in their exact spatial relations and contour 
geometries. This variability appears as subtle and that is the reason why it is tempting to 
think that the variability can be absorbed through low-pass filtering – along the 
fine/coarse axis, which is implicitly assumed in neural network approaches. But low-pass 
filtering includes a loss of information and can therefore not lead to an accurate shape 
description. Instead, it is indispensable to analyze the structure without modifying it, 
specifically by making systematic distance measurements with increasing window size. 
From those we derive geometric parameters such as the curvature, smoothness, edginess 
and symmetry of a contour – and many more parameters for the relation between 
contours. Those parameters are then used as dimensions of a multi-dimensional space in 
which variability appears as a subspace.  
2) The system can analyze any type of input such as texture, shape, object and scene, due 
to the through parameterization. It is not tuned to a particular set of categories or images 
as in the other approaches. 
3) Our framework can explain a large number of psychophysical phenomena: a) the 
output of the structural analysis can explain all structural pop-outs as observed in visual 
search experiments (e.g. Treisman & Gormican, 1988); b) it allows determining high-
curvature points of a structure as a human would; c) the system’s categorization 
performance is only marginally affected by image rotation, similar to the rotation 
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invariance as observed for humans. Our approach thus uses similar transformations as the 
human visual system, if not even the same ones.  
4) Our system offers the potential to perform a visual search that allows understanding 
parts or even individual contours of images – again due to the thorough parameterization. 
5) Even if the image can not be categorized, because it is either a novel category or a 
category instance seen from a novel perspective, then the output of the structural analysis 
can be used to transform the structure to find the closest category or to rotate it ‘mentally’ 
to find the corresponding category representation for canonical views. 
In the following we will sketch the present standing of our modeling efforts. 

Framework 
The framework is based on a decomposition of visual structure into elementary contour 
segments and areas (Figure 1). The starting point is the contour image CF, which is 
obtained from an edge-detection algorithm. From the contour image the contours are 
extracted with the goal to partition and describe them (labeled ‘Local/global space’). The 
contour image is also employed to carry out a region analysis by contour propagation 
(labeled ‘Symmetric Axes’). Both types of analysis will lead to elementary contour 
segments and areas; those structural elements are then integrated to form more complex 
descriptions such as structural relations and groupings, in a process that we call synthesis.  
In both processes, the structure is described in terms of geometric parameters; in addition, 
simple statistics of the luminance image are extracted for each descriptor (contour, area 
and its integrated descriptors), which we call appearances. 
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Figure 1. Key processes of the visual recognition process. Arbitrary input: The input 
image can be of any type. Decomposition: A structure (contour image) is partitioned at 
points of highest-curvature resulting in elementary contour segments and regions. 
Synthesis: The elementary contours and regions are integrated to complex descriptors 
such as intersections and groupings. 
 

Decomposition 
Local/global space.  

The local/global space is an elaborate description of distance measurements made 
between points on a contour for different ‘window sizes’. This is different from the ‘scale 
space’ as there is no filtering involved but just mere distance measurements and segment 
labeling. Specifically, a contour is iterated with a discrimination function which classifies 
a segment into arc (bow) or inflexion, leading to the ‘bowness’ and inflexion signature. 
The discrimination function acts on a window of fixed arc length (chord or stick) and 
determines the maximal distance between the contour segment and the straight line 
connecting the window’s end points. If the selected segment lies on one side of the 
straight line, the maximal distance value will contribute to the bowness signature, but 
remain zero for the inflexion signature. The reverse applies if the segment lies on both 
sides of the straight line. For a range of window sizes the resulting signatures describe 
what we call the local/global space. In this space it is facile to localize high-curvature 
points by a maximum operation and it allows deriving parameters to determine the 
geometry of the partitioned segments.  

This local/global space can be reduced to functions which describe the ‘swinging’ 
behavior of the contour. From these functions we can read out whether the contour 
describes an arc (parameter a), or whether is rather alternating (e.g. oscillating or wiggly; 
parameter x), and to what extent its curvature (b) is. In addition, one can derive the 
degree of edginess of the contour (parameter e) and the degree of symmetry (parameter 
s). To those 5 geometrical parameters, we add the parameters orientation (o) and length 
(l). In addition, we extract the following contour aspects, or appearances: 
- Contrast (cm, cs): For each contour pixel, the range and standard deviation of its 
neighboring luminance values is determined. For a contour segment, these values are 
averaged resulting in values cm and cs respectively.  
- Fuzziness (fm, fs): expresses the degree of fuzziness along the contour. Contours of 
natural scenes show often a high degree of fuzziness, in particular the ones lying within a 
textured region. Fuzziness is determined by preprocessing the gray-scale image with a 
DOG filter. Analogous to the contrast values, a contour mean and standard deviation is 
determined, but which are taken from a preprocessed image along the neighborhood of 
contour pixels.  
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- Isolation (r): quantifies the amount of region around a contour, or put differently the 
degree of isolation within a structure. Contours or shapes can appear isolated, for 
example the circle of a sun (or moon) in a landscape scene, or the rectangle of a picture in 
a room scene. This degree of isolation is characteristic as well and must be part of a 
contour description. It can be determined from the region analysis (see symmetric-axis 
transform next). 

All these aspects are scalar values which are then combined to form the 12-
dimensional vector c: 
    c(o, l, a, x, b, e, s, r, cm, cs, fm, fs). 
 

So far we have been unspecific for what kind of contours the above description 
holds. The large variety of geometrical aspects promises a description of regular and 
irregular contours but a description of completely arbitrary contour geometries is not 
meaningful. In this study, contours are partitioned at points of U-turns (also known as 
‘ends’), specifically when the arc length of a segment for a given window size exceeds 
the length of a half circle with diameter ω (window size). The reasoning for this 
partitioning rule is that when contour segments lie opposite of each other as in case of an 
end, they are better described as two individual segments with a certain structural 
relation, which is exactly the idea of the symmetric axis (see next). Exemplifying this 
rule, an ellipse is partitioned into its 2 elongated arcs. The two segments of an L feature 
are also partitioned if they are of a minimum size. 

Figure 2 shows the output of the contour decomposition in which straight and 
symmetric segments are marked as squares and diamonds respectively. Such segments 
can be easily determined by analyzing the local/global space and visually exemplify the 
success of contour decomposition. 
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Figure 2. Example of contour decomposition (for scales σ=1, 3 and 5). Left column: 
Contour images with output of fuzziness filter (blob-filter). Contour thickness reflects 
mean contrast value; gray dots mark pixels with high fuzziness values.  Right column: 
Geometric decomposition. Contour endpoints are marked as small black circles; squares 
and diamonds denote straight and symmetric segments respectively (their size reflects 
arc length – not curvature).  
 
Symmetric-axis transform 

To determine the structural relations between contours we use the symmetric-axis 
transform (SAT) by Blum (Blum 1973). The SAT produces a symmetric-axis (sym-axis) 
for a region by a contour-propagation process, typically resulting in several segments 
corresponding to trajectories or lines in 3D space (time as the 3rd dimension). There exist 
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different instantiations of the SAT. For instance, Feldman and Singh provide an 
implementation which however requires multiple iterations and functions only on closed 
shapes (Feldman and Singh 2006). But in our framework, the SAT is rather used as in 
Blum’s original proposal by implementation of a grass-fire process. It can be determined 
in two steps: the 1st step consists of the propagation of contours whereby the temporal 
evolvement is held in a 2D map, also called the propagation field (or distance map in 
computer science); the 2nd step consists of the convolution of this map with a high-pass 
filter with negative peak at the location of contour pixels (see Figure 3 for an illustration). 

The sym-axes of a structure provide an elaborate description of the contour 
relations and need to be parameterized in order to compare them effectively. Toward that 
goal, the sym-axes are firstly partitioned into its constituent, elementary segments at the 
intersecting points (marked as plus signs in Figure 3). For example the sym-axis of a 
square is partitioned into 4 segments (half diagonals) describing each corner, or a 
rectangle’s sym-axis is partitioned into 5 sym-axis segments with the central segment 
expressing the area between the two longer, parallel contours. A sym-axes segment is 
then parameterized as follows: the orientation (o) and length (l) of a sym-axis segment is 
determined, as it lies in the image plane. The initial and end distance is determined, e1 
and e2 respectively, which are taken from the propagation field. And the degree of flexing 
(inward or outward bound segments) is determined and expressed with parameters c and 
p, which correspond to the distance and location. In addition to those geometrical 
parameters, the distribution of the luminance values of enclosed area is also 
characterized. The same contrast and fuzziness values are determined as for the contour 
(cm, cs, fm, fs), but are taken from the enclosed area (and not along the contour segments). 
In summary, we have the following 10-dimensional vector for a sym-ax segment, also 
called area: 

a(o, l, e1, e2, c, p, cm, cs, fm, fs). 
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Figure 3. Example of region decomposition. Left column: as in figure 2. Right column: 
orange-dotted: sym-axes; plus sign: intersections of sym-axes segments. 

Synthesis 
The goal of the synthesis process is to form complex descriptions which represent 

potentially category-characteristic abstractions. As a typical contour image is very 
fragmented, such abstractions may be accidental. But we assume that the cognitive 
interpretation process can deal with this by usage of a ‘top-down’ process that extracts 
the essence of the image, namely its corresponding category – and not a detailed 
reconstruction. 
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To express more complex regions, as outlined by 3 or more contour segments, we 
also parameterized the region as spanned by intersecting sym-ax segments forming a 10-
dimensional intersection vector: 
 

k(sc, n, a, smin, smax, lmin, lmax, lmean, lstd, αmin, αmax, cm, cs, cr, fm, fs, fr). 

Dimension sc is the symmetric distance value at the point of intersection; dimension n is 
the number of intersecting segments; dimension a is the spatial (2D) area of the entire 
structure; dimensions smin and smax are the minimal and maximal distance value for the 
distal (outer) ends of the intersecting segments; analogously, dimensions lmin and lmax are 
the minimal and maximal length of the segments; dimensions lstd and lmean are the 
standard deviation and mean of the length values. In addition to those 11 geometric 
parameters, the same luminance and fuzziness parameters are added as for the area vector 
(cm, cs, cr, fm, fs, fr), taken from the area spanned by the intersecting segments, thus 
forming the above 17-dimensional vector. 

Categorization Performance 
To perform a categorization task, we firstly developed category representations by 

carrying out descriptor sorting: a descriptor (c, a or k) was selected and all other 
descriptors of the entire collection ordered in decreasing similarity. If a selected 
descriptor would prefer descriptors in other images of the same category (for instance for 
the first 100 similar descriptors), then the selected descriptor was kept as a category-
specific descriptor. To determine the corresponding for an image, its descriptors were 
matched against the list of category-specific descriptors and thresholded. 

The performance of the system was evaluated on a variety of image collections. 
a) Caltech collection (Fergus, Perona et al.): this collection consists of 101 subordinate 
categories in which images depict objects of relatively clear silhouette. We achieved a 
categorization performance of ca. 12%. 
b) Corel collection: of the 600 image classes about 360 correspond to basic-level 
categories. We assigned them to 112 categories (for example, wild animals, patterns, 
sports, flowers, aircrafts, birds, cars, etc.). These images can consist of textures, objects 
or scenes. A categorization performance of ca. 11% was achieved. 
c) Urban and nature collection by (Oliva and Torralba 2001). A categorization 
performance of ca. 40% was achieved. 

It should be noted that these categorization results were achieved with completely 
unsupervised learning. The performance is comparable to computer vision approaches 
when they also use unsupervised learning. Though computer vision approaches typically 
report much higher categorization percentages, this is the result of supervised learning, 
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e.g. a person pointing out salient object or scene characteristics to the system during the 
learning process. 

The performance of our system was also tested when individual dimensions were 
omitted. If for instance, the orientation dimension was knock-out, the performance would 
drop by about half a percent. Systematic knock-out of individual dimensions showed that 
no dimension was substantially more important than any other one. The more dimensions 
were knocked out (as a group), the more performance decreased. 

The framework could be refined and extended by a number of dimensions, which 
are useful for the basic-level and super-ordinate categorization process, as well as for the 
identification process. 
1) The area outlined by the sym-ax and intersection vector has only been characterized by 
contrast and fuzziness values (cm, cs, fm, fs). But texture perception studies have shown 
that the detailed distribution of luminance values seems to be a strong determinant for 
proper texture identification (Dror, Willsky et al. 2004; Motoyoshi, Nishida et al. 2007). 
A parameterization of the luminance distribution may therefore be a better choice to 
describe the luminance values in an area. 
2) The geometric contour parameters derived from the local/global space and spectrum 
are accurate but likely not precise enough for subordinate categorization or identification. 
For face identification for instance, the subtle contour geometry is decisive and must 
therefore be expressed distinctively, yet still show a certain degree of viewpoint 
independence. Such higher distinctness can be achieved by parameterizing the bowness 
distribution in the local/global space in greater detail, e.g. by determining their symmetry, 
skewness and flatness, analogously to determining the distribution for the luminance 
values.  

Psychophysical and neurophysiological studies have shown that such high-
precision parameterization can indeed take place (Riggs and Hunter 1973; Whitaker and 
McGraw 1998). Therefore, a more accurate parameterization of the sym-axes may lead to 
refined category representations. 

Psychophysical Plausibility 
The output of the framework can explain all (structural) pop-out phenomena as 

observed in human visual search studies (e.g. in (Treisman and Gormican 1988). The 
following figure numbers refer to Treisman and Gormican’s publication and the feature 
display is given as pop-out vs distractor:  
- Figure 2 (short versus long contour segments): the pop-out can be explained by a 
difference in the length dimension of the contour vector. 
- Figure 3 bottom (pair of contour segments versus isolated contour segment): the pop-
out can be detected by the presence of a sym-axis versus the absence of a sym-axis. 
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- Figure 5 (curved versus straight contour segments): the pop-out can be detected by the 
difference in the bendness dimension (b) of the contour vector.  
- Figure 6 bottom (oblique versus vertical dimension): the pop-out is a difference in the 
orientation dimension of the contour vector.  
- Figure 7 bottom row (ellipse versus circle): the pop-out can be explained by a difference 
in the length dimension of the sym-axes vector (l=0 for circles); there is also a difference 
in contour lengths, because a circle consists of a long, single contour, whereas an ellipse 
consists of two shorter contours (after partitioning).  
- Figure 10 upper left (converging versus parallel): the pop-out can be explained by a 
difference in the sym-axis dimensions e1 and e2. 
- Figure 10 center bottom (open versus closed L features): the pop-out is a difference in 
the dimensions c and p of the sym-axis vector.  
- Figure 11 upper left (1/2 circle versus full circle): the pop-out can be detected by the 
presence versus the absence of a sym-axis.  
- Figure 11 upper right (1/8 gap in circle versus full circle): the pop-out can be detected 
by the presence or absence of a sym-axis; or a difference in contour length. 
 

The results of the categorization performance clearly show the representative 
power of the parameters when they are used as multi-dimensional vectors. The advantage 
of using a multi-dimensional space was proven with the robustness tests (dimension 
knock-outs). Despite the elimination of a few dimensions, categorization performance 
dropped only slightly, indicating that generally no single aspect is substantially more 
significant than any other one. This may explain why humans can recognize rotated 
pictures equally rapid as non-rotated pictures (Guyonneau, Kirchner et al. 2006): the 
presence of the remaining unaltered aspects may still allow for this rapid categorization. 
Nevertheless we hypothesize that eliminating dimensions will lead to prolonged 
categorization durations. Such a prolongation may be difficult to measure if only a single 
dimension is eliminated and if only a small data set is collected. We predict that with an 
increase in the number of eliminated dimensions, the categorization duration gradually 
prolongs, which could also be measured with data sets of regular size. The elimination of 
dimensions can be carried out by image modifications using computer vision 
methodology. 

To accept this decomposition as a potential model of the early visual system, one 
probably has to firstly accept the requirement to make the variety of presented 
measurements on the structure, the generation of the local/global space for each contour, 
the derivation of a spectrum, the generation of a propagation field and the derivation of 
the symmetric axes and region image. But the multitude of parameters which are derived 
from those measurements, provide a simple explanation for the majority of the visual 
pop-out phenomena in Treisman and Gormican study (1988). Those pop-out effects are 
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generally interpreted as supporting the traditional viewpoint, namely that the recognition 
process follows a gradual local-to-global integration along a hierarchy spanning several 
visual areas. But a newer viewpoint is that some form of global integration already takes 
place in early visual cortical areas using for instance horizontal connections amongst cells 
of the same neocortical layer, thus arguing rather for a global-to-local recognition 
evolvement (Kovacs 1996; Li 1998; Pettet, McKee et al. 1998; Hess and Field 1999; 
Rasche and Koch 2002). Some of those studies have suggested that SAT like processes 
occur, which we now have implemented and used to explain most pop-out phenomena. 
Given the fact that contours can lie arbitrarily in the image plane, we find neither type of 
hard-wired scheme adequate (Rasche and Koch 2002). We rather believe that flexible 
processes, such as the generation of the local/global space and the SAT, are better suited 
to transform image structure. 

Neurobiological Plausibility and Implementation 
What then could possibly be a neurally plausible computational substrate for the 

presented decomposition? The geometrical aspects of a contour could be read out from a 
histogram of the contour’s local orientations: the distribution’s width corresponds to the 
degree of curvature or circularity and the location of the maximum to contour’s 
orientation. The use of such orientation histograms for structural description has already 
been suggested (Stevens 1978). Following this idea, a next step would be to include 
directional information to discriminate between arc and inflexion. The evidence on the 
existence of the SAT algorithms in the visual system has been sparse but persistent over 
the decades (Psotka 1978; Burbeck and Pizer 1994; Kovacs and Julesz 1994). 

A neuromorphic implementation of this framework is envisioned, that can be 
emulated on a spiking neural network architecture such as the one worked out by 
Douglas’ group, e.g. (Indiveri, Chicca et al. 2009). Parts of our architecture have already 
been simulated as neuromorphic networks, for instance the wave propagating process 
(Rasche 2007). But the networks that perform the parameterization still had to be 
developed. We imagine that the local/global space can also be emulated as a spiking 
neural network with the above suggested orientation histogramming. But one should not 
attempt to model this in a hierarchical fashion, as such an architecture does not provide 
the flexibility necessary to deal with the arbitrary layout of structure. The networks have 
to be dynamic and develop the parameterization independent of spatial location. 

Discussion 
Our quest of constructing a neuromorphic visual system was initially driven by 

merely developing the necessary algorithms that can solve the categorization process and 
by building the neural networks that can emulate the algorithms in neuromorphic 
networks (Rasche 2005). In this sense, we were following Marr and Poggio’s viewpoint 
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that there must exist an algorithmic solution to the computations performed in the brain 
(Marr 1982). With the discovery that our framework can explain structural pop-out 
phenomena, we begin to be particularly inspired by those visual search studies. They 
evidence, that a massively parallel structural analysis takes place, that can transform a 
structure independent of spatial location. It seems to us, that the idea of ‘self-collapsing 
shape’ - put forth by Gestaltists, e.g. (Koffka 1935) - is implemented in early visual 
cortical areas, but such networks have not been really pursued yet. As pointed out the key 
issue is to create networks which can perform the structural analysis translation 
independent. With the implementation of the symmetric-axis transform we have given a 
specific instantiation that should exemplify that direction.  

The need for translation independence is also evidenced by Thorpe’s animal/non-
animal discrimination task, in which two images are shown simultaneously in the 
parafovea (Kirchner and Thorpe 2006). An observer can make this discrimination within 
120ms in average. One may argue that it does not require a complete categorization of 
both images to perform this discrimination; still, substantial structural processing needs to 
be carried out to arrive at a decision. One may also argue that attentional shifts are 
performed during that time, but this may be rather hectic. Instead, one should consider 
neural networks which transform a structure translation independent and which then 
signal the transformed structures by wave propagation.  

As we can explain all pop-out phenomena, one may wonder whether we can 
perform fixation prediction for more complex scenes, e.g. in gray-scale scenes. This is a 
difficult task as the selected fixation locations by different observers can be rather 
variable due to the different motivations that the observers have. There exist approaches 
which attempt to point to those ‘hot spots’, such as the saliency map (Itti and Koch 2001). 
But these models can not recognize the structure at those points. However, there is much 
evidence that the human visual system selects its targets based on a structural analysis as 
demonstrated by studies on saccadic target selection (Richards and Kaufman 1969; 
Melcher and Kowler 1999). We therefore think that it is more important to understand the 
choice of preferred structures, than just a process pointing out potential spots. 

There are several challenges associated with our approach, which need to be 
properly addressed in the future in order to build a perfectly functioning categorization 
and recognition system:  
a) Curse of dimensionality: The decomposition and system produces a lot of parameters 
necessary to describe the enormous variety of categories. But many categories can be 
characterized by a fraction of these parameters and the abundant parameters may be 
rather detrimental to the performance. Thus, the large number of parameters needs to be 
better dealt with. A clever learning algorithm may solve the problem, but required a more 
systematic and incremental development of the category representation. 
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b) Contour partitioning: Proper contour partitioning is only possible with contextual 
information. So far we used only a partitioning of U-turns and L features. But that leaves 
still many contours potentially ‘category-unspecific’ and possibly not well discriminated. 
But to what extent this partitioning needs to take place needs to be tested systematically. 
c) Structural relations: At the heart of an efficient categorization system needs to be a 
useful representation of structural relations (parallel segments, sequence of segments,…). 
Although this has been formulated many times, e.g. (Palmer 1999), there exists still no 
convincing method to represent and compare arbitrary structures. We think that the 
parameterization of structure and the formulation of a multi-dimensional space – as 
presented in this line of work – offers the best solution to it. 
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