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Abstract

A perspective for the construction of a fast categorization process is for-

mulated, that proposes an exhaustive parameterization of structure and ap-

pearance. The central goal is to use the parameters to create appropriate

multi-dimensional spaces that express contours, areas and groupings thereof.

This is pursued in a framework consisting of a decomposition and a synthesis

process: the decomposition process partitions structure into basic contour

segments and areas, which then are integrated to complex descriptions in a

synthesis process.
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contour grouping, texture

1. Introduction

Traditional approaches to image understanding have sketched a system,

that would meticulously reconstruct a scene by starting with a surface layout

[1, 2] or by image segmentation [3, 4] and/or a detailed contour image [5] or a

mixture of techniques [6]. In such approaches it was implied that the recon-

struction process is supposed to work error-free because only then a unique

assignment could be made to the corresponding category. While this perspec-

tive brought forth much elegant work and is still continued [7, 3, 4, 8], it was
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so far limitedly successful at understanding the semantic content of a large

number of categories (see Keselman for a review [9]). It is only in the past

decade, when vision scientist tried to circumvent this detailed reconstruction

process by developing systems that extract the meaning in a ’direct’ (or im-

mediate) way. We now call that the ’fast categorization’ approach. There

exists two prominent systems following this approach, the ’spatial envelope’

system by Oliva and Torralba [10], and the object categorization system by

Perona’s group (e.g., [11]).

The spatial envelope is a ’holistic’ scene description based on 5 perceptual

dimensions (naturalness, openness, roughness, expansion and ruggedness)

and allows for the categorization of super-ordinate categories such as streets,

highways and coasts. Image preprocessing occurs with a modified Fourier

Transform [10]. The authors state explicitly that this fast categorization

process could occur without processes of image segmentation and without

processes involving grouping operations, a belief inspired by the short dura-

tion of the human categorization process. The object-categorization system

by Perona and co-workers is based on a mixture of methods such as the prin-

cipal component analysis and orientation histogramming (e.g. [12]). The

system performs on 101 sub-ordinate categories.

Both systems are good at discriminating their image classes, but once the

image is classified (categorized), the process of understanding parts (compo-

nents or regions) of the image requires a novel preprocessing. For instance,

in case of the spatial envelope system, a preprocessing based on local orien-

tations was developed, that allows for a visual search [13], an effort which

appears to be a move toward a structural description.

Both systems attempt to emulate the ’fast categorization’ process of hu-

mans in the sense that the goal is to arrive at the semantic meaning first,

before a detailed reconstruction is carried out. The latter is carried in the hu-

man system by exploiting eye movements. Whereby Oliva and Torralba make

an explicit connection to this process, the studies by Perona and coworkers

do not express such a motivation. The fast categorization process works
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only for ’canonical views’, that is for scenes or objects seen from a regular

or typical viewpoint in humans [14] - and does so only in those computer

systems. Their image collections contain only such canonical views [10, 12].

Thus, the purpose of the fast categorization process is different from other

recognition processes. For instance, some systems were developed for the

view-point invariant recognition of objects ([15, 16], see Keselman for a re-

view [9]). Fast categorization should also not be confused with object search

(or localization) [17, 18, 19]. In such approaches an image is searched for a

specific object, which also often appears in a canonical view, but which often

covers only part of the image.

. But what has not been pursued yet is a fast categorization system that is

based on a parameterization of contours and their relations. Specifically, we

pursue an abstraction of contours that describes the contour geometry explic-

itly by parameters. We have previously introduced our approach and extend

it here substantially, with the goal to open a novel perspective on the issue of

fast categorization. Our perspective fundamentally distinguishes itself from

the above two mentioned ’fast categorization’ approaches in particular by

the following reconstruction concepts:

1) Grouping is an explicit part of the reconstruction process, which is

rejected by Oliva and Torralba, and not pursued by Perona’s group. Thus,

while we believe that some sort of gradual reconstruction takes place, it is

not the type of meticulous reconstruction as pursued in the above reviewed

approaches (see also [20] for arguments).

2) The preprocessing output allows to understand parts of the image as

the reconstruction process is based on a description of contours and their

relations.

But there is also some common ground with the approach by Oliva and

Torralba, for instance see point number 2 in the perspective section.
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1.1. Perspective

We regard a gray-scale (intensity) image as made of two types of infor-

mation, structure and appearance. These are two terms that are often used

in the field but may require further specification to express our perspective

as precisely as possible:

- Structure: corresponds essentially to a (fragmented) contour image. The

structure is independent of the fine/coarse scale and can comprise the entire

scale space or just a slice of it (a given scale). The structure can be of any

type: scene, object, texture or shape; it thus could be even a single dot on

an otherwise empty background. It is best described by some sort of relation

between basic contour segments (with basic we mean a curved, straight or

wiggly contour segment).

- Appearance: corresponds to the luminance distribution along contours,

e.g. contrast, and to the luminance distribution between contours (of a re-

gion), e.g. the ’fuzziness’ (roughness). It is best described statistically.

Theoretically, the two types of information are not clearly distinct, as any

appearance seen at a very fine scale constitutes in itself a structure again.

Thus, it is an issue of scale in principle. But practically, when operating

with images of limited resolution, e.g. 200x300 pixels, then this is a useful

distinction as even on the finest scale there exist regions which are more

meaningfully expressed as appearance statistics than as a structural relation.

Our perspective on the fast categorization process rests on the following other

intuitions:

1) Dominance of structure: Structure is the more important type of in-

formation than appearance. The reasoning is as follows: shapes or objects

can be described as a set of features whose geometry in turn can be de-

scribed in a relatively simple manner (see also [21] for arguments). A scene

- consisting of several objects - is then merely a more complex shape, but

typically fragmented. The contour image of a gray-scale image is not always

a unique identifier of its category. But together with a parameterization of

the appearance statistics, the assignment should become facile.
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2) Structural association: The term structural description is typically

understood as the deterministic relation of a fixed set of parts/components

(palmer 99). However, the presence of structural variability literally pro-

hibits such a rigid description for the purpose of fast categorization. Instead,

the description of category representations should be structurally looser and

should rather express an ’association’. Loose representation have already

been proposed since early on [22, 23] and have been applied in systems pur-

suing a search-and-recognition strategy [24] or determining exact object pose

[25]. Nelson and Selinger use the term ’Cubist’ representation [17] and their

metaphor comes closest to what we imagine as suitable category represen-

tations. But they did not propose specific relations or groupings amongst

contours, which we consider as important. Such (global) relations should

express the pattern of a canonical view as a whole; they should capture its

holistic nature in some sense. This was already formulated by Oliva and

Torralba for scenes and was given the term ’spatial envelope’. But we think

it equally holds for any type of input (see point 6) and we therefore use the

term ’canonical pattern’. It is the representation that allows the quickest

access to the basic-level category.

3) Late classification: The idea of structural description is also associated

with a classification of parts or components into rigid features, such as a L

feature, vertex feature, even the geometry of lines (e.g. [22, 26, 27, 28,

21]). But such a classification should be avoided as it does not allow to deal

well with structural variability. Instead, such a part classification should be

avoided or at least occur ’late’. For that reason, features are expressed in a

multi-dimensional space in which the variability appears as a subspace, and

in which the features can be discriminated or compared by a simple distance

measurement (see also 2.2.1b) in [20]).

4) Multiple descriptors: Ideally, there existed a single multi-dimensional

space that can express all possible structural relations. Practically, this seems

not possible and that is the reason why a variety of features were suggested

(see citations above). Our intutition is that there exists a limited number of
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spaces, which can express these features and their structural associations

5) Redundant representation: Category representations need to be highly

redundant, as an image is typically so noisy that only the use of multiple

structure and appearance descriptors can provide a unique category assign-

ment. How else can one assign a low-resolution image, e.g. 32x32 pixels,

to its corresponding basic-level category [29]? The very same structure can

appear in one image with very characteristic contours, which in another im-

age is so fragmented that recognition needs to rely more on the appearance

parameters.

6) Reconstruction process: as mentioned in the introduction, the assump-

tion of an error-free should be loosened. Accidental groupings are part of the

categorization process. We assume that the multitude of extracted descrip-

tors - some of which are accidental -, combined with the redundant category

representations, allow for a unique assignment of the image to a basic-level

category.

7) Arbitrary input: From point 1 it should have became clear, that the

fast categorization process should work for any type of input: scenes, objects,

shapes and texture. We repeat it here to emphasize the point. A distinction

between these input types is difficult in any case: for instance, a sunset

scene can consist of only a horizontal contour and a circle - plus appearance

statistics for sky and water. In comparison, most shapes are more complex

than the structure of such a sunset scene.

Summary. The central challenge of our approach is the formation of

multi-dimensional spaces (point 4). Such a multi-dimensional space needs the

appropriate degree of generality: too little generality means the space is in-

capable of dealing with structural variability; too much generality means the

space is unspecific in discriminating. For instance, while the 5-dimensional

space of the spatial envelope is sufficient in discriminating a limited set of

super-ordinate categories, it is not sufficient to carry out finer discrimination

[10]. Yet it certainly proved the representational power of a well-designed

multi-dimensional space. Our approach faces particularly the challenge of
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orchestrating the large number of parameters. On the one hand they can

be very specific when they are used as dimensions of vectors. On the other

hand, such vectors can be too specific and may not be appropriate to describe

certain categories. Thus, one is confronted with the curse of dimensionality

but this can be mastered by careful design and systematic testing.

2. Framework

Our recognition system consists of a decomposition, a synthesis and a

matching process. The decomposition process partitions a structure into ba-

sic contour segments and areas (regions). Those segments are then described

by geometric (structural) and appearance parameters. The synthesis process

integrates those basic contours and areas to complex descriptors such as in-

tersections and groupings representing or outline shapes or simple structures

and their appearance. The decomposition and synthesis process generate a

list of descriptors, which then are compared against the list of descriptors

of individual category representations, called the matching process. There

is no exact separation between the decomposition process and the synthesis

process, as some of the transformations can also be regarded as a synthesis

process, e.g. the symmetric-axis transformation.

The decomposition process has been elaborately presented in a previous

publication [20], but is here summarized as we have done some minor alter-

nations and important extensions to it. The synthesis process in particular

is the novelty of this study.

2.1. Decomposition

The decomposition process performs two types of transformations. One is

the transformation of contours into a local/global space (LG space), the other

is the transformation of structure into a symmetric-axis field. The output

of those transformations is then partitioned into basic segments (contour

segments and areas respectively).
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2.1.1. Contours

The contour analysis starts with the creation of the LG space, followed by

contour partitioning, followed by segment extraction and ending with contour

description. The novelty in this study is the addition of another label, the

straightness label, and the process of segment extraction.

. A contour is iterated with a window which classifies a segment into the

two labels arc (bow) and inflexion, and which determines the amplitude

of the segment. For a given window size, this leads to the ’bowness’ and

inflexion signature, β(v) and τ(v) (v = arc length variable). In this study, a

straightness label is added, as the lack of a bowness or inflexion block is not

unique enough to determine whether a segment is straight or not:

γ(v). (1)

The straightness signature is suppressed (γ set to 0) if at the same location

a (positive) bowness value is present in the same or any higher window level

(ω). For a range of window sizes the resulting signatures describe the LG

space, one for bows (βω(v)) and one for inflexions (τω(v)), and now also

including the one for straightness:

γω(v). (2)

Figure 2 shows the output of the contour decomposition in which straight and

curved segments are marked as squares and circles respectively. Complete

straightness is indicated by an amplitude set to a value of 0.5 (straightness

label stippled), whereas a value of 0 means lack of straightness.

After creation of this space, a contour is partitioned at points of U turns,

resulting in ’coarsely’ elongated contours.

Segment Extraction. Many (partitioned) contours consist of multiple curved

and straight segments and are often irregular (alternating). This irregularity

can be potentially category-characteristic, as for instance the vertical wig-

gly contour of a person’s silhouette or the horizontal contour of a landscape
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scene. For that reason, further partitioning is potentially detrimental to

building distinct category representations and we therefore keep such con-

tours. But we extract large straight and curved segments as they could be

locally grouped with other neighboring contours. For instance the straight

segment describing the leg of a person’s silhouette, could form a distinct

grouping with the straight segment of the other leg. We therefore extract

such segments if they are of a minimum length.

This segment extraction could occur at different local/global levels as it

is a priori not clear what the appropriate level of description is, or put dif-

ferently, it is a matter of context. We therefore contrived an algorithm, that

extracted global segments first but that would still allow for the extraction

of smaller segments. The LG space in figure 1 serves as an example: the

bowness block with the largest spatial extension of the LG space is identi-

fied, see window no. 7 (block ranging from v = 1 to v = 40); the location

of the block’s maximal amplitude is taken as the point of highest curvature

(indicated by a circle in the contour display [upper right]). This maximum

block suppresses more local (but not all local) bowness blocks during subse-

quent extractions (the bowness blocks in windows no. 6 and 5). In a 2nd

round of identification, the next wide bowness block is selected, the block in

window no. 5 (ranging from v = 33 to v = 59) and its local neighborhood is

suppressed. This identification and suppression procedure is repeated until

all large blocks are identified. A minimum block size was set. The identified

block ranges are then used to extract 3 segments from the original contour.

Thus, the contour decomposition frequently generates overlapping contour

segments.

A similar extraction algorithm is applied to select straight segments,

which are indicated as squares in the upper right of figure 1.

Contour Description. The contours (partitioned and extracted) are then de-

scribed by their structure (geometrically) and by their appearance. The

parameterization returns the following parameters (see Rasche for details):

orientation (o); length (l); arc (a), alternating (e.g. oscillating or wiggly; x);
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curvature (b); edginess (e); symmetry (s); region (r); the mean and standard

deviation of the contrast values along the contour (cm, cs); mean and standard

deviation of the fuzziness values along the contour (fm, fs). The parameters

are then combined to form the 12-dimensional vector c(o, l, a, x, b, e, s, r, cm, cs, fm, fs).

In our previous study, we used a parameter transition (t), but which was

dropped as only a small portion of contours can be assigned to this ’class’.

2.1.2. Areas

The symmetric-axis transform (SAT) - originally proposed by Blum (Blum

1973) - is generated in two steps. The 1st step consists of the propagation of

contours to generate the distance map DM (see figure 2b). Our implementa-

tion of the propagation process is particularly suited to generate this map for

fragmented contour images (see [30]). The 2nd step consists of the convolu-

tion of this map with a band-pass filter followed by thresholding to select the

symmetric axes of a structure. The sym-axes are then partitioned into their

constituent, elementary segments at their points of intersection (figure 2c).

The following parameters are then extracted (see section 3.2 [20] for details):

orientation (o); angle (α); elongation (e); mean symmetric distance (sm); ini-

tial and end distance (s1 and s2); flexing distance (sfx); flexing position (pfx);

curvature (b). The appearance parameters were the same ones as for the con-

tour, but are taken from the enclosed area (and not along the contour seg-

ments), and contained a parameter for luminance range (cr, cm, cs, fr, fm, fs).

In summary, we have the following 15-dimensional vector for a sym-axis seg-

ment, also called area: a(o, α, e, sm, s1, s2, sfx, pfx, b, cr, cm, cs, fr, fm, fs).

Due to the dimensionality problem (curse of dimensionality), we also

tested a vector which contained only the appearance parameters in order to

avoid geometric constraints. For instance, in natural scenes there are many

areas containing category-typical textures, but whose geometry (of the area)

do not possess a particular geometry. This texture descriptor t consisted of

the dimension z for the area size and the same 6 appearance parameters as
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used in the above area vector:

t(z, cm, cs, cr, fm, fs, fr). (3)

The advantage of our implementation of the symmetric-axis transform is

that it can very accurately determine the relation between two contours even

though the contours are fragmented, which is expressed with the area vector.

And it can outline a ’loose’ area containing potentially category-characteristic

texture, which is captured with the texture vector. There are however several

short-comings with the SAT: 1) speckled noise or other contours prohibit

the evolvement of a desired sym-axis. An implementation by Engel deals

with such noise very well, but the resulting sym-axes do not correspond to

the values of the distance map and that makes it difficult to determine the

surrounding area [31]; 2) The SAT groups only neighboring contours and

therefore groups locally only. Global grouping would consist for instance of

grouping contours across other contours. Such a process we would assign to

the synthesis process (next section), but has not been pursued yet in this

study.

2.2. Synthesis

The synthesis integrates the decomposition output (c and a) to more

complex descriptors. The contour segments are integrated to a descriptor

expressing local relations of two segments, e.g. L feature, parallel segments.

The sym-axes segments are integrated to more complex descriptors express-

ing (fragmented) shapes.

2.2.1. Local Pairings

The creation of the following contour relations is very similar to Lowe’s

work on non-accidental groupings, but here only a fraction of these group-

ings is pursued [16]. As pointed out previously, the novelty of our approach is

that a multi-dimensional space is formulated with those groupings. After the

decomposition, most segments are either elongated, or just straight or curved

segments, and can therefore be easily grouped. Two types of groupings are

11



pursued, or more specifically two types of pairings: adjacent segments, such

as parallel or converging segments; and connected segments, such as L fea-

tures or collinear segments. Those pairings are sought relatively local by

using an acceptance threshold that is dependent on the shorter segment. In

case of multiple potential pairings per contour, the pair with the shortest

distance is selected, the remaining selections are discarded.

- Adjacency : Two segments i and j are considered as adjacent if their

center points are proximal, specifically if the distance dij
cen is below a chosen

threshold. The threshold for proximity is a fraction of the shorter segment.

- Connectedness : The endpoints of two segments are considered as con-

nected if their proximal distance dij
prox is smaller than a fraction of the shorter

segment.

The (local) pairing vector p is then formed with the following parameters:

α is the angle between the two segments (α ∈ [0..π]); lmean is the mean

length of the two segments; lδ is the normalized difference of the lengths

(|li − lj |/lmean). And two distance values are added which in case of the

connected pairs consists of the proximal and distal distance (dprox, ddist) and

in case the adjacent pairs as the center distance (dprox = ddist = dcen):

p(α, dprox, ddist, lmean, lδ). (4)

It would make sense to attempt to express also T junctions, but detecting

potentially meaningful T pairings is computationally much more intensive as

it required more distance measurements.

For many of those groupings, the decomposition has already generated an

equivalent sym-axis segment - though the area vector is geometrically much

more accurate. No effort was made to disolve this overlap, for instance to

discard those double representations. The local pairings have the advantage

not to suffer from the noise problem - as opposed to the generation of the

sym-axes segments (see above criticism on SAT). The local-pairing vector

has not been tested with appearance parameters yet.
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2.2.2. Regions

For a shape, a sym-axes segment often represents a ’part’. Thus, the

intersection of sym-axes segments often represents a joint of such parts. And

by a description of those intersections and their segments, abstractions of

more complex structure can be expressed. We call them now region descrip-

tors, as the sym-axes represent region information better than the contours

that generated them (for an accurate shape description it requires both, the

contour and region information, see paragraph ’Description’ in introduction

of [20] for citations). Here, two types of regions descriptions are pursued. In

one, the junction descriptor i, only the distance values of a circular surround

are analyzed. The descriptor is rather local as it expresses only the immedi-

ate surround of the intersection. In the other type, the skeleton descriptor

k, the geometry of the intersecting sym-axis segments is described, exploit-

ing the segment’s parameter values (of vector a). This descriptor can be

global depending on the spatial extension of the segments and it is relatively

complex.

Junction. A circle is placed at the intersection point with a radius corre-

sponding to the distance value sc of the intersection point (grey stippled

circle in figure 2c). The symmetric distance values along the circle’s arc-

length variable k, DM(k), describe what we now call the surround signature.

For a circle shape, the surround signature is flat because the values are taken

along the contour where the distance values are 0. For a square shape, the

signature shows 4 elevations which correspond to the crossing of the sym-axis

segments of the L features. For a half-rectangle shape (see example in figure

2c and d), there are three elevations: the largest corresponds to the vertical

segment and reflects the parallel segments; the two smaller ones correspond

to the oblique segments reflecting the L features.

The surround signature allows to easily estimate the openness u of the

junction by dividing the signature’s integral by its diameter: u =
∑

k[DM(k)]/(2sc)

(u = 0 for a circle). To further specify the geometry we determine the loga-

rithm n of the number of elevations, the amplitude β for each elevation and
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the angle α between the locations of the amplitude maxima. For the list of

amplitudes and angle values, we take the standard deviation, σβ and σa, re-

spectively. The three largest amplitude and angle values were also selected as

dimensions (β1, β2, β3 and α1, α2, α3), thus forming an 11-dimensional junc-

tion vector i:

i(sc, u, n, σβ, σa, β1, β2, β3, α1, α2, α3). (5)

For junctions consisting of more than 4 sym-axis segments the vector is less

specific but such junctions are rare. This vector is tested without any ap-

pearance parameters as the appearance taken from just the intersection area

is not as characteristic as the appearance as expressed by the texture vector

for instance.

Skeleton. One could take the individual parameters of the (intersecting) sym-

axes segments (as expressed by a), but that would be overly accurate and not

serve well for the search of abstractions. We here concentrated in particular

on the spatial extension of the parts and less so about the geometry of the

individual parts. The dimension sc is the symmetric distance value at the

point of intersection; dimension n is the logarithm of the number of inter-

secting segments; dimension z is the spatial (2D) area of the entire structure;

dimensions smin and smax are the minimal and maximal distance value for

the distal (outer) ends of the intersecting segments, which describe the ope-

ness of the shape; analogously, dimensions lmin and lmax are the minimal and

maximal length of the segments; dimensions lstd and lmean are the standard

deviation and mean of the length values; dimensions αmin and αmax are the

minimum and maximum angle.

In addition to those 11 geometric parameters, the same appearance pa-

rameters are added as for the area vector (cm, cs, cr, fm, fs, fr), taken from the

region spanned by the intersecting segments. In summary, a 17-dimensional

vector is used to describe skeletons:

k(sc, n, z, smin, smax, lmin, lmax, lmean, lstd, αmin, αmax, cm, cs, cr, fm, fs, fr).

(6)
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2.3. Learning and Matching

Two learning schemes were tested, that acquired ’category-specific’ de-

scriptors. In a search-learning scheme, the category-specific descriptors were

found by using a similarity search. This scheme is the one we used in our

previous study and because it took a relatively large sample number to suc-

cessfully carry out this search (e.g. 10 images per category), we started

to develop a novel learning scheme, the gradual-learning scheme, in which

category representations from fewer images would be gradually developed.

Comparing two images occured by matching the descriptors vj of one

image against the descriptors vi of the other image, resulting in a distance

matrix Dij. The shortest distance for each image is selected, e.g. di =

maxj Dij .

Search-Learning Scheme. A category representation was generated by search-

ing for ’category-specific’ descriptors. They were selected from a subsample

of 10 images per category by a similarity search, whereby a descriptor v of

one image was selected and a similarity search on all other images carried

out (v ∈ {c, a, t,p, i,k}). If the same category images appeared amongst the

first few similar images, then the descriptor was kept as a category-specific

descriptor and its degree of category-specificity, e.g. the proportion of same-

category images within the first 100 images, is taken as its weight w.

Gradual-Learning Scheme. There are two stages in this learning process, an

auto-correlation and a cross-correlation stage. The auto-correlation stage

matches the descriptors of different sample images of the same category to

determine the commonly (frequently) occuring descriptors - the equivalent to

the category-specific descriptors (shown in figures 3 - 5). For three and more

sample images, the common descriptors are collected from all pairs of auto-

correlations and concatenated to a single list: identical contours amongst

those pairs were discarded using a fixed threshold. The catgory representa-

tions grew slightly with the number of samples.

In the cross-correlation stage the common descriptors of one category are

matched against the common descriptors of all other categories to determine
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their category specificity (wi) by counting the number of co-occurrences in

the other categories (wi proportional to the lack of co-occurences).

Matching. In the testing (categorization) phase, the distance vector di be-

tween the image descriptors vj and the category descriptors vi, was weighted

using the category-specific descriptor weights w forming the weight vector

wi. Integration and normalization leads to the descriptor activity level,

a = diw
′
i/

∑
i wi, which in turn was integrated across scales and descrip-

tors to form the category activity level, A =
∑

σ=1,2,3,5

∑
{c..k} a. A simple

maximum search decided on the preferred category (maxi Ai).

3. Implementation

Preprocessing time. The average processing times for a Caltech image at scale

σ = 1 using an Intel 2GHz were: 390ms for the Canny algorithm; 392 ms

for the appearance information (without region description); 1270ms for the

extraction of contour segments from the image; 4000ms for the generation of

the LG spaces and the derived spectrum and parameter description (increase

of 1500ms in comparison to [20] due to the inclusion of the straightness

label); 3000ms for contour propagation; 1000ms for local pairings; 956ms

for sym-axis extraction, parameterization and formation of region vectors.

Summarized, the entire preprocessing time (decomposition and synthesis)

for an image is approximately 11.0 seconds (including inbetween saving of

data files; increase of only 3.3 seconds to our previous study). For scale σ = 5,

the average processing time is 4.9 seconds (3.4 seconds in previous study).

The processing time for the learning procedures is given in the evaluation

section.

The proximity threshold for adjacency was 0.6 of the shorter segment’s

length, the one for connectedness was 0.5 of that length.

4. Evaluation

The system was evaluated on the Caltech 101 and the Corel image set

(see [20]. Four types of evaluations were carried out: three were carried out

16



as in our previous study (see 1 to 3); the fourth one used the novel learning

approach, called the gradual-learning scheme, as explained in subsection 2.3.

1) Categorization using histograms: In the histogramming approach, a

high-dimensional histogram was formed using all parameters, resulting now

in a 620-dimensional vector in this study (62 parameters times 10 bins).

The categorization performance was only 1-2 percent higher than in our

previous approach (ca. 13 percent for the Caltech collection), showing that

the use of many more parameters does not lead to much improvement. The

knock-out showed again that all dimensions were relevant and that none was

substantially more important than any other one (not presented).

2) Image search: In the similarity search task, images were ordered for a

group of selected descriptors. The performance success was measured as the

percentages of images of the same category appearing amongst the first 99

similar images. Carrying out this type of search with the novel descriptors

raised the search performance by ca. 8 percent to ca. 24 percent for the Corel

set and 29 percent for the Caltech set (as opposed to our previous study).

3) Categorization using search-learning scheme: this specific matching

task was mentioned only marginally in our previous study as it did not

achieve a substantially higher categorization performance as the histogram-

ming approach. The selection of category-specific descriptors took several

minutes for a Caltech category for all spatial scales (σ =1, 2, 3 and 5) and a

training sample number of 10 images per category; determining the category

assignment took ca. 30 seconds. The performance for correct categorization

was 19 percent for the Caltech image set.

4) Categorization using gradual-learning scheme (see subsection 2.3): The

autocorrelation stage for two images (per category) occured within a dura-

tion of less than a second only per image, as it involved only matching the

descriptors of a pair of images. The cross-correlation stage (determining w)

took also less than a second as the number of category specific descriptors is

smaller than the average number of image descriptors.

Figure 3 to 5 show the common descriptors for the auto-correlation of
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two sample images for the texture, pairing and skeleton descriptor. The

collection for category-specific contours and sym-axes looks very similar to

the ones as when collected with the search-learning scheme (see figure 6 in

[20]) and they are therefore not shown again. The descriptors here are shown

at their original (spatial) location in the image, but no spatial information

was used in the present evaluation.

The correct categorization performance was at ca. 14 percent for two

sample images only, which we consider as very promising. However, for more

sample images the performance increased only little and reached only 19

percent for five sample images. A similar performance level was obtained

with the Corel collection.

Figure 6 shows the categorization performance for a variety of robustness

tests. The upper left graph shows the performance when individual descrip-

tors were omitted: for the straightness and pairing vector the percentage

decreased most. That those are the most representative descriptors is also

reflected in the performance level when individual descriptors were used only

for matching (upper right graph). The intersection vector clearly had the

least impact on overall categorization performance.

When individual spatial scales were knocked out (lower left graph), the

performance dropped slightly only. But when used individually, they still

showed a performance substantially above chance level (lower right graph).

5. Discussion

In our quest for abstractions for canonical patterns, we have created pa-

rameters and descriptors that are potentially useful for other recognition

systems, that deal with structure, e.g. shape recognition systems [32] or ob-

ject search systems [17, 18, 19]. It may well be that some of the parameters

developed here are too accurate for representing canonical patterns but those

could be necessary to discriminate between subtly different shapes as in [32].

The performance of our approach is still low as compared to other fast

categorization systems [10, 11] because we have not tuned our system to
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any specific image set yet and because a number of other descriptors are

necessary (see list below). However, our methodology is more general as

it attempts to describe any type of pattern and not just a specific set. The

many parameters in our system leave room for weight tuning, if one intended

to design a recognition system for a specific image set. Further weights could

be added, for instance weights for the descriptor activity level, or for the

spatial scale (σ), or combinations of descriptors.

Our methodology bears the possibility to acquire scene knowledge, e.g.

knowledge about the spatial location of frequently occurring parts. Although

there is a large effort to create such knowledge by labeling objects in scenes

[33], our methodology offers to learn the typcial spatial location of objects in

a completely unsupervised manner because many descriptors are very typ-

ical for a part of a scene or object, as demonstrated in figures 3 to 5. To

move toward such ’scene’ knowledge, each descriptor could be assigned a

loose spatial location, whereby the horizontal locations is to be given a low

weight due to the low bias of left/right ocurrences, and the vertical location

(top/bottom) a higher weight.

. We do not regard our suggested descriptors as a complete list of descriptors

but rather as an example of what type of multi-dimensional spaces may be

created. Other descriptors that could be tested are the following:

- Groups of contours: an extension of the local pairing descriptor could

be pursued which would group endpoints that are proximal (and not just

pairs), thus describing any converging or intersecting contours.

- Groupings of sym-axes: in a similar way to the just mentioned groups

of contours, sym-axes could be clustered, whose starting points are proximal,

thus describing also vertex features (T junctions, X junctions,...).

Both types of groupings clearly overlap in the types of structures they

represent, an overlap analogous to the one in local pairings and sym-axes

segments. One solution maybe too simply leave this overlap, as it could pro-

vide the uniqueness and robustness to the ever-present noise and variability

in structure (point 5 in subsection 1.1)
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- Sequences of segments: Presently, a contour is described as either a

curved segment, a straight segment, or an alternating contour (expressed by

the dimensions a, x and b). We realized that this is still a coarse descrip-

tion and possibly not sufficient to discriminate certain shapes, in which for

instance inflexion segments are very characteristic. We had previously tried

to describe such geometry by the transition parameter, which we dropped in

this study because a contour rarely occurs as an isolated inflexion. Rather

an inflexion segment is often part of an alternating contour. But with the

extracted segments (straight and curved), one could build a ’polygon’ descrip-

tor that expresses a larger variety of contour geometries more distinctively.

Such precision could be necessary to ’detect’ an animal silhouette in a nat-

ural scene for instance, which together with texture features would classify

the image as belonging to the category ’animal’.

- Groups of groups/structural relations: For some images, the above sug-

gested grouping operations may already be of global nature and capture the

canonical pattern sufficiently well. But for other images this may not suffice

and further groupings amongst the above suggested groups are desirable to

obtain more distinct category representations. Lastly, single structural rela-

tions between individual descriptors need to be tested, e.g. the distance and

angular alignment between descriptors.

. The gradual-learning scheme is clearly more efficient than the search-learning

scheme as it reached the same performance with half the sample images. The

robustness test showed that the knock-out of some descriptors and scales did

not lead to a large decrease in performance. It is tempting to assume that

those descriptors could be omitted, but the individual performances show a

relatively high level, demonstrating their representative power.

The performance of the intersection vector was lowest because it contains

mere geometric information. In fact, it almost reaches the performance of

the skeleton vector when the latter was tested with the geometric parameters

only using the histogramming method (results not shown). This indicates

that the intersection vector, whose geometrical information was solely taken
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from the circular surround (figure 2c), represents already a useful abstraction

of complex shapes, and that some form of classification can be done using

the distance map only, without requiring the explicit analysis of sym-axes

segments. The intersection vector would show its true merit in a shape

classification task.

The overall preprocessing time (decomposition and synthesis) has in-

creased only by one third, as the synthesis process is primarily the manipu-

lation of vector lists, which can be performed faster than the decomposition

processes.

The reconstruction process we propose is detailed at the level of contour

geometry and is exhaustive in its attempt to find meaningful local and global

relations. No specific attempt is made so far to segment an image, although

further development of our system will show whether such processes are nec-

essary for a perfect, fast category assignment.
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Figure 1: Local/global (LG) space. Top right: sample contour with starting and center

points marked as asterisk; squares and circles denote straight and bow segments. Left

column: LG space: signatures β(v) (black), τ(v) (grey) and γ(v) (stippled) for 9 different

window sizes [x-axis= arc length variable v]. Function block characteristics (determined

for large ones only): blue marker= εu; green diamond=υu; plus sign=ζu. Extracted seg-

ments shown with horizontal line at a value of ca. 0.3 (window no. 4, 5, 7). Fraction:

fraction functions φ for bowness, inflexion and straighness. Spectra: Green diamond:

maximum of symmetry value; black circle: maximum β amplitude; plus sign: maximum

of ζ. Dimension Values: straightness (not used), arc, transition (not used), alterna-

tion, bnd=curvature, edginess, symmetry. Integrated Signatures: bowness (black),

transition (gray) (top graph); edginess (blue) and straightness (gray) (bottom graph).
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Figure 2: The surround signature. The signature is obtained from a circular ’mask’ cen-

tered at the point of intersecting sym-axis segments. a. Contour image. b. Distance map

(contous in white). c. Symmetric-axis field in black (contours in gray). The map is already

partitioned into sym-axis segments at points of intersections (sym-points at intersections

omitted in this graph). Example of a circular mask (stippled, center point at x=43 and

y=85). d. Schematic of the signature of the example in c: the large bump corresponds

to the vertical sym-axis segment, the two smaller bumps to the ’oblique’ segments. The

dashed line corresponds to the symmetric distance at the point of intersection.
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Figure 3: Category-specific texture descriptors from spatial scale σ = 2 for all 101 cate-

gories of the Caltech collection as determined from 2 images per category. The texture

describes simplest appearance statistics taken from an area outlined by a symmetric-axis

segment.
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Figure 4: Category-specific descriptors for local contour pairings from spatial scale σ = 2

for all 101 categories of the Caltech collection as determined from 2 images per category.
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Figure 5: Category-specific skeleton descriptors (intersecting sym-axes segments, see for

instance figure 2c) for spatial scale σ = 2 for all 101 categories of the Caltech collection.
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Figure 6: Categorization performance for learning with three sample images. Descriptor

Knock-Out: performance when one descriptor is omitted. Descriptor Individual: per-

formance for a single descriptor. Scale Knock-Out: performance when one spatial scale

is omitted. Scale Individual: performance for a single spatial scale. The dashed line is

the average categorization performance (total); stippled lines correspond to one standard

deviation.
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