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Abstract 
How structure is possibly represented by the visual system is still little understood. A 
promising concept is the symmetric-axis transform, which has already been implemented 
for the purpose of shape identification. However, no instantiation of this transform has 
been provided yet, that generates the symmetric axes for open contours. This can be 
achieved by the use of a wave-propagation process, whose temporal evolvement is then 
high-pass filtered to extract the symmetric axes. The wave-propagation process occurs in 
a single sweep and the entire transform can therefore be evolved quickly and in a 
translation-independent manner. The temporal signature of the resulting symmetric-axis 
segments can be easily parameterized to generate shape abstractions and the obtained 
parameters can explain most parallel pop-out variances as observed in visual search 
studies. The decomposition output was evaluated on two image collections and yielded 
similar performance for both collections, demonstrating the robustness of the approach. 
All these aspects make the decomposition process appealing as part of a biological model 
of structural analysis.  

Introduction 
The symmetric-axis transform takes a visual structure as input and generates symmetric-
axis segments (sym-axis) as output, which express the relation between adjacent or 
surrounding contours. The transform was originally suggested by Blum (Blum 1967; 
Blum 1973) and has since been associated with processes of saccadic target selection 
(Richards and Kaufman 1969; Melcher and Kowler 1999), biological motion processing 
(Kovacs, Feher et al. 1998) and global-to-local processing (Kovacs and Julesz 1993). The 
attempts to confirm the existence of the symmetric-axis transform in the visual system 
have been sparse but persistent over the decades (Psotka 1978; Kovács and Julesz 1993; 
Burbeck and Pizer 1995; Lee, Mumford et al. 1998; Rasche 2005). The transform can in 
principal be implemented by a grass-fire process which evolves the symmetric axes (sym-
axes) dynamically as originally suggested by Blum. However, early implementations of 
this transform have used a discrete propagation process which coped with the problem 
that multiple sym-axis segments were generated when contours were slightly deformed. 
Subsequent implementations have advanced the methodology by using repetitive 
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propagation, see (Zhu 1999) for a review [Variants of this transform have also been 
called the medial-axis transform, if the symmetric axis was evolved from the center of a 
contour, e.g. (Niethammer, Betelu et al. 2004)]. Recently, Feldman and Singh have 
provided an improved implementation exploiting the Bayesian principle (Feldman and 
Singh 2006). Yet, all these implementations operate on closed shapes only, require 
several iterations to evolve the axes and can not deal with fragmented contour images. 
Furthermore, no detailed algorithm was given on how the generated sym-axes can be 
exploited for shape abstraction and representation.  
In this study, an implementation is presented, which evolves the sym-axes using a wave-
propagation process akin to the existence of traveling waves as observed in the retina for 
instance (Jacobs and Werblin 1998). The wave-propagation process allows generating the 
sym-axes for fragmented contour images and the resulting sym-axis segments can be 
easily employed for representation by parameterizing them. We thereby pursue a 
parameterization which covers a large range of geometries and which can explain the 
majority of parallel pop-out phenomena as determined in the visual search studies by 
Treisman and Gormican. (Treisman and Gormican 1988). To demonstrate the 
representative potential of those sym-axes, a basic-level categorization task is simulated 
with the images of the Corel and Caltech 101 collection. 
 

The Model 
Wave propagation 
The traveling-wave process consists of a passive, sub-threshold propagation process and 
a spiking mechanism, which ensures active (continuous) wave propagation. This can be 
emulated by a (single) layer of interconnected integrate-and-fire neurons, whose spike 
mechanism includes a refractory period to ensure forward propagation (Koch 1999; 
Rasche 2007). Figure 1 shows the traveling wave for a single-pixel source, which triggers 
a radially outward-growing circle, like a drop on a water surface. 
This temporal evolvement represents the crucial information to be held for the purpose of 
extracting the sym-axes: for a single point the completed evolvement can be thought of 
an amphitheater (circular-shaped arena): for an isolated straight contour segment the 
propagation looks like a coliseum or stadium (oval-shaped arena); for a rectangle, the 
inward propagating contours describe a roof shape; for a circle they describe a cone (see 
also supplementary information, figures 1 to 4). The completed temporal evolvement is 
now called the propagation field PF(x,y) and is a scalar 2D map. For complex scenes, the 
propagation field can be thought of a landscape, in which the contours run like rivers 
through the valley bottom, and the ridges of the hills correspond to the sym-axes as 
envisioned by Blum (Blum 1967; Blum 1973). An example is shown in figure 2b: bright 
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areas denote the center of regions (high PF value=high luminance value). The sym-axes 
can already been recognized as ‘veins’ running through the regions. 
 
Extracting the symmetric axes 
Because a propagation field contains no ‘plateaus’ (regions of equal value),  one can 
extract the sym-axes by convolving (*) the propagation field with a high-pass filter Fhigh 
emphasizing the veins, whose output is then thresholded by the function θ to obtain the 
symmetric field SF(x,y). SF is a sparse image with values equal the PF value at the points 
delineating the sym-axes: 

[ ]),(),(),( yxFyxPFyxSF high∗=θ   [1] 

The optimal filter function is of conic shape - as generated by the contour of an isolated 
circle (a single symmetric point) -, whose amplitude corresponds to the symmetric 
distance. 
An example of a symmetric field SF is shown in figure 2c. In that plot, SF is already 
segregated at points of intersections (see supplementary information, figure 5 for two 
more examples). The segregated segments often reflect the detailed relation between two 
contour segments. The relation is not precise as the wave propagation process has 
buffered small contour deformations or gaps, but it is detailed enough to express an 
enormous variety of geometries, as illustrated in figure 3. The relation is plotted as the 
symmetric distance s (taken from SF) against arc length l of the sym-axis segment in the 
image plane. This function is now called the symmetric signature. For two parallel 
straight lines (figure 3a), the signature describes a function, whose center part 
corresponds to the half distance between the two lines, which in turn is flanked by 
increasing ends because the waves continue to propagate and collide for a short while 
after the center part has been evolved. The symmetric signature for two inward-bent 
parallel lines describes a ‘depression’ function (figure 3b), the one for two outward-bent 
parallel lines an ‘elevation’ function (figure 3c). The two latter examples can also be 
regarded as a pass and a peak if one takes into account the surrounding values of the PF 
landscape. For an L feature, the signature corresponds to a straight line starting at s=0 
(figure 3d). For an inward-bent L feature the signature starts slow and becomes faster 
towards its end (figure 3e). For an outward-bent L feature the signature increases faster 
and ends slow (saturating; figure 3f). 
 
Parameterizing the symmetric-axis segment 
Because most segments correspond to one of the canonical geometries depicted in figure 
3, or are a variant of those, the signature is therefore parameterized as follows. An initial 
and an end symmetric distance is defined, s1 and s2, respectively, as well as an average 
symmetric distance sm (the mean of the distance vector). The slope of the signature, 
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specifically the straight line connecting its endpoints, serves as an estimate of the angle α 
between the two surrounding contours. A measure of elongation e is determined by 
dividing the segments arc length (l, see above) by its average symmetric distance sm, e=l/ 

sm, ]..0[ ∞∈e ; 0=circle, 1=oval). To capture the flexing of the adjacent contours, the 
inward and outward bending, the point which is maximally distant from the straight line 
connecting the signature’s endpoints is determined, and its distance value sfx and relative 
location pfx within the symmetric signature are taken (see supplementary information, 
figure 7). If such a distance is absent, as in case of parallel lines, the center point is taken. 
To characterize the geometry of the sym-axis, its orientation and curvature in the image 
plane is determined: the orientation o is defined as the orientation of the straight line 
connecting the segment’s endpoints and the curvature b as the maximal distance between 
the segment and the straight line. 
In addition to the above 9 geometric parameters, we add 6 ‘appearance’ parameters, 
which characterize the luminance distribution of the area as outlined by the signature 
using simplest statistics: For the distribution of luminance values, the mean, standard 
deviation and range are determined, cm, cs and cr. These parameters are also determined 
after the image was processed with a blob filter to capture larger, local variations in the 
luminance distribution, which here are called fuzziness (fm, fs, fr). In summary, we will 
test the following 15-dimensional vector for a sym-axis segment, also called area: 
 

a(s1, s2, α, sm, e, sfx, pfx, b, o, cm, cs, cr, fm, fs, fr). 
 
Relating sym-axis segments 
In order to build abstractions of more complex shapes, one could analyze the full 
geometry of the intersecting sym-axis segments, but a first step is to analyze the 
surrounding PF values: a circle is placed at the intersection point with a radius 
corresponding to the distance value (grey circle in figure 4). The PF values along the 
circle’s arc-length variable k describe a signature reflecting the surrounding ‘parts’ or 
‘features’. For a circle shape, this surround signature is flat because the values are taken 
along the contour where the PF values are 0 (figure 4a). For a square shape, the signature 
shows 4 elevations which correspond to the crossing of the sym-axis segments (the 
diagonals; figure 4b). For the intersection of sym-axes of a rectangle, there are only three 
elevations, with the largest one corresponding to the central axis segment reflecting the 
rectangle’s longitude (figure 4c). For an open rectangle, this large amplitude even 
exceeds the symmetric distance of the intersection point thus indicating the large 
openness of the surrounding structure. The surround signature allows to easily estimate 
the openness u of the intersecting sym-axis segment by dividing the signature’s integral 
by its diameter: u=1/(2 sc )∫PF(k) (0=circle; 1=open rectangle for instance). To further 
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specify the geometry we determine the number n of elevations, the amplitude β for each 
elevation and the angle α between the locations of the amplitude maxima. For the list of 
amplitudes and angle values, we take the standard deviation, σβ and σα , respectively. The 
three largest amplitude and angle values were also selected as dimensions (β1, β 2, β 3 and 
α1, α2, α3), thus forming an 11-dimensional intersection vector i: 
 

i(sc, u, n, σβ, σα, β1, β 2, β 3, α1, α2, α3). 
 
To express complex shapes more elaborately, we form a skeleton vector k with simple 
statistics taken from the geometrical parameters of the intersecting segments. The 
parameterization can be regarded as an elaboration to the intersection vector: 
 
  k(sc, n, a, smin, smax, lmin, lmax, lmean, lstd, αmin, αmax, cm, cs, cr, fm, fs, fr). 
 
Dimension sc is the symmetric distance value at the point of intersection; dimension n is 
the number of intersecting segments; dimension a is the spatial (2D) area of the entire 
structure; dimensions smin and smax are the minimal and maximal distance value for the 
distal (outer) ends of the intersecting segments; analogously, dimensions lmin and lmax are 
the minimal and maximal length of the segments; dimensions lstd and lmean are the 
standard deviation and mean of the length values. In addition to those 11 geometric 
parameters, the same luminance and fuzziness parameters are added as for the area vector 
(cm, cs, cr, fm, fs, fr), taken from the area spanned by the intersecting segments, thus 
forming the above 17-dimensional vector. 
 

Explaining parallel pop-out variances 
The decomposition has provided a number of parameters, which can explain all the pop-
out phenomena as observed in the visual search study by Treisman and Gormican for 
instance (Treisman and Gormican 1988) – except of those involving isolated contour 
segments such as the orientation and curvature pop-out. Modeling studies mimicking 
visual search have attempted to explain these variances, but can do so only to a limited 
extent, e.g. (Itti and Koch 2001; Li 2002), thereby following the idea of feature detection 
(Treisman 1988). In contrast, the present decomposition generates the relations between 
contours dynamically and not as the result of template matching. The decomposition 
generates an output from which the variance can be read out as parameter differences: 
pop-out can therefore be determined as the variance in a multi-dimensional space. 
For a typical search display, the decomposition will not only generate sym-axes 
describing the local configuration of structure, but also sym-axes describing the area 
between structural elements. The results of the visual search study by Treisman and 
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Gormican are therefore explained considering local structure only. The presence or 
absence of a pair of lines may be explained by the presence or absence of a (local) sym-
axis. The circle-vs.-ellipse pop-out can be explained by a deviation in the elongation 
dimension e of the area vector (e=0 for circles, e>0 for ellipses). The parallel-vs.-
converging pop-out results from a difference in the angle α of the area vector. The 
presence or absence of a juncture is a deviation in the flexion parameters (distance value 
sfx and relative location pfx). The circle-vs.-arc pop-out can also be explained by either the 
presence or absence of a sym-axis, whereby the arc is a half circle or a circle with a ¼ or 
1/8 gap. 
The following two kinds of pop-out can be explained by a local grouping of sym-axes. 
The absence or presence of a cross-intersection – which generates four small sym-axes - 
can be explained by the absence and presence of a group of sym-axis segments whose 
starting points (s1) are proximal. The adjacent-point pop-out (figure 12 in Treisman and 
Gormican) can be explained by the contextual analysis of the sym-axes: A point outside 
and near a shape generates a sym-axis, similar to the one in figure 3b, which is isolated as 
opposed to a sym-axis generated by a point inside, that is ring-connected to the sym-axes 
describing the entire shape. Such grouping has not been modeled yet in this study, 
although it could potentially contribute to better categorization performance. 
 

Methods 
The full Corel collection (60000 images) provides 100 image classes, of which 357 
belong to a human subordinate category. These were pooled into 112 basic-level 
categories (Rosch, Mervis et al. 1976; Oliva and Torralba 2001). Examples of basic-level 
categories are wild animals (27, 4.5%) [number of image classes, proportion of the entire 
collection], patterns (25,4.2%), sports (25, 4.2%), flowers (17, 2.8%), aircrafts (16, 
2.7%), models (13, 2.2%), birds (11, 1.8%), water animals (10, 1.7%), cars (9, 1.5%), 
canyons (7, 1.2%), different cultures (7, 1.2%), mountain sceneries (7, 1.2%), ships (7, 
1.2%). The complete list of category labels is accessible at http://www.allpsych.uni-
giessen.de/rasche/research/res_COREL_cat.htm. 
The subsample size was 10 images per category for the Caltech collection (1010 images 
per entire subsample) and 10% images per category for the Corel collection (typically 10 
or 20 images; 3570 images per entire subsample), for both the learning and testing 
procedure. The images for a subsample were selected randomly and categorization 
performance was tested with 3 different subsamples using cross validation. 
The images of the Corel draw collection were downsampled to a size of 128 x 192 pixels. 
This low resolution was chosen intentionally to force the search of useful area 
parameterization – humans can easily recognize these low-resolution images. Most 
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images of the Caltech collection are at a resolution of approximately 200x300 and were 
not changed in size, but larger images were downsampled to that size.  
To extract contours, the gray-scale image I was processed with the Canny algorithm at 
fine/coarse scales (σ) equal 1, 2, 3 and 5 (Canny 1986). The starting point of propagation 
(t=0) is the contour image: PFt=0(x,y)=CF(x,y). Propagation is emulated by repeatedly 
convolving PFt with a 2D Gaussian-shaped low-pass filter g(i,j) (3x3 matrix, std dev = 
0.5): PFt+1(x,y) = PFt(x,y)*g(i,j). After each time step PFt is thresholded by setting those 
matrix elements to 1, which have a value larger than a fixed threshold θprop, the other 
values remain: PFt=1, for all PFt > θprop, else PFt = PFt (θprop=0.12). The final 
propagation matrix, PFt=final(x,y), is then simply called PF (see also supplementary 
information, figures 1 to 5). The high-pass filter Fhigh to compute the symmetric field SF 
is a (fixed-size) DOG with standard deviations of 0.833 and 1.5. This crude filter 
approximation is made for reason of simplicity, because the use of the optimal, distance-
dependent filter is computationally much more expensive. 
To compute the luminance statistics (cm, cs, cr), I was processed with a local filter 
determining range, mean and standard deviation, Irng, Imean and Istd. The filter size was 5x5 
pixels for scales 1 and 2, 7x7 pixels for scale 3 and 9x9 pixels for scale 5. To obtain the 
fuzziness values (fm, fs, fr), I was processed with 2 DOG filters of different size, a 3x3 
pixel size with standard deviations of 0.5 and 1.0; and a 5x5 pixel size with standard 
deviations of 1.0 and 2.0. The output of both image convolutions is summed to a single 
image from which fm and fs are determined for the area and skeleton descriptor (a and k) 
on each scale.  
 
 

Results 
A summary of the decomposition output is shown in figure 5. The red dot marks the 
location of s2, which is the open side in case of converging lines or an L feature. The red 
circle marks the location of pfx. As the structure of a gray-scale image is typically 
‘smeared’, especially in case of natural scenes, the resulting contour images are 
fragmented. For that reason, some of the regions outlined by the skeleton descriptor k (3 
or more intersecting sym-axis segments) are accidental and do not always correspond to 
the interpreted regions. The issue is similar to the issue of contour extraction, but 
addressing this is beyond the scope of a single study. The aim of the present study is to 
introduce a model of the symmetric-axis transform and to proof its potential by a simple 
categorization task. 
The categorization test was performed using the images of two different image 
collections, the Caltech 101 and the Corel collection. The images of the Caltech 
collection contain 101 categories showing exclusively single objects with relatively clear 
silhouettes and limited geometric variability (Li, Fergus et al. 2006). To test also complex 
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scenes - containing multiple objects and ‘smeared’ object contours -, the images of the 
Corel collection were used, which were ordered into 112 basic-level categories. Many 
categories show large geometric variability and overlapping representations. To test the 
usefulness of proposed parameters, a categorization task using a histogramming approach 
was tested first. To demonstrate the specificity of the individual descriptors, image 
sorting was carried out. 
 
Histogramming 
For the list of descriptors (a, i or k) for a given image, a 10-bin histogram for each 
dimension is constructed. The histograms are then concatenated to form a 430-
dimensional image vector. The performance for correct categorization was between 9.8 
and 12 percent for all 4 scales for both collections (figure 6a and b, labeled ‘F’). Omitting 
the distracter category (‘Google’ images in Caltech collection) decreased the performance 
by 0.3 percent only. To estimate the contribution of the individual descriptors and its 
dimensions, the performance was also determined when only a subset of dimensions was 
used. When using only the area parameters (150-dimensional image vector), the 
performance decreased to a value of 8 to 10.5 percent, see label ‘a’. For the geometrical 
parameters of the area descriptor (90-dimensional vector), the performance decreased 
little for the Caltech collection but rather dropped for the Corel collection (down to ca. 5 
percent, see label ‘a-geo’), which exposes the characteristic, that the Caltech collection 
contains objects with limited geometric variability. When only the appearance parameters 
were employed (label ‘a-app’), the performance decreased slightly more for the Caltech 
collection but even increased for the Corel collection. This reveals that the strongest cue 
for the categorization performance is the appearance and is slightly stronger in the Corel 
collection. A similar performance pattern can be observed for the skeleton descriptors 
(‘k’, ‘k-geo’, ‘k-app’). The intersection descriptor, which represents geometry only, 
yielded a performance of 4 to 5 percent (‘i’). Two combinations of descriptor were tested, 
areas and intersections (‘a&i’), as well as areas and skeletons (‘a&k’), whose 
performance barely exceeds the performance of the area descriptors along (‘a’). Hence, 
the different descriptors do not add up in the histogramming approach and the 
categorization percentage of ca. 12 percent appears to be an upper limit.  
To estimate the significance of individual dimensions, the categorization performance 
was tested when single dimensions were knocked out (420-dimensional vector, figure 7). 
The performance decreased only slightly (ca. 0.3 percent), which demonstrates that none 
of the dimensions is crucially more significant than any other one - an analysis of the 
covariance of the dimension values did not show any strong dependencies either. The 
performance decrease merely indicates preferences, for instance for the orientation and 
bendness dimension of the area descriptor (no. 1 and 9, figure 7) contribute more to 
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category distinctness than for instance the range of luminance values and the standard 
deviation of the fuzziness dimensions (no. 12 and 14). 
Figure 6c shows the performance across scales, showing there is only a small dependence 
of the histogramming method on the exact scale. Figure 6d demonstrates that even for a 
smaller number of learning samples (2 and 5 images) reasonable performance can be 
achieved. 
 
Descriptor Matching 
In a learning phase, category-specific descriptors (a, i or k) were searched for each 
category. A selected descriptor (e.g. the L-feature of a chair) was compared to all other 
descriptors of the remaining images and the distances sorted by decreasing similarity. 
The category-specificity of a descriptor was defined as the percentage of images 
belonging to the same category (chair) for the first 100 images of the corresponding first 
100 similar descriptors was taken. Only descriptors with a minimum specificity of 2 
percent were kept (figure 8). The category specificity could reach up to tens of percent 
and was 3.5 to 8 percent in average: for the Caltech collection the average was 7.5 
percent for the area and skeleton descriptors, and 4.5 percent for the intersection 
descriptors; for the Corel collection the average percentage was lower by ca 1.0 for each 
descriptor. Differences across scales were small (ca. 1 percent). 
In a testing phase, the list of collected category-specific descriptors were matched against 
the images of another subsample. For each image, the descriptors vj were matched against 
the collected descriptors vi of each category, resulting in a distance matrix Dij. The 
shortest distance for each collected descriptor was selected di=maxjDij. This distance 
vector reflects the optimal match between a selected image and a category representation. 
The distance vector di was sorted and the first 2, 5 and 10 differences summed (d∑2, d∑5, 

d∑10), followed by determining the category-specificity for each ‘integral’. A systematic 
search was carried out for the maximal ‘integral’ value across all descriptors for 3 
different scales (2, 3 and 5). The maximal value was in average 22 percent for the Corel 
collection and 28 percent for the Caltech collection, demonstrating the high distinctness 
of the vectors. The performance difference for the two collections can again be explained 
by the differing degree of structural variability of categories within the two image 
collections. However, we were not capable yet, to exploit this descriptor specificity to 
achieve a categorization performance, which exceeds the performance of the 
histogramming approach. 
For both types of analyses, histogramming and descriptor matching, the radial-basis 
function was employed as distance measure. Using the Euclidean distance function did 
not change performance significantly. A number of different, exact definitions for some 
of the dimensions were tested, as well as alternate dimensions for the intersection and 
skeleton parameters. All these variations did not alter overall performance significantly, 



 10

suggesting that the decomposition is of general nature and not biased toward a specific 
set of images. 
 

Discussion 
The purpose of the evaluation was to demonstrate the potential of the present 
implementation of the symmetric-axis transform, not to argue for a specific model of the 
categorization process or of basic-level representation. The model is neither considered a 
complete model of structural description. A complete description required also the 
parameterization of contours – as evidenced by the parallel pop-out phenomena such as 
curvature discrimination. One important property of our model is that it allows 
determining the area of open regions as contour images are always fragmented. 
Especially natural scenes often have little specific structural geometry and are better 
described by their characteristic textures of those regions (figure 5). 
The chosen geometric parameters describe commonly occurring simple structures (figure 
3) and suffice to explain all parallel pop-out variances as observed in visual search 
studies – with exception of the orientation and curvature pop-out, for which an explicit 
contour description had to be pursued. Those pop-out effects are generally interpreted as 
supporting the traditional viewpoint of recognition evolvement, namely that of a gradual 
local-to-global integration along a hierarchy spanning several visual areas (Hubel and 
Wiesel 1968; Barlow 1972; Essen, Felleman et al. 1990). But a newer viewpoint is that 
some form of global integration already takes place in early visual cortical areas using for 
instance horizontal connections amongst cells of the same neocortical layer, thus arguing 
rather for a global-to-local recognition evolvement, e.g. (Kovacs 1996; Li 1998; Pettet, 
McKee et al. 1998; Hess and Field 1999; Rasche and Koch 2002). Some of those studies 
have suggested that processes like the symmetric-axis transform occur. We now have 
provided a biologically plausible implementation of it, whose output can explain most 
parallel pop-out phenomena. Thus, the symmetric-axis transform provides a convenient 
way to transform any structure. However it does not follow any hard-wired integration 
schemes: it is its wave-propagation process, that allows to flexibly evolve a temporal 
landscape, the propagation field, from which the parameters can be easily extracted. To 
clarify our point, the fact that one can explain most of the parallel pop-out phenomena 
with a parameterization of the propagation field does not support any specific theory on 
the issue of parallel or serial processing. Rather, it can be regarded as a strong argument 
that processes such as the symmetric-axis transform and the presented parameterization, 
are likely to occur in the visual system. It rather seems to us, that the pop-out phenomena 
express a systematic parameterization of structure not a feature search. 
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The choice of parameters for the skeleton and the intersection vectors was an intuitive 
one. But modifications of the parameters did not alter the results significantly. The reason 
is that the basic-level categorization task is a rather ‘coarse’ type of classification. The 
issue is of such a high complexity, that it is a priori not clear, which parameters may 
actually be crucial or sufficient for a discrimination between all categories. If an 
identification task was pursued, then the exact definitions may matter and a higher 
number of parameters may be necessary to properly describe and distinguish the objects. 
 
The transform sketches an alternative approach to the issue of translation independence, 
which so far has been exclusively modeled in a hierarchical fashion (Riesenhuber and 
Poggio 1999; VanRullen and Thorpe 2002). The hierarchical approach is limited by its 
own pyramidal architecture and to escape this bottleneck, models are sometimes 
additionally equipped with a simulation of attentional shifts (Amit and Mascaro 2003). 
Whether such attentional shifts occur during categorization is still being debated (Li, 
VanRullen et al. 2002), but more recent experiments (Kirchner and Thorpe 2006) 
strongly challenge that view and encourage to find alternate models.  
The translation independence here is achieved by a wave-propagation process. Such 
processes do occur in visual systems at the retinal and cortical level (Grinvald, Lieke et 
al. 1994; Bringuier, Fregnac et al. 1997; Senseman 1999; Prechtl, Bullock et al. 2000). 
The question is whether such waves can occur also quickly enough to support fast 
categorization, see (Barch and Glaser 2002; Rasche 2005) for supporting arguments on 
the neurophysiological level. But because the transform can be evolved in a single 
‘sweep’ it could potentially take place within 150ms, the average duration it takes to 
categorize a canonical image (Palmer, Rosch et al. 1981; Thorpe, Fize et al. 1996).  
The transform may also serve as a substrate for saccadic target selection, a process which 
occurs at a similar speed. For instance, saccades made toward shapes land in preferred 
locations and those locations were associated with the symmetric axis transform 
(Kaufman and Richards 1969; Richards and Kaufman 1969). Such locations can only be 
computed if there is an explicit representation of region as for instance given by the 
symmetric-axis signatures. A study by Melcher and Kowler proposed that rather the 
center-of-area is used for saccadic target selection (Melcher and Kowler 1999), but the 
computation of that center could also be carried using the symmetric axis. 
 
The performance for the Caltech collection does not nearly reach the performance of 
current state-of-the art computer vision methodology, which obtain more than 90 percent 
correct categorization on the Caltech database using data-clustering methodology such as 
principal component analysis (Fergus, Perona et al. 2007). That methodology works 
exceptionally well on objects depicted in gray-scale images with limited geometrical 
variability and relatively clear contours, but an extension to noisier images and categories 
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with overlapping representations remains to be elaborated. For that purpose we also 
tested low-resolution images (128x192 pixels) of the Corel collection, which contains 
categories of large geometric variability, and for which a comparable performance was 
obtained.  
The performance of the intersection vector - containing mere geometric information -, 
almost reached the performance of the skeleton vector when the latter was tested with the 
geometric parameters only (compare ‘i’ and ‘k-geo’ in figure 6). This indicates that the 
intersection vector, whose geometrical information was solely taken from the circular 
surround (figure 4), represents already a useful abstraction of complex shapes, and that 
some form of classification can be done using the propagation field only, without 
requiring the explicit analysis of sym-axes segments. 
 
There are many possibilities to improve the performance of the present approach – apart 
from including a contour description. 
1) It may just require the appropriate learning algorithm, which determines category-
specific combinations of descriptors. So far only descriptor combinations of the same 
type have been tested (the ‘integral’), for which we already achieved a specificity of more 
than 20 percent for each collection.  
2) Performance could also be increased by grouping descriptors, such as the grouping of 
proximal starting points (s1) of sym-axes segments to form contour intersections. 
3) Scale selection may also improve performance, but the analysis of category-specific 
descriptors (figure 8; see supplementary material figure 7 for category-specific 
descriptors for all categories for two scales) shows that for some categories the category-
specific structural information differs between the fine and the coarse scale. Hence, a 
representation consisting of descriptors from different scales should also be considered 
and not only a selection of a specific scale.  
4) The choice of appearance dimensions is rather simple (luminance and fuzziness 
dimensions; cm, fm,…): texture perception studies have shown that the detailed 
distribution of luminance values seems to be a strong determinant for proper texture 
identification (Dror, Willsky et al. 2004; Motoyoshi, Nishida et al. 2007). A more 
thorough parameterization of the luminance distribution may therefore be appropriate. 
 
Despite the elimination of one or a few dimensions, categorization performance dropped 
only slightly (figures 5 and 6). This may explain why humans can recognize rotated 
pictures equally rapid as non-rotated (up-right) pictures (Guyonneau, Kirchner et al. 
2006): the presence of the remaining unaltered aspects may still allow for this rapid 
categorization. Nevertheless we hypothesize that eliminating dimensions will lead to 
prolonged categorization durations. Such a prolongation may be difficult to measure if 
only a single dimension is eliminated and if only a small data set is collected. We predict 
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that with an increase in the number of eliminated dimensions, the categorization duration 
gradually prolongs, which could also be measured with data sets of regular size. The 
elimination of dimensions can be carried out by image modifications using computer 
vision methodology. 
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Figure 1. Wave propagation for a single-point source. 5 snap shots of the 
evolvement are shown. Gray-scale pixels: passive, sub-threshold wave. Black 
pixels: spike front. 
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Figure 2. a. Contour image (CF). b. Propagation field (PF): Completion of wave 
propagation: increasing luminance values reflect temporal evolvement (contours 
in white). The symmetric axes are already visible as ‘veins’. c. Symmetric-axis 
field (SF) in black (contours in gray). The field is already segregated into sym-
axis segments at points of intersections. 
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Figure 3. Symmetric-distance signatures of typical sym-axis segments. The 
signature relates arc length l of the sym-axis segment - as laid out in the image 
plane - with its symmetric distance value s (or temporal evolvement; taken from 
SF). a. The signature for two parallel contour segments. b. The signature for two 
inward-bent parallel contours; they form a pass if one traverses the PF map from 
one contour side to the other. c. The signature of two outward-bent parallel 
contours form a peak. d-f. Signature of L features with contour variation 
analogous to cases in a-c.  



 22

arc length of circle [c]

PF

a b c d

 
 
Figure 4. Surround signature of characteristic sym-axis intersections. The 
signature relates the PF values with arc-length variable of a circle, whose radius 
corresponds to the symmetric distance of the intersection point (dashed line = 
symmetric distance of point of intersection). a. A circle (a single symmetric point) 
results in a flat signature. b. The intersection point of a square results in an 
‘undulating’ signature. c. The intersection point for a closed rectangle results in 3 
elevations with the PF amplitude of the largest one corresponding to the distance 
of the intersection point. d. The signature for an open (half) rectangle: the PF 
amplitude for the open side exceeds the distance of the intersection point. 
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Figure 5. Summary of the decomposition (σ=1, 3 and 5). Top right: Contours of 
all three scales overlaid. Left column: Blue: contours; gray-scale pixels: output 
of fuzziness (blob) filter. Right column: Blue: contours; orange-dotted: sym-
axes; red dot: s2; red circle: pfx; Plus sign: intersections of sym-axes. 
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Figure 6: Categorization results of histogram matching. a, b: Correct 
categorization for full ‘F’ and partial dimensionality (‘a’, ‘a-geo’, ‘a-app’…) for 4 
different coarse/fine scales (σ=1, 2, 3 and 5). Error bars denote standard error of 
3-fold cross validation. c: Correct categorization performance for full 
dimensionality (‘F’) across coarse/fine scale. d: Correct categorization 
performance for different numbers of learned images, scale 5, full dimensionality 
(Caltech collection only).  
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Figure 7. Categorization performance (proportion correct) for single-dimension 
knock out (Caltech collection). The performance for full dimensionality (430 
dimensions) is indicated as black dashed line at ca. 12.3 percent, the blue values 
show the knock-out performance (420 dimensions). From left to right: dimensions 
of a, i and k. Error bars denote standard error of 3-fold cross validation. 
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Figure 8. Category-specific sym-axis segments for some categories of the 
Caltech collection (σ=5). The percentage indicates the number of same-category 
images for the first 100 images containing similar descriptors. 


