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A Model of Binocular Motion Integration in MT Neurons
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Primate cortical area MT plays a central role in visual motion perception, but models of this area have largely overlooked the binocular
integration of motion signals. Recent electrophysiological studies tested binocular integration in MT and found surprisingly that MT
neurons lose their hallmark “pattern motion” selectivity when stimuli are presented dichoptically and that many neurons are selective for
motion-in-depth (MID). By unifying these novel observations with insights from monocular, frontoparallel motion studies concurrently
in a binocular MT motion model, we generated clear, testable predictions about the circuitry and mechanisms underlying visual motion
processing. We built binocular models in which signals from left- and right-eye streams could be integrated at various stages from V1 to
MT, attempting to create the simplest plausible circuits that accounted for the physiological range of pattern motion selectivity, that
explained changes across this range for dichoptic stimulus presentation, and that spanned the spectrum of MID selectivity observed in
MT. Our successful models predict that motion-opponent suppression is the key mechanism to account for the striking loss of pattern
motion sensitivity with dichoptic plaids, that opponent suppression precedes binocular integration, and that opponent suppression will
be stronger in inputs to pattern cells than to component cells. We also found an unexpected connection between circuits for pattern
motion selectivity and MID selectivity, suggesting that these two separately studied phenomena could be related. These results also
hold in models that include binocular disparity computations, providing a platform for future exploration of binocular response
properties in MT.
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Introduction
Cortical area MT is a critical stage in the visual motion processing
pathway and is known for the emergence of “pattern motion”
sensitivity (Movshon et al., 1985; Rodman and Albright, 1989;
Stoner and Albright, 1992), which refers to the ability of some MT
neurons, known as pattern cells, to signal the direction of overall
motion of a visual target. This ability is thought to arise by appro-

priate integration of direction-selective (DS) component motion
signals that originate in V1, where “component” refers to local,
narrowly oriented image features. Although many models have
been proposed to explain how such integration takes place
(Heeger, 1987; Grzywacz and Yuille, 1990; Nowlan and Se-
jnowski, 1995; Simoncelli and Heeger, 1998; Bowns, 2002; Per-
rone and Thiele, 2002; Pack et al., 2004; Perrone, 2006; Rust et al.,
2006; Tsui et al., 2010), these models of motion processing in MT
are not binocular, despite the fact that MT neurons are strongly
driven when stimuli are presented to either eye (Zeki, 1974;
Maunsell and Van Essen, 1983; Felleman and Kaas, 1984; DeAn-
gelis and Uka, 2003).

The integration of motion signals across eyes has received far
less attention than monocular motion tuning; however, several
recent experimental studies have specifically examined integra-
tion of binocular motion signals in MT using simple sinusoidal
grating stimuli. Tailby et al. (2010) found a striking reduction in
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Significance Statement

The neural pathways underlying our sense of visual motion are among the most studied and well-understood parts of the primate
cerebral cortex. Nevertheless, our understanding is incomplete because electrophysiological research has focused mainly on
motion in the 2D frontoparallel plane, even though real-world motion often occurs in three dimensions, involving a change in
distance from the viewer. Recent studies have revealed a specialization for sensing 3D motion in area MT, the cortical area most
tightly linked to the processing and perception of visual motion. Our study provides the first model to explain how 3D motion
sensitivity can arise in MT neurons and predicts how essential features of 2D motion integration may relate to 3D motion
processing.
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pattern motion sensitivity in virtually all cells they recorded when
the sinusoidal components of a plaid pattern (Adelson and
Movshon, 1982) were presented to different eyes. Czuba et al.
(2014) used a similar dichoptic grating protocol to test sensitivity
to 3D motion, or motion-in-depth (MID) and found MT neu-
rons that responded well to MID, including many cells tuned for
opposite directions in each eye, as previously reported (Zeki,
1974; Albright et al., 1984; but see Maunsell and Van Essen,
1983). Another recent study of MT used a stimulus protocol that
isolated motion and disparity cues and found that dichoptic mo-
tion signals alone can produce responses tuned for MID (Sanada
and DeAngelis, 2014), underscoring the importance of under-
standing binocular integration of motion in MT. Pattern motion
selectivity and tuning for MID have so far been studied sepa-
rately; thus, binocular MT models are needed to allow constraints
from both phenomena to be incorporated concurrently, leading
to more general models and more powerful predictions.

To address this need, we built binocular, motion-sensitive
models of V1 and MT processing stages within an image-
computable framework that facilitated the testing of candidate
circuits with diverse monocular and binocular stimulus para-
digms. Here, we focus on two key issues: identifying possible
circuit mechanisms underlying the loss of pattern motion sensi-
tivity when plaid stimuli are presented dichoptically, and inves-
tigating possible links between the phenomena of component
versus pattern-DS tuning and frontoparallel (FP) versus 3D mo-
tion tuning (3DT). We created component and pattern motion-
sensitive MT units within our framework that successfully fit
monocular MT data reported in published literature. We found
that responses to dichoptic plaids can be explained by including
monocular opponent suppression in the circuit, and we found
clear differences in the ability of component and pattern models
to fit the responses of the FP and 3DT cells. Our models identify
mechanisms that can account for these dichoptic response prop-
erties of MT cells, and they offer several novel testable predictions
regarding V1 to MT circuitry. Specifically, the models predict the
following: (1) there is motion opponent suppression in the inputs
to MT; (2) this opponent computation occurs before binocular
integration; (3) there is a relationship between FP/3DT and
component/pattern-DS selectivity in single MT neurons; and (4)
3D-biased motion tuning in MT can be derived from imbalanced
ocular dominance and FP direction tuning preference. We also
found that our major results hold when binocular disparity tun-
ing is introduced in the model, providing a basis for future studies
of how joint selectivity for motion and disparity might arise and
shape responses in MT.

Materials and Methods
We first describe the basic components of our binocular MT models and
then describe the visual stimuli and data analyses below. All models were
implemented within our custom software Working Model (WM) system
(written in C) that is freely available online from www.iModel.org. All
parameter files for the models, stimuli, and analyses to allow the simula-
tions to be rerun are available at www.iModel.org. Key parameters for the
versions of the binocular models presented in this paper are shown in
Table 1. The values of parameters that were varied for the plots in the
figures are shown in Table 2.

Model overview
The main features of the framework, as shown schematically in Figure 1,
are as follows: Figure 1A, spatiotemporal filters representing DS V1 chan-
nels at the front end that process visual inputs for the left and right eyes;
Figure 1B, response normalization of the V1 linear outputs; Figure 1C,
V1-level opponent motion suppression; Figure 1D, a variable amount of
binocular mixing of normalized V1 signals within a direction channel;
Figure 1E, MT-level weighting and integration of the V1 direction chan-
nels within the left and right streams; Figure 1F, MT-level integration
across the left and right streams; and Figure 1G, nonlinear transforma-
tion of the integrated signal into spiking output. The space-time motion
energy filters at the front of each V1 channel (Fig. 1A) make the frame-

Table 1. Key parameter values for the component and pattern models presented in this studya

Parameter in V5_ME model
Component cell
(Figs. 3, 4)

Pattern cell
(Figs. 3, 4)

Component cell
(Figs. 5, 7, 8, 10, 12)

Pattern cell
(Figs. 5, 7–9, 11, 12)

Gabor filter SF fr (cyc/deg) 3.6 2.4 2.4 2.4
Gabor filter TF ft (cyc/s) 10 10 10 10
a1 0.5 1 0.5 1
a2 0 0 0 0
a3 0.4 0 0.4 0
rmsm_A 1 1 1 1
rmsm_B 0.7 0.5 0 0
W (left eye) �0, �0.2, 0, 0.05, 0.05, �0.05,

1, 0, 0, 0, �0.05, �0.2�
��1, �1, �1.1, �0.1, 0.25,

1, 0.9, 0.8, 1, 0.6, 0, �0.9�
��0.1, �0.1, 0, 0, 0,

0, 1, 0, 0, 0, 0, �0.1�
��1, �0.87, �0.5, 0,

0.5, 0.87, 1, 0.87, 0.5, 0,
�0.5, �0.87�

aThe parameters are as follows: fr (spatial frequency) and ft (temporal frequency) of the Gabor filter RFs for the V1 direction channels as in Equations 1 and 2 (see Materials and Methods); a1 (tuned), a2 (untuned), and a3 (non–response-
dependent), constants that control the normalization of the raw V1 signals from Equations 6 and 9; rmsm_A and rmsm_B, which set the output nonlinearity for the raw MT output signal (A and B, respectively, in Eq. 15); W, the vector of
full-strength MT input weights for the 12 V1 channels (Eq. 14).

Table 2. Range of parameter values for the V1 and MT level ocular dominances and
motion opponent suppression that were used in the figures

Figure Panel

V1 motion
opponency
c

opp

V1 ocular
dominance
b

MT inhibitory
weight strength
kinh

MT ocular
imbalance
AR

5 A 0.5 1 0 1
B 1 1 0.25 1
C–H 0 –1 1 0 –1 1

6 B–G 0 –1 0.5 0 –1 1
8 A–D 0.5 1 0 1

E–H 1 1 0.25 1
I–L 0.5 1 0 1
M–P 1 1 0.25 1
Q–T: component 0.5 1 1 0.5
Q–T: pattern 1 1 0.75 0.5

9 A 0.5 1 0 –1 0.5– 0.9
B 1 1 0 –1 0.5– 0.9
C 1 0.5– 0.9 0 –1 1
D 1 0.7 0 –1 0.5– 0.9

11 B 0.5 1 0 0.7
12 A 0.5 0.5 0 1

B 1 0.5 1 1
C–H 0 –1 0.5 0 –1 1
I 1 0.5– 0.9 0 –1 1
J 1 0.7 0 –1 0.5– 0.9
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work image-computable, thereby allowing them to be tested with any
achromatic dynamic visual stimulus. Our framework includes normal-
ization (Fig. 1B) and V1 opponent motion suppression (Fig. 1C) stages,
which have been proposed as being important for explaining MT neuro-
nal responses in past studies (Rust et al., 2006, Tailby et al., 2010), and
several novel features that are important to explore in models that in-
clude binocular integration: (1) ocular dominance of V1 inputs (Fig.
1D); (2) MT-level ocular dominance (Fig. 1F ); and (3) MT-level dichop-
tic opponent motion suppression (Fig. 1F ). Specific computational de-
tails for each of these stages are described in the following sections.

V1 direction channels
For the V1 channels (Fig. 1A), we chose a sim-
ple and robust model of direction selectivity
based on the motion energy model (Adelson
and Bergen, 1985). Our V1 computation con-
sists of the following steps for each direction
channel: (1) convolving the stimulus, a se-
quence of images over time, with two space-
time oriented Gabor filters in quadrature; (2)
squaring and summing the outputs to produce
a directional motion energy signal; and (3)
half-wave rectifying this opponent motion en-
ergy signal to produce a non-negative re-
sponse. Specifically, the even and odd Gabor
filters for the ith direction channel are defined
as follows:

feven
i � x, y, t�

� cos�2�� frn � r � ftt�e
���r�2/�2sr

2��t2/�2st
2�� (1)

fodd
i � x, y, t�

� sin�2�� frn � r � ftt�e
���r�2/�2sr

2��t2/�2st
2�� (2)

for i � 1, . . ., D, where D is the number of
direction channels. For all models tested here,
D � 12, such that the preferred directions for
the filters, di � �i � 1� � �2�/D�, occur in
30° increments across direction channels. For
convenience, we define the vectors r � (x, y)
and n � (cos(di), sin(di)). Other parameters
are the filter spatial frequency (SF), fr, the tem-
poral frequency (TF), ft, the spread (SD) of the
spatial Gaussian, sr, and temporal Gaussian, st.
These control the direction (and orientation)
bandwidth of the V1 channels. Our model is
image-computable, meaning that any pair of
time varying stimulus movies, sL(x, y, t) and
sR(x, y, t) for the left and right eyes, respec-
tively, are operated on as follows:

uL,o
i � x, y, t� � fodd

i � x, y, t� � sL� x, y, t�

(3)

uL,e
i � x, y, t� � feven

i � x, y, t� � sL� x, y, t�

(4)

and similarly for the right-eye stimulus. We
then define the monocular motion energy for
the i th direction channel as follows:

vL
i �t� � uL,e

i � xc, yc, t�2 � uL,o
i � xc, yc, t�2

(5)

where we have taken the responses for the re-
ceptive field at the center (xc, yc) of the simu-
lated patch of visual field. A similar definition
holds for vR

i �t�, except that the right eye stimu-
lus is applied.

Normalization
The V1 normalization stage (Fig. 1B) in our model is a modified version
of the equation for normalizing the raw V1 output, Ln(t), from Rust et al.
(2006) as follows:

rL
i �t� �

vL
i �t�

a1vL
i �t� �

a2

D �
k�1

D

vL
k�t� � a3

(6)

Figure 1. Schematic of the binocular MT model. For complete details, see Materials and Methods. A, The front end of the model
is composed of 24 spatiotemporal motion energy filters (12 in each eye) in 30° steps of preferred direction. The visual stimulus is
convolved with these filters to generate input to the model. B, Tuned and untuned normalization is applied to scale the raw V1 filter
outputs. C, Variable strength opponent motion suppression may be computed by subtracting a proportion (copp) of the signal from
the antipreferred direction V1 channel. This step can occur before or after binocular integration. D, Variable strength V1 binocular
integration may be implemented by combining a weighted sum of signals from the left and right streams within a direction
channel. For example, b � 0.7 produces left stream signals composed of 70% monocular left eye signal and 30% monocular right
eye signal, and vice versa for the corresponding right stream. E, Weighting of V1 inputs to MT. Pattern cell weights (red traces) are
broadly tuned and have significant inhibitory weights, whereas component cells typically have only one strong positive weight and
negligible inhibitory weights (blue traces). Weights are shifted 180° between FP motion tuned and 3DT models (see Fig. 7). F, After
weighting, signals are summed across both eyes and all direction channels. There is an optional additional weighting by a scale
factor AR that reduces the strength of all right streams equally before summation. G, An output nonlinearity is applied to the
summed signal, before optional scaling and offsetting, to produce spiking MT output. The nonlinearity can be an exponential (solid
trace, after Rust et al., 2006) or simple rectification (dashed trace).
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where a1 controls tuned normalization (i.e., normalization that is limited
to the current direction channel), a2 controls untuned normalization
(normalization that spans all direction channels), and a3 is a constant
that we have retained to match output firing rates when fitting to exper-
imental data. In place of our a3, the Rust et al. (2006) formulation con-
tained a stimulus-contrast-dependent term, a3L� (their notation), but this
presents a problem for an image-computable model because L� , the mean
squared contrast of the stimulus, is both not defined for general image
sequences and not knowable in advance (i.e., a causal model cannot
know the mean over future time of the contrast of an ongoing stimulus).
To allow the normalization to be computed when arbitrary stimuli are
presented to the model, without a priori knowledge of the mean squared
contrast, we replace this value with a constant term a3 that we found
allowed us to reproduce the fits of the Rust et al. (2006) monocularly
obtained data (see Fig. 3). In practice, a3 can be set to a very small num-
ber, or even 0, and still reproduce key properties of MT responses
(Jazayeri et al., 2012; Patterson et al., 2014).

V1 motion opponency
We implemented motion opponent suppression in V1 (Fig. 1C) by sub-
tracting a weighted amount, copp, of the opponent direction V1 channel
(after the normalization stage), and we then rectified the resulting signal
as follows:

oL
i �t� � ⎣rL

i �t� � copp rL
j �t�⎦ (7)

where j is the index of the direction channel that is 180° opposite to i. This
could occur either before V1 binocular mixing, as shown in Figure 1, or
afterward, as explored later in Results. This allows us to directly imple-
ment the proposal of Tailby et al. (2010) that there is a monocular com-
ponent of motion opponency that occurs at the level of V1 (for a review
of experimental evidence, see Discussion).

Binocular integration
Our model framework has two possible sites for binocular combination:
one in V1 and the other in MT. In V1, an optional, weighted binocular
mixing can occur within each direction channel (Fig. 1D). The ocular
dominance of binocular V1 channels is set by the weight parameter b,
with a value of 0.5 indicating 50/50 left/right eye mixing within a V1
direction channel. The mixed signal, m, is as follows:

mL
i �t� � b oL

i �t� � �1 � b�oR
i �t� (8)

where b takes values from 0.5 to 1.0. We will continue to refer to the two
parallel streams in Figure 1 originating from the left and right eyes as the
left and right streams, regardless of the actual ocular dominance (OD)
(Hubel and Wiesel, 1962) of the signals within them. In MT, an imbal-
ance in OD can be imposed by setting a parameter, AR, that scales the
signals in the right stream (see Eq. 13 below), as shown in Figure 1F. A
value of AR � 1.0 indicates full-strength right stream weights. Unless
otherwise stated, models have the default configuration of monocular V1
channels (b � 1) and full-strength MT weights in the right stream
(AR � 1.0).

Binocular disparity
We built a version of the model that had a disparity computation at the
V1 level to test whether our results, which relate primarily to the binoc-
ular integration of motion signals, also hold when a plausible disparity
computation occurs upstream. The details of the disparity model are as
follows.

The even and odd linear filter signals, uL,o
i and uL,e

i (Eqs. 3 and 4), in
addition to being combined to form a motion energy signal vL

i (as in
Eq. 5 above), are also maintained in separate pathways through the
normalization and opponency stages (Fig. 1 B, C). This is done be-
cause an energy computation is now required at the binocular inte-
gration stage in accordance with the binocular disparity energy (BDE)
model (Ohzawa et al., 1990). Figure 2A–D shows the circuitry specific
to the disparity model, which replaces Stages B–D in Figure 1. In our
simulations, the left and right eye filters were set to have 0 phase
disparity (tuned excitatory-type disparity tuning). The even and odd
pathways are marked in black and green, respectively. In Figure 2A,

the even and odd filter outputs are copied and negated, consistent
with the BDE model (e.g., Ohzawa et al., 1990, their Fig. 3B; Read et
al., 2002, their Figs. 3, 6). In Figure 2B, an opponent signal (described
below) is subtracted, the resulting signal is rectified, and then the left
and right eye signals are added (Fig. 2C), with the left eye signals given
a weight, b, whereas the right eye signals are given a weight (1 � b).
Each of these sums is then squared (Fig. 2D) to form the four main
terms of the BDE model (Ohzawa et al., 1990; Read et al., 2002). The
diagram shows the computation for a single direction channel com-
puted for the left stream (Fig. 2D, bottom left, black arrow). For the
right stream direction channels, the computation is the same, except
that the weights b and (1 � b) are swapped with respect to the left and
right streams.

Details of the normalization, opponency, and BDE computation for
the disparity model are as follows. The normalized responses (Eq. 6) are
computed as follows (equation for the even, left eye signal is shown; the
other channels are computed similarly):

Figure 2. Overview of the circuitry for the binocular disparity computation. A, Normalized
even and odd linear filter signals from the left and right eyes are duplicated and negated before
motion opponency to allow the disparity computation. B, The motion opponent signals are
subtracted from each subchannel and the resulting signals rectified (Eq. 10). C, The rectified
signals from left and right eyes are combined in a weighted sum and the result squared (Eq. 11).
D, The summed, squared outputs are summed in a final step to produce binocular disparity
energy signal (Eq. 10).
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rL,e
i �t� �

uL,e
i �t�

a1�vL
i �t� �

a2

D �
k�1

D

vL
k�t� � a3

(9)

The energy-based self-normalization is favorable because it cannot be
negative and thus cannot pull the denominator near or across 0. It is also
less sensitive to spatial phase, being more complex-cell-like (Adelson and
Bergen, 1985), thereby providing a more stable signal. The square root is
taken to keep the amplitude of the self-normalization term on the same
order as the numerator. The opponency calculation (Eq. 7 above) is
modified as follows:

oL,e�
i �t� � ⎣ � rL,e	

i �t� � copp�vL
i �t�⎦ (10)

Here positive and negative signals are now computed. The square root of
the energy signal is subtracted to keep the two signals being differenced
on the same magnitude scale. The resulting matched signals from left and
right eyes are then summed and squared, with the optional weighting
between left and right eyes applied (here shown for the even, positive
channels):

ge	 � �b oL,e	
i �t� � �1 � b�oR,e	

i �t��2 (11)

The resulting four squared terms are all summed together for the final
BDE computation as follows:

mL
i �t� � ge	 � go	 � ge� � go� (12)

Weight distribution of V1 inputs to MT
At the first MT stage, the signals coming from V1 are multiplied by sets of
weights, wL

i and wR
i , for the left and right eye channels, which we will refer

to as “MT weights” (Fig. 1E). Thus, the “linear” MT response (i.e., before
the output nonlinearity) is as follows:

MT�t� � �
i�1

D

wL
i mL

i �t� � AR�
i�1

D

wR
i mR

i �t� (13)

Component and pattern motion selective responses are primarily shaped
by differences in the distribution of these MT weights over the V1 direc-
tion channels. Pattern cells are fit by a broad peak of excitatory (i.e.,
positive) weights and significant inhibitory (i.e., negative) weights (e.g.,
Fig. 1E, red curve), whereas component cells have a very narrow excit-
atory peak and negligible inhibitory weights (Fig. 1E, blue curve). We
implemented the Rust et al. (2006) fits for example pattern and compo-
nent cells (Figs. 3, 4; Table 1). To reproduce the simulations of Tailby et
al. (2010) in Figure 4C, D, we also implemented a version of the model in
which any negative MT weights are reduced by 40% (Tailby et al., 2010)
(see Results) when the stimulus is presented dichoptically.

In addition to the models fit to specific example MT cells from the
literature, we built canonical models that captured the main features of
pattern and component cells using idealized MT weight distributions.
The canonical pattern cell model had a cosine weight distribution with
weights varying between 1 and �1, and the canonical component model
had one strong excitatory weight with amplitude 1, and inhibitory
weights in the �30°, 0°, and 30° direction channels set to �0.1 (Table 1).
These distributions embody the main features of strongly component
and pattern cells as described in the previous paragraph but are not tied
to a specific fit to a neuron, making our results more generalizable. The
weights shown in Table 1 are the full-strength (100%) weights, Wi, and
were varied by scaling all the negative weights by a constant fraction, kinh,
to produce the final weights used in Equation 13, as follows:

Figure 3. Monocular fits to experimental data on component and pattern cells. Example
component and pattern cells in our binocular model using the fits of Rust et al. (2006). Param-
eters for left and right eyes are identical. Responses shown are for monocular left eye stimula-
tion only. A, The monocular model of Rust et al. (2006) used 12 V1 channels modeled as tuning
curves, with the output from each channel normalized. These 12 signals were weighted to fit a
component cell (B, Rust et al., 2006, their Fig. 4 A) and pattern cell (C, Rust et al., 2006, their Fig.
4 E). The summed output was then passed through a nonlinearity and the signal used to pro-
duce spikes (D). E, Tuning curves for the component cell reproduced from Rust et al. (2006):

4

their Fig. 4A for single gratings (blue trace) and 120° plaids (red). F, Tuning curves for our model
component cell using the weights in B. G, Tuning curves reproduced from the pattern cell in Rust
et al. (2006, their Fig. 4E). H, Tuning curves for our model pattern cell using weights shown in C.
I, 2D map of responses to plaids of all directions (in 30° steps) for the component cell in E. J,
Responses to plaids from our model component cell in F. K, Plaid matrix responses for the
pattern cell in G. L, Responses to plaids from our model pattern cell shown in H.
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wi � � kinhWi if Wi � 0,
Wi otherwise (14)

The default value of kinh is 1. The weight distributions were either iden-
tical in each eye (FP motion tuned, FP models) or shifted 180° in the right
eye (3DT models).

MT output nonlinearity
The final processing stage is an output nonlinearity (Fig. 1G). We imple-
mented both the expansive output nonlinearity of Rust et al. (2006) as
follows:

MT��t� � Ae�B�MT�t�� (15)

and a simple half-wave rectification nonlinearity. An optional linear scal-
ing and offsetting of this signal are performed, and the result is passed
through a Poisson spike generator to produce spiking output. For the
model MT cells in Figures 3 and 4, we applied the expansive nonlinearity
to fit the spiking data from the example cells of Rust et al. (2006). For the
canonical versions of the models with idealized weight distributions, we
used a rectification nonlinearity, to better fit results of the dichoptic plaid
simulations (see Results).

Visual stimulus
We characterized the models with various combinations of sinusoidal
grating stimuli that reproduced key monocular and dichoptic experi-
mental paradigms used in the literature. Many of our stimuli were plaids,
meaning that they consisted of the sum of two sinusoidal gratings com-
ponents, where the orientation differed across components. The main
protocols are as follows:

Single plaid direction tuning. In this series of stimuli, the overall motion
direction of a plaid pattern was varied to generate a direction tuning
curve. The plaid had a single, fixed difference in the direction of its two
component gratings, namely, 120°. When presented monocularly (both
components to the same eye), this is a classical stimulus used to classify
pattern and component cell types in MT (Movshon et al., 1985). When
presented dichoptically (one component grating to the left eye and the
other component grating to the right eye), this is the stimulus used by
Tailby et al. (2010) to demonstrate that MT pattern motion sensitivity
relies on monocular computations. An important reference for this pro-
tocol (see Data analysis) is the single grating direction tuning protocol,
which can be achieved by setting the contrast of one of the plaid compo-
nents to 0.

Plaid matrix protocol. This set of stimuli encompasses a variety of plaid
patterns by independently varying the direction of motion of the two
component gratings across 12 values between 0° and 360°. This protocol
was used to generate a 2D matrix of responses to plaids that differs
characteristically between component and pattern MT neurons, as
shown in Rust et al. (2006, their Fig. 8). The single plaid protocol
(above) corresponds to a particular diagonal within the plaid matrix
here.

Interocular velocity difference (IOVD) protocol. Devised by Czuba et al.
(2014), this is a dichoptic plaid stimulus where the directions of the
component gratings in each eye are separated by either 0° (binocular
matched motion, BSame) or 180° (binocular opponent motion, BOpp).
The BSame condition corresponds to typical FP motion, whereas the BOpp

condition produces the appearance of 3D motion, either directly toward
or away from the observer, which arises when motion has equal speed
and opposite direction in the two eyes. The temporal frequency of the
gratings was also varied independently between eyes at values of 2.4,
4.8, and 18 Hz to generate oblique 3D motion directions (see Results;
see Fig. 11A).

The component sinusoidal gratings were presented at 50% contrast for
the single 120° plaids and the plaid matrix protocol but were presented at
100% contrast in the IOVD protocol. Stimuli were presented at the op-
timal SF, 2.4 cyc/deg, for the model units.

Data analysis
To quantitatively assess the degree to which DS units display pattern
versus component motion selectivity, we computed pattern index values
as described by Tailby et al. (2010). Briefly, we used the single grating
direction tuning curve to make predictions of the tuning curve responses
to plaids for idealized pattern- and component-selective cells. The com-
ponent prediction is the sum of two appropriately shifted single-grating
tuning curves, whereas the pattern prediction is simply the single-grating
tuning curve. For dichoptic plaids, predictions were based on monocular
single-grating tuning curves. We computed partial correlations Rc and Rp

of the actual responses against the predicted tuning curves, as follows:

Rc �
�rc � rprpc�

��1 � rp
2��1 � rpc

2 �
(16)

Rp �
�rp � rcrpc�

��1 � rc
2��1 � rpc

2 �
(17)

where rc is the correlation of the data with the component prediction, rp

is the correlation of the data with the pattern prediction, and rpc is the
correlation of the two predictions. These were converted into Z-scores
using Fisher’s r-to-Z transformation as in Smith et al. (2005) as follows:

Figure 4. Reduced pattern motion sensitivity with dichoptic plaids in the binocular models.
Direction tuning for monocular and dichoptic plaids as in the protocol of Tailby et al. (2010).
Pattern index values for the monocular and dichoptic conditions are shown as insets on all plots.
A, Direction tuning curves for the component cell from Figure 3F, J for monocular 120° plaids
(black trace) and dichoptic plaids (green trace). B, Monocular and dichoptic plaid direction
tuning curves for the pattern cell in Figure 3H, L. C, Component cell tuning curves where inhibi-
tion is reduced to 40% of monocular strength when the component gratings of the plaid are
presented dichoptically, following the method of Tailby et al. (2010). D, Tuning curves for the
pattern cell model with inhibition reduced to 40% of monocular strength with dichoptic
presentation.
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Zp �

0.5 ln�1 � Rp

1 � Rc
�

�1

df

(18)

where df is the number of degrees of freedom, equal to the number of
values in the tuning curve minus 3.

We computed a direction selectivity index (DSI) and monocularity
index for our model units as described by Czuba et al. (2014) as follows:

DSI �

��
n�1

N

Rnei�n�
�

n�1

N

Rn

(19)

MI �

�Rmax � Lmax�
Rmax � Lmax

(20)

where �n and Rn are the direction of motion and response strength for
each of the N � 12 directions and Rmax and Lmax are the maximum
responses in the left and right eye, respectively, across all the monocular
stimulus conditions. We also computed 3D directions 	n shown in Fig-
ure 9A following Czuba et al. (2010, their Eq. 3), as follows:

	n � arctan�VREn
, VLEn

� �
�

4
(21)

where VREn and VLEn are the stimulus velocities in the right and left eyes,
respectively.

Results
A framework for image-computable binocular MT models
We constructed a binocular multistage modeling framework
(Fig. 1) to unify concepts from past studies of pattern motion
selectivity and to account for the experimental results of recent
studies of MT that presented different motion stimuli to each eye.
Key elements from past models include the following: front-end
DS filters, response normalization, motion opponency, and
weighted integration across multiple direction channels. We in-
troduced a parallel left- and right-eye dual stream structure and
allowed the flexibility to vary the mixing of left and right eye
signals at various points along the streams and the ability to vary
the order of operations for opponency and binocular integration.

Our observations and insights from the model are organized
below as follows: (1) We first develop image-computable pattern
and component cell models that are consistent with past monoc-
ular studies, and we extend these in the simplest way to operate
on binocular stimuli. (2) We then test and refine the binocular
models to account for the loss of pattern motion sensitivity when
moving plaid gratings are presented dichoptically. (3) We further
test and refine the models to account for 3D motion sensitivity in
area MT, making predictions to guide future experimental stud-
ies to examine whether there is a relationship between pattern
motion and 3D motion sensitivity. (4) Finally, we show our re-
sults hold when a canonical binocular disparity computation is
included in the models.

Monocular characterization of pattern motion sensitivity in
the binocular MT model
Our first goal was to reproduce within our framework the widely
studied selectivity of MT cells for pattern motion. MT cells
have traditionally been ranked along the continuum from
component-DS to pattern-DS based on their responses to plaid
stimuli: component cells respond best when either constituent

grating of the plaid matches the preferred direction of the cell
(measured with single gratings), whereas pattern cells respond
best when the overall pattern moves in the cell’s preferred direc-
tion (Movshon et al., 1985; Rodman and Albright, 1989; Stoner
and Albright, 1992).

A thorough characterization of this behavior was performed
by Rust et al. (2006) who used a full range of directions for two-
component and multicomponent sinusoidal stimuli to monocu-
larly drive MT units that spanned the spectrum from component
to pattern cell behavior. They fit the resulting responses with a
monocular cascade model (Fig. 3A–D). In the first stage of the
cascade model, the responses of 12 DS V1 channels were modeled
as direction tuning curves spaced evenly over the full 360° range
(Fig. 3A). The responses were then divisively normalized by the
sum of two components: a direction-tuned self-normalization
term and an untuned term that summed signals across all direc-
tions. The model MT unit computed a weighted sum of these
normalized V1 outputs (weights for component and pattern ex-
ample cells are shown in Fig. 3B,C), and the summed signal was
passed through an output nonlinearity to produce a spiking re-
sponse (Fig. 3D). These last three steps correspond to the steps
shown in Figure 1B, E, G in our framework, respectively. Rust et
al. (2006) found that a primary distinction between fits to com-
ponent and pattern MT cells was the distribution of weights from
V1 to MT: pattern cell weights were broadly direction tuned, with
strong, oppositely tuned inhibitory weights (Fig. 3C), whereas
component cells had narrowly tuned excitatory weights and
sparse, low-strength inhibitory weights (Fig. 3B).

To build representative binocular pattern and component MT
units in our framework, we fit our model to example cells for
which Rust et al. (2006) presented extensive data. Taking a min-
imalist approach to building binocular models, we set identical
parameter values in both the left and right streams and simply
summed the signals from both streams (Fig. 1F) before applying
the MT output nonlinearity to generate spikes. We extracted the
key parameters (V1 tuning curve bandwidth, normalization
strengths, MT weight distributions, and MT nonlinearity) from
the data presented in Rust et al. (2006) by inspection of their
Figure 6A, E (see Materials and Methods); we chose as represen-
tative units of their most component-like and most pattern-like
example cells (their Fig. 4A and Fig. 4E, respectively). We tested
our binocular models using monocularly presented stimuli to be
consistent with experimental conditions. A side-by-side compar-
ison of the recorded MT data (plots reproduced from Rust et al.,
2006) and our fits are shown in Figure 3E–L, where we have
adopted their plotting conventions to facilitate comparison. The
classical single grating and single plaid tuning curves for the
model component cell (Fig. 3F) and pattern cell (Fig. 3H) closely
match the recorded data (Fig. 3E,G). When tested with a full
matrix of plaid combinations (Fig. 3 J,L), we also obtained a good
qualitative match to the experimental results (Fig. 3 I,K). We
have also implemented models reproducing data from the other
three example cells of Rust et al. (2006, their Fig. 4B–D; see sup-
plemental material).

Reduction of pattern motion sensitivity with dichoptic plaids
Having created image-computable, binocular models that
accounted for the responses of typical pattern-DS and
component-DS cells to monocularly presented stimuli, we next
examined whether these models could account for the robust loss
of pattern-DS behavior when the plaid stimuli were presented
dichoptically rather than monocularly (Tailby et al., 2010). This
experimental observation provides an important constraint on
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the integration of motion information from V1 to MT, indicating
that monocular mechanisms are critical for pattern motion sen-
sitivity. To explain their dichoptic plaid results, Tailby et al.
(2010) proposed an adjustment to the monocular cascade model
of Rust et al. (2006) but did not provide a unified model to
account for both monocular and binocular responses. Our goal
in this section is to verify that the adjustment proposed by Tailby
et al. (2010) works within our binocular image-computable
framework. Thus, we first test our simple binocular models with
the dichoptic stimuli of Tailby et al. (2010) to observe the effect of
dichoptic presentation on pattern sensitivity in our component
and pattern model units, and we then implement and test the
adjustment by Tailby et al. (2010). In the next section, we apply
the intuition gained here to create a unified model to account
for pattern selectivity under both monocular and dichoptic
conditions.

The first experiment of Tailby et al. (2010) was to measure the
pattern indices of MT neurons monocularly in both eyes, from
cells spanning the continuum from strongly pattern-DS to
strongly component-DS. They found that the measured pattern
indices (PIs) were similar across the two eyes. This holds by con-
struction in our model units because the parameters for the left
and right streams were identical: the PIs for left and right eye
presentation were both �2.9 for the component cell (Fig. 4A,
black trace, tuning curves are identical) and both 6.0 for the
pattern cell (Fig. 4B, black trace). We consider PI 
 �1.28 to be
indicative of a component cell and PI � 1.28 to be indicative of a
pattern cell with values in between unclassified, as in previous
studies (Smith et al., 2005; Tailby et al., 2010).

The main finding of Tailby et al. (2010) was that PI values
decreased for essentially all MT cells when plaids were pre-
sented dichoptically, with one component grating presented
to the left eye while the other component grating was simul-
taneously presented to the right eye. In our model units, the
PIs changed very little with dichoptic presentation, with PIs of
�2.8 for the component unit (Fig. 4A, green trace) and 6.7 for
the pattern unit (Fig. 4B, green trace). The similar PI values for
monocular and dichoptic presentation are largely a conse-
quence of the linear combination of the signals in the left and
right streams (Fig. 1F ), which occurs before the MT output
nonlinearity and the identical MT weight distributions across
the eyes. Intuitively, splitting the plaid across eyes should pro-
duce about the same amount of drive as a monocular plaid
because the channels in the left and right eyes have the same
weights and respond equally strongly to the component grat-
ings. It is important to note that the results in Figure 4A, B
indicate that normalization, raised as a possible key element to
the monocular dependence of pattern selectivity by Tailby et
al. (2010), do not play a critical role in our models, which have
tuned and untuned normalization in accordance with the
findings and specific fits of Rust et al. (2006). Specifically,
because the normalizations (tuned and untuned) act monoc-
ularly, splitting the grating across the two eyes alters the nor-
malization signals within each eye; however, this does not end
up having any substantial effect on the pattern index. How-
ever, the slight differences in monocular and dichoptic firing
rates observed in the pattern model (Fig. 4B, black vs green
curves) are a result of the normalization, which is applied to
the V1 channels at a monocular stage (Fig. 1B), and this dif-
ference in the tuning curves is eliminated if normalization is
removed (data not shown). Thus, the simplest binocular ex-
tension of the monocular pattern and component models does
not explain the experimental observations.

In their study, Tailby et al. (2010) proposed a potential mod-
ification to the monocular cascade model by which their dichop-
tic plaid results could be achieved. They reasoned that the
reduction in PI under dichoptic viewing conditions implied that
at least some of the mechanisms underlying pattern selectivity
must act monocularly. The mechanisms previously identified as
essential for pattern selectivity (Rust et al., 2006) were contrast-
dependent normalization, integration of V1 inputs over a wide
range of preferred directions, and strong opponent motion sup-
pression. Focusing on motion opponency, Tailby et al. (2010)
compared plaid direction tuning curves from the monocular
model of Rust et al. (2006) with curves from an altered model,
used only for dichoptic stimulation, in which the MT inhibitory
weights (i.e., the negative weights in Fig. 3B,C) were decreased to
40% of their original strength. This reduction was intended to
simulate a decrease in the inhibitory input, relative to that gener-
ated by the monocular plaid, when one component of the plaid is
shifted to the other eye. They found that they were able to repro-
duce the reduction in PI from monocular to dichoptic presenta-
tion in simulated pattern-DS tuning curves using these two
models. We refer to this modified model as the “Tailby adjust-
ment,” noting that they compared the monocular stimulus pre-
sented to the standard cascade model, against the dichoptic
stimulus presented to the modified model.

We verified the validity of the Tailby adjustment by imple-
menting it in both our component and pattern model units. The
component unit (Fig. 4C) produced PIs of �2.9 for the standard
model and �5.0 for the reduced-inhibition model, whereas the
pattern unit (Fig. 4D) generated PIs of 5.8 and 5.1 for the stan-
dard and modified models, respectively. Both of these reductions
in PI fall within the range of reductions observed by Tailby et al.
(2010, their Fig. 2C). These results validate the insight of Tailby et
al. (2010), that reducing the inhibition provided by the negative
MT weights for the dichoptic plaid, but not for the monocular
plaid, could lead to appropriate models for pattern and compo-
nent cells.

A single circuit model for representing monocular and
dichoptic plaid responses
The Tailby adjustment provides a proof of principle that reduc-
ing the negative MT weights during dichoptic stimulation can
reduce the PI, but it does not provide a unified, plausible circuit
model that simultaneously works for both the monocular and
dichoptic stimuli. In addition, Tailby et al. (2010) also reported
that pattern cells commonly showed larger decreases in PI than
we saw in our pattern cell using the Tailby adjustment, with 11 of
their 18 pattern cells recorded no longer being classified as
pattern selective with dichoptic presentation (Tailby et al. (2010,
their Fig. 2C; under their criterion, a cell is classified as pattern
if the pattern correlation coefficient significantly exceeds either 0
or the component correlation, whichever is largest). The key
mechanism identified by Tailby et al. (2010) was a reduction, but
not elimination, in inhibitory strength with dichoptic presenta-
tion, which suggests that both monocular and interocular sources
of inhibition are at play. We implemented this in our model by:
(1) introducing motion-opponent suppression between V1
channels with 180° differences in direction preference, and (2)
selectively reducing the strength of the inhibitory weights from
V1 to MT. The strength of the motion-opponent suppression
between V1 channels (Fig. 1C) was set by a parameter copp (e.g.,
copp � 0.5 means the normalized V1 signal from the opponent
motion channel is scaled by 0.5 before being subtracted). To
vary the strength of MT inhibitory weights, we introduced a
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scaling factor kinh that was applied to
only the negative values in the MT
weight distribution (Eq. 14). With di-
choptic presentation, the V1 motion-
opponent suppression between signals
driven by the two component gratings is
eliminated, reducing the total suppression
generated by the plaid stimulus relative to
monocular presentation, whereas the
suppressive component generated by the
MT inhibition is the same in both cases
because the MT weight distribution is
identical in both left and right eye streams.

For simplicity and generality in these
tests, we built canonical pattern and com-
ponent cell models that have idealized
weight distributions. The component cell
model MT weights consisted of a 
 func-
tion at 180° (Fig. 1E, solid blue lines) with
scalable opponent MT inhibitory weig-
hts across three antipreferred channels
(�30°, 0°, and 30°; data not shown in Fig.
1E; see Materials and Methods). The pat-
tern cell model had cosine weights (Fig.
1E, solid red lines), also with adjustable
scaling for the inhibitory weights. We
used simple rectification for the MT out-
put nonlinearity (Fig. 1G, dashed line).
We retained the V1 filtering and normal-
ization parameters from our Rust et al.
(2006) example component and pattern
units. Introducing the canonical models is
important because they embody the key
factors underlying the differences be-
tween pattern and component cells, as
shown by Rust et al. (2006): those being
(1) a broad weight distribution for pattern
versus a narrow distribution for compo-
nent cells, and (2) strong opponent inhi-
bition (negative weights) for pattern
versus negligible inhibition for compo-
nent cells. The canonical models retain
strong pattern and component tuning
while ensuring that our results do not de-
pend on specific details of the weight dis-
tributions of the two example cells (Fig.
3B,C). Nevertheless, the following results
also hold for the particular Rust et al.
(2006) example cells we presented in Fig-
ures 3 and 4. The canonical models are
used in all subsequent sections for testing
plausible configurations of the circuitry
for dichoptic and 3D motion sensitivity.

Figure 5A shows the plaid direction
tuning curves for the canonical compo-
nent-DS model that has both V1 opp-

Figure 5. Effect of monocular and binocular opponent motion suppression on loss of pattern sensitivity with dichoptic
plaids. A, Plaid direction tuning curves for a model component cell with 50% V1 opponent motion suppression strength and
no MT inhibitory weights. Inset, Pattern index values for the two curves. B, Plaid tuning curves for a pattern cell with 100%
V1 opponent motion suppression strength and inhibitory weights reduced to 25% of the full-strength weights. Inset, PI
values for the two curves. C, Dependence of the monocular PI on amount of V1 opponency and MT inhibitory weight
strength in the component cell model. Blue areas of the plot represent negative PI values. D, Monocular PI values in the
pattern cell model as V1 opponency and MT inhibitory weight strength are varied. Blue regions represent negative PI
values. Red regions of the plot represent positive PI values. E, Dichoptic PI values as opponency and inhibitory strength vary
in the component cell model. F, Dichoptic PI values as opponency and inhibitory strength vary in the pattern model. G, The
difference between dichoptic and monocular PI as V1 opponency and MT inhibitory strength are varied in the component
model. Blue regions represent a drop in PI. White represents no change. Red regions represent an increase in PI from

4

monocular to dichoptic presentation. *Parameters used to
generate the tuning curves in A. H, Difference between di-
choptic and monocular PI for the pattern model. *Parameter
values chosen to generate the tuning curves shown in B.
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onent motion suppression and no MT inhibitory weights (copp �
0.5 and kinh � 0.0). When tested with monocular plaids (black
curve), the model component cell has a PI value of �2.9. When
tested with dichoptic plaids (green curve), the PI dropped to
�6.0. A similar trend holds for the representative model pattern
unit with V1 opponency and reduced inhibitory weights (Fig. 5B;
copp � 1.0 and kinh � 0.25), where the PI dropped from 2.9 to
�1.4 (compare black and green curves). These decreases in PI,
�3.1 and �4.3 for the component and pattern models, respec-
tively, are both within one-half SD of the mean values found in
the population data (�2.0, SD 2.2 for component cells, �5.2, SD
3.4 for pattern cells) of Tailby et al. (2010). In contrast to the
results above for the Tailby adjustment (Fig. 4C,D), in these sim-
ulations the model parameters are the same for both monocular
and dichoptic stimulation: for the component cell, 50% V1 op-
ponency and no MT inhibitory weights; and for the pattern cell,
100% V1 opponency and 25% strength MT inhibitory weights.
The change in PI with dichoptic stimulation reflects a loss of
monocular suppression when one component of the plaid is
moved to the other eye, which is not fully recovered by the addi-
tional reduced dichoptic MT inhibition.

To explore how the decrease in PI values depended on the
amounts of monocular and dichoptic suppression, we varied the
strength of V1 opponency (copp) and the strength of the MT in-
hibitory weights (kinh) in the models (Fig. 5C–H). Full MT inhib-
itory weight strength (kinh � 1.0) is defined for both models as
shown in Table 1. For both the component (Fig. 5C) and pattern
models (Fig. 5D), monocular PI tended to increase with both the
strength of V1 opponency and MT inhibition. For the compo-
nent model (Fig. 5C), the PI values ranged from strongly negative
(consistent with a component cell) for no suppression to near 0
(consistent with an unclassified cell) for full monocular and di-
choptic suppression. In contrast, the pattern model (Fig. 5D)
generated PIs that ranged from near 0 with no suppression to
large positive values associated with strong pattern cells for full
monocular (V1) and dichoptic (MT-level) suppression. This ex-
tends the observation of Rust et al. (2006) that antipreferred di-
rection suppression is key to generating responses to pattern
motion, by showing that this suppression can be implemented
both monocularly in V1 and binocularly at later stages. In con-
trast, with dichoptic plaid presentation, we found that in both
component (Fig. 5E) and pattern (Fig. 5F) models, PI no longer
varies with strength of V1 opponency (along the vertical axis)
because this opponency is not engaged by the dichoptic stimulus.

Using these data, we plotted the change in PI from monocular
to dichoptic presentation as a function of monocular and dichop-
tic suppression in both models (Fig. 5G,H). The parameter values
used to generate the plots in Figure 5A, B are indicated by aster-
isks in Figure 5G, H. Both models showed significant regions of
the parameter space that produced the decrease in PI observed by
Tailby et al. (2010), whereas increases in PI with dichoptic pre-
sentation were negligible. Critically, in both models, there was no
decrease in PI when V1 opponency strength was 0, indicating that
V1 opponent suppression is a key factor in producing the loss of
pattern sensitivity. For the component model (Fig. 5G), eliminat-
ing dichoptic MT inhibition resulted in a strongly component-
like response and the largest drops in PI with the dichoptic
stimulus. However, the strongest level of V1 opponency in the
component model led to monocular PI values (Fig. 5C, top row)
that were too high for component cells. Thus, for the representa-
tive component model (Fig. 5A), we chose a V1 opponency
strength of 50%, where there is still a large drop in PI between
dichoptic and monocular presentation, and the monocular PI �

�2.9 is typical for component cells (Fig. 5G, asterisk). For the
pattern model, the largest difference in monocular and dichoptic
PI also occurred with 100% V1 opponency (Fig. 5H). PI values
also decreased from monocular to dichoptic presentation
across a large range of MT inhibitory weight strengths, but
unlike the component model, the maximum decrease in PI
occurred for non-0 inhibitory weights. Thus, for the represen-
tative pattern model (Fig. 5B), we chose a V1 opponency of
100% and MT inhibitory weight strength of 25% (Fig. 5H,
asterisk). For both component and pattern cells, the full MT
inhibitory weight strength produced the smallest drop in PI
with dichoptic presentation.

These results demonstrate the critical role of V1 opponency
in our models for explaining responses to dichoptic plaids
because both pattern and component units showed no differ-
ence between monocular and dichoptic PIs when opponency
strength was 0 (Fig. 5G,H ). They also predict that there should
be a difference in the strength of opponency in the V1 inputs to
component and pattern cells: strongly component cells must
have V1 inputs that show weaker opponent suppression be-
cause stronger suppression results in more pattern sensiti-
vity (Fig. 5C). Furthermore, these results predict that MT
pattern-DS cells with higher PIs will tend to have V1 inputs
with stronger motion opponency.

In summary, we have applied insights from previous studies
(Rust et al., 2006; Tailby et al., 2010) to build binocular component-
and pattern-DS cell models that account for MT responses to mon-
ocular and dichoptic plaids observed in vivo. Within our model
framework, we found that the presence of monocular V1 motion
opponent suppression plays the key role in explaining the observa-
tions of Tailby et al. (2010), whereas MT inhibitory weights will
promote pattern motion sensitivity when stimulated both monocu-
larly and dichoptically. A summary of the values of copp and kinh that
we tested for the plots in Figure 5 can be found in Table 2. A strong
prediction of our models is that V1 inputs to MT are moderately to
strongly motion-opponent. It is important to note that a large range
of the parameter space (V1 opponency strength and strength of MT
inhibitory weights) is consistent with the results of Tailby et al.
(2010). That their result held true for nearly all of the MT cells that
they tested may reflect how widespread motion opponent suppres-
sion may be in the V1 inputs to MT. We consider independent
evidence for V1 opponency in the Discussion.

Responses to dichoptic plaids in MT models with binocular
V1 input
In the models considered above, binocular mixing occurs in
MT and the relevant V1 to MT afferents are strictly monocu-
lar. This is the simplest circuitry for building binocular MT
responses. However, current electrophysiological evidence,
although limited, suggests that MT neurons receive input
from V1 cells that are themselves primarily binocular, being
well driven by each eye. In particular, Movshon and Newsome
(1996) found that 11 of 12 neurons projecting from V1 to MT
were in OD Groups 3–5 (range 1–7, where 4 has no obvious
imbalance) (Hubel and Wiesel, 1962). It is therefore impor-
tant to determine whether our results are robust across the
range of possible ocular dominance strengths of V1 inputs.
The models presented in Figures 3–5 show results with mon-
ocular V1 inputs, and here we demonstrate these results hold
for simple binocular motion integration in V1. In a later sec-
tion, we also consider models where V1 binocular integration
includes a disparity computation, which adds substantially
more complexity to the circuitry.

6572 • J. Neurosci., June 15, 2016 • 36(24):6563– 6582 Baker and Bair • Modeling Binocular Motion Integration in MT



We first implemented binocular integration at the V1 level
in our model by mixing signals via a weighted sum within a
single direction channel across the left and right streams (Fig.
1D). The balance of input from each eye is set by the parameter
b; for 50% mixing (b � 0.5), both streams of V1 channels in
the binocular model are equally well driven by left and right
eye channels (i.e., all channels are OD 4, in which case having
two sets of channels is redundant), whereas b � 0.7 indicates
that the left V1 stream is 70% left eye and 30% right eye driven,

and vice versa for the right stream. In
Figures 3–5, b was set to 1.0 for purely
monocular V1 channels. We tested two
possible sequences for binocular combi-
nation and opponency in the model
(Fig. 6A): either binocular combination
came first, the V1B model (data not
shown in Fig. 1), or motion opponency
came first, which we refer to as the
V1OB model (as shown in Fig. 1C,D).

We first tested the FP pattern cell
model with 50/50 left/right eye (b � 0.5)
binocular V1 inputs using the monocular
and dichoptic plaid protocol of Tailby et
al. (2010) and varied the strength of V1
opponency and dichoptic inhibition as we
did for the model with monocular V1
channels (Fig. 5D,F,H). For monocular
plaids, the change in PI as V1 opponency
and MT inhibitory strength are varied in
the V1B (Fig. 6B) and V1OB (Fig. 6C)
models is very similar and also matches
the results from the model without binoc-
ular V1 mixing (Fig. 5D). For dichoptic
plaids, however, there is a stark difference
between the two versions of the model.
The V1B model (Fig. 6D) shows a similar
dependence on the suppression parame-
ters as seen for the monocular plaids (Fig.
6B), whereas the V1OB model (Fig. 6E)
lacks the dependence of PI on V1 oppo-
nency seen in the monocular V1 model
(Fig. 5F). Thus, the V1B model produces
negligible changes, even slight increases,
in PI with dichoptic presentation (Fig.
6F). Because binocular combination pre-
cedes opponency in the V1B model, the
V1 opponent motion signal is now binoc-
ular, allowing the two grating compo-
nents to suppress each other, even when
they are presented to separate eyes (di-
choptically), and pushing the PI toward
pattern cell values. Thus, the monocular
V1 opponency that is important to
differentiating monocular and dichoptic
PIs is absent, and the decrease in PI
with dichoptic presentation cannot be
achieved. In contrast, the V1OB model
generates the decreases in PI with dichop-
tic stimulation that is stipulated by the
neuronal data of Tailby et al. (2010) (Fig.
6G) and with similar dependencies as in
the monocular V1 model (Fig. 5H). The
V1OB model retains the same depen-

dency on opponency strength as the original model with monoc-
ular V1 inputs because opponency still occurs at a stage with only
monocular signals. Similarly, in the component cell model, we
found that the PI value decreased for dichoptic plaids when plac-
ing binocular integration after opponency but not before (data
not shown). Thus, the model strongly predicts that opponent
suppression occurs before binocular integration in V1. Table 2
shows a summary of the key parameter values we tested in this
section.

Figure 6. The pattern model with binocular V1 inputs. A, Diagram showing the two alternative models we tested that differ in
the location of binocular integration: the V1B model where binocular integration occurs before motion opponency; and the V1OB
model, where binocular integration occurs after monocular motion opponent suppression. B, Dependence of the monocular PI on
amount of V1 opponency and MT inhibitory weight strength in the V1B model. C, Dependence of monocular PI on V1 opponency
strength and MT inhibitory weight strength in the V1OB model. D, E, Dichoptic PI values as opponency and inhibitory strength vary
in the V1B (D) and V1OB (E) models. F, G, The difference between dichoptic and monocular PI as V1 opponency and MT inhibitory
strength are varied in the V1B (F) and V1OB (G) models.
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Tuning for FP and 3D motion in pattern and
component units
We now examine whether our binocular pattern and component
models, which were developed to explain MT pattern motion
selectivity under monocular and dichoptic conditions, can be
extended to account for the recently reported sensitivity of MT to
3D motion (Czuba et al., 2014; Sanada and DeAngelis, 2014).
Both recent studies found evidence that IOVD cues are the pri-
mary drivers of 3D motion sensitivity in MT. We focus here on
the results of Czuba et al. (2014), whose stimulus protocol con-
sisted of dichoptic presentation of single sinusoidal gratings to
both eyes with variations in drift direction and speed across trials.
Specifically, the gratings either drifted in the same direction,
which we refer to as BSame, or in opposite directions, which we
refer to as BOpp. Czuba et al. (2014) also varied the speed inde-
pendently in the two eyes in both of these conditions. The BSame

stimulus with equal speed in the two eyes corresponds to classical
FP motion. The BOpp stimulus with equal speed and opposite
directions in the two eyes corresponds to 3D motion that is purely
toward or away from the observer. When the speed varies across
eyes, both the BSame and BOpp conditions simulate oblique mo-
tion that contains both FP and 3D motion components (Cynader
and Regan, 1978).

Using this protocol, Czuba et al. (2014) found that some MT
cells, which we will call FP cells, responded best to FP motion,
whereas others, which we will call 3DT cells, preferred motion
toward or away from the observer. The behavior of FP and 3DT
cells is demonstrated with idealized tuning curves for monocular
and binocular grating stimuli in Figure 7. In particular, the FP
cells (exemplified by Czuba et al., 2014, their Fig. 2A–D) showed
strong direction-tuning, quantified by a DSI, for the BSame stim-
ulus (Fig. 7C), with the same direction preference in each eye
when tested monocularly (Fig. 7A,B). When tested with the BOpp

stimulus, the FP cell tuning curve had a low DSI, typically with
two peaks (Fig. 7D) corresponding to when the stimulus compo-
nent in one or the other eye matched the cell’s preferred direc-
tion. Thus, the FP cell response had no bias for motion toward

versus away from the observer. Our binocular model units char-
acterized above have the same direction tuning in each eye; we
thus refer to them as FP models. On the other hand, the 3DT cells
of Czuba et al. (2014, exemplified by their Fig. 2E–H) preferred
opposite directions of motion in each eye (Fig. 7E,F). These cells
had a direction tuned response with low firing rate for the BSame

stimulus (Fig. 7G) but had direction tuning with a substantially
higher firing rate for the BOpp stimulus (Fig. 7H). These 3DT cells
were thus associated with 3DT because they were strongly direc-
tion tuned when tested with the BOpp protocol, as measured by
the DSI being �0.5.

The discovery of 3D versus FP motion tuning in MT raises the
question as to whether there is any relationship between 3D tun-
ing and pattern motion sensitivity in MT. Czuba et al. (2014) did
not test whether the cells they characterized with binocular mo-
tion stimuli were component or pattern-DS for classical monoc-
ular stimuli, and so we addressed this from a computational
perspective by testing FP and 3D tuned versions of both our
component and pattern models. We examined whether there
were fundamental differences in the ability of the component and
pattern models to generate the typical FP versus 3DT binocular
motion tuning shown in Figure 7. As with the dichoptic plaid
simulations, we began by testing models where the V1 channels
were monocular (b � 1.0) as this is the simplest configuration of
the models for gaining intuition on how interocular comparisons
can give rise to 3D motion tuning. A full summary of the param-
eter values we varied for the simulations in this section can be
found in Table 2.

Our FP component and pattern models (developed above)
were tuned for the same preferred direction in the left and right
eyes, as can be seen in their monocular single grating tuning
curves (Fig. 8A,B and Fig. 8E,F for component and pattern cells,
respectively). When tested with the BSame stimulus, the FP models
for both component (Fig. 8C) and pattern (Fig. 8G) cells re-
sponded strongly with a single peak in the direction tuning curve
and produced DSIs of 0.8 and 0.7, respectively (see Materials and
Methods; DSI defined as in Czuba et al., 2014). When tested with
the BOpp stimulus, the component cell produced an orientation-
tuned curve with two lower amplitude peaks (Fig. 8D), corre-
sponding to when the stimulus in one or the other eye moved in
the preferred direction (DSI � 0.0). This matches the responses
of many FP cells found experimentally (Czuba et al., 2014, their
Fig. 2C,D), as idealized in our Figure 7A–D. In contrast, the FP
pattern cell showed almost no tuning to the BOpp stimulus (Fig.
8H, DSI � 0.0). Thus, our representative FP pattern unit,
which was fit to the constraints of the dichoptic plaid protocol
(Fig. 5B), was a poor fit for the typical response pattern of FP
neurons in MT.

We then considered what modifications to the canonical FP
pattern model would satisfy both the dichoptic plaid and FP mo-
tion tuning constraints. The moderate-amplitude, flat tuning
curve produced by the FP pattern model with the BOpp stimulus
depends on two factors: (1) the broad distribution of excitatory
weights, characteristic of pattern cells (Simoncelli and Heeger,
1998; Rust et al., 2006), which drives a spiking response at all
directions with the BOpp stimulus; and (2) the weaker MT inhib-
itory weights required in this model for the dichoptic plaid con-
straint, which is insufficient to cancel the excitatory drive
completely. We tested whether modifying these factors could
achieve a pattern model that matched the FP cell data. Varying
the second factor, inhibitory strength, alters the amplitude of the
firing rate response as direction is varied but does not affect the
shape of the tuning curve. Modifying the first factor by narrowing

Figure 7. Typical responses for FP and 3DT MT cells from the study of Czuba et al. (2014).
Typical plaid direction tuning curves as found by Czuba et al. (2014) using their dichoptic motion
protocol with FP cells (left column) and 3DT cells. A, Left eye direction tuned response in the FP
cell. B, Right eye direction tuned response in FP cell. Note the shared tuning with the left eye
shown in A. C, Direction tuned response to BSame in the FP cell. D, Orientation tuned response to
BOpp found in most FP cells. E, Left eye direction tuned response in the 3DT cell. F, Right eye
direction tuned response in 3DT cell. Right eye tuning curve is shifted 180°, as they found for
many 3DT cells. G, A direction tuned response to BSame was still typical for 3DT cells despite the
disparate monocular tuning. H, Strong direction tuned response to BOpp characteristic of 3DT
cells.
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the distribution of MT weights could produce an orientation-
tuned response to the BOpp protocol (data not shown); however,
this had the concurrent effect of lowering the PI produced by the
model when tested with monocular plaids, making the resulting
pattern unit more component-like.

To build 3DT models, we simply shifted the MT weight dis-
tribution in the right stream by 180° relative to that in the left
stream (Fig. 1E, dotted lines in right stream). This resulted in a
shift between the peaks for monocular left and right eye tuning
curves (Fig. 8 I, J,M,N). The direction tuning of the 3DT models
for the dichoptic stimuli was reversed relative to that of their FP
counterparts. Both component and pattern 3DT models were
strongly direction tuned to the BOpp stimulus (Fig. 8L,P) with
DSI values of 0.8 and 0.7, respectively. The 3DT component unit
showed two robust peaks in tuning for the BSame stimulus (Fig.
8K, DSI � 0.0) where the stimulus in one or the other eye
matched the unit’s preferred direction for that eye. This deviated
from the behavior of the recorded 3DT cells, which were typically
direction tuned for the BSame stimulus, despite being driven by
both eyes about equally well when tested monocularly (Czuba et
al., 2014, their Fig. 2E–G), as idealized in our Figure 7E–G. The
3DT pattern model also differs from the typical 3DT cell of Czuba
et al. (2014). In particular, the model is not direction tuned for
the BSame stimulus (Fig. 8O, DSI � 0.1), whereas the typical 3DT
cell shows clear tuning (Fig. 7G), with the preferred direction
matching the left eye in this example.

The direction tuning shown by the 3DT cells for both dichop-
tic stimuli in the protocol of Czuba et al. (2014), despite each eye

differing in preferred direction, suggests an ocular imbalance.
Consistent with this, Czuba et al. (2014) found that their 3DT
cells were more ocularly imbalanced than their FP population.
Thus, we introduced a left-right stream imbalance such that the
MT weights from the right stream were weaker than those from
the left stream, allowing the left-stream tuning preference to
dominate when both eyes were stimulated. We also increased the
strength of MT inhibitory weights, to reduce the amplitude of the
untuned response seen with the BSame stimulus and thus increase
the DSI. Using a fixed scaling factor, AR, (Fig. 1F), of 0.5 applied
to all weights in the right stream and increasing the scaling factor
on MT inhibitory weights, kinh, from 0.25 to 0.75, we achieved a
DS tuning curve for the BSame stimulus (Fig. 8S, black line, DSI �
0.7) while maintaining DS tuning for the BOpp stimulus (Fig. 8T,
DSI � 0.7), thus obtaining a better match to the observed tuning
of typical 3DT cells.

We then tested the component 3DT model with an ocular
imbalance, also increasing MT inhibitory weights to full strength
(kinh � 1.0), to determine whether we could achieve a DS tuning
curve to the BSame stimulus. This version of the 3DT component
model still produced a double-peaked response, although the
peak corresponding to the weaker eye had lower amplitude (Fig.
8S, red line, DSI � 0.5). This component model still lacks the
necessary strength of antipreferred direction MT inhibition re-
quired to completely nullify the excitation generated by the
weaker eye with the BSame stimulus, so the resulting tuning curve
has two peaks. Increasing the MT inhibitory weights in the model
to values that are above those found by Rust et al. (2006) for

Figure 8. FP and 3DT models. Direction tuning curves obtained with the protocol of Czuba et al. (2014) for monocular gratings, BSame and BOpp. Only one of the speeds we tested is plotted for
clarity. Direction varied is that shown to the left eye, with right eye direction either the same or shifted 180°. All tuning curves for a given model are normalized to the maximum firing rate obtained
for that model across both the BSame and BOpp protocols. A–D, Direction tuning for the FP component cell. Left eye (A) and right eye (B) tuning is similar. C, D, Tuning for BSame and BOpp protocols,
respectively. E–H, Direction tuning curves for the FP pattern cell. I–L, Direction tuning curves for the 3DT component cell. M–P, Direction tuning curves for the 3DT pattern cell. Q–T, Direction tuning
for the 3DT component cell (red) and pattern cell (black) models with right eye MT weights at 50% the strength of the left eye weights (AR � 0.5) and MT inhibitory weights at 100% (component;
kinh � 1.0) and 75% (pattern; kinh � 0.75) strength.
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component cells could increase the DSI
for the BSame stimulus even further. How-
ever, we have shown that, even within the
range we tested, as inhibitory strength in-
creases, the model produces PI values for
plaids that are too high to be classified as a
component unit (see Fig. 5C).

Having established the factors that al-
low 3D motion tuning in the models, we
explored what range of these parameters
could support DS tuning for the BSame

stimulus in the 3DT models. We varied
the level of MT ocular imbalance, AR, and
MT inhibitory weight strength, kinh, in the
component (Fig. 9A) and pattern (Fig.
9B) 3DT models and plotted the resulting
DSI values. Figure 8Q–T (asterisks) indi-
cates the parameter values used for the
tuning curves. The highest level of MT im-
balance we tested, AR � 0.5, results in
monocularity indices of 0.26 and 0.23 in
the component and pattern models, re-
spectively, both close to the median re-
ported for 3DT cells in Czuba et al. (2014)
(0.24). In the component model (Fig. 9A),
only an MT weight imbalance with the
right stream at 50% of left stream strength
and full-strength MT inhibitory weights
produced a DSI of 0.5. With the pattern
model (Fig. 9B), a much larger range of
the parameter space produced DS re-
sponses, and with DSI values �0.7. The
highest DSI values occur with the stron-
gest MT inhibitory weights. With strong
dichoptic inhibitory inputs, the inhibition
generated by one stream, in response to an
antipreferred stimulus, can suppress the
excitation when the other stream is pre-
sented as a preferred stimulus. With the
ocular imbalance, there will be responses
to the dominant eye stream’s preferred
stimulus but not the weaker stream, re-
sulting in a DS tuning curve and a high
DSI. The component model, lacking
strong dichoptic inhibition, will always
generate tuning curves with two peaks, corresponding to each
eye’s preferred direction, and produce lower DSI values. Al-
though 75% of the cells in Czuba et al. (2014) had a DSI �0.5 for
the BSame stimulus, not all 3D tuned cells did (their Fig. 3B). Thus,
some subset of 3D tuned units may be consistent with our com-
ponent model. Alternatively, if there are many 3DT component
cells with a DSI � 0.5 for the BSame protocol, this implies that
there is an additional source of dichoptic, opponent inhibition in
MT component cells that is not captured in the model fits to the
monocular stimulus protocols.

Having achieved 3D motion tuning in the model with mon-
ocular V1 inputs, we then tested whether this tuning was robust
to varying V1 ocular dominance. We built a 3DT pattern model
by shifting the MT weight distributions between left and right eye
streams (Fig. 1E), with V1 motion opponency preceding binoc-
ular integration as in the FP version of the V1OB model (Fig. 6A).
We use the V1OB model circuitry here, with opponency preced-
ing V1 binocular integration, as we have shown that this ordering

of the V1 stages is needed to explain dichoptic plaid results (Fig.
6). The strength and relative ordering of V1 opponent suppres-
sion do not affect 3DT model output using the protocol of Czuba
et al. (2014; data not shown) because only one motion compo-
nent is shown to each eye for the dichoptic Czuba et al. (2014)
stimuli; thus, the V1OB and V1B configurations of the model
(Fig. 6A) give similar results.

In the 3DT model with monocular V1 inputs (b � 1.0), 3D
motion tuning is achieved by computing sums and differences of
V1 signals across the two eye streams. If the V1 channels have
perfect binocular balance, this computation would no longer be
possible because it requires the comparison of monocular mo-
tion signals, and in the case with exactly balanced left and right
eye V1 inputs, the “left” and “right” eye streams are identically
driven. We examined this by varying the V1 binocular balance
and MT inhibitory weight strength in the 3DT V1OB pattern
model and measuring the resulting DSI values for the BOpp stim-
ulus (Fig. 9C). We found that the 3DT model with 50/50 V1

Figure 9. Direction selectivity indices for binocular motion in the 3DT models. A, Plot of DSI for BSame as MT inhibitory weight
strength and MT ocular imbalance level are varied in the 3DT component model. Blue regions represent DSI values 
0.5. White
areas represent DSI � 0.5. *Parameter values used for the component model tuning curves plotted in Figure 8Q–T. B, DSI for
binocular matched motion in the pattern model as inhibitory strength and MT ocular imbalance are varied. Red regions represent
DSI values �0.5. *Parameters chosen to generate the pattern model tuning curves in Figure 8Q–T. C, Plot showing how DSI for the
BOpp stimulus varies as MT inhibitory strength and V1 ocular dominance are varied in the 3DT V1OB model. D, Plot of DSI obtained
with the BSame stimulus as MT inhibition strength and MT ocular imbalance level are varied in the 3DT V1OB model.
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binocular mixing produced flat direction tuning curves, resulting
in uniformly low DSIs, with the BOpp protocol of Czuba et al.
(2014) for all MT inhibitory strengths (Fig. 9C, b � 0.5). As we
increased the ocular imbalance in the V1 channels (increasing b),
strong direction tuning could be produced in the V1OB model
with appropriate MT inhibitory strengths, indicating that a suf-
ficient IOVD signal remained to generate 3DT. Setting the V1
binocular mixing to 70% dominant eye/30% nondominant eye
(b � 0.7), we then tested how MT inhibitory weight strength and
the MT level ocular imbalance, AR, affected DSI values for the
BSame protocol (Fig. 9D), as we had done for the 3DT pattern
model with monocular V1 inputs (Fig. 9B). We found a very

similar dependence of direction tuning
strength on these parameters in the model
with binocular V1 inputs. Thus, the re-
sults we described for our model with
monocular V1 channels can be repro-
duced with binocular V1 inputs, as long as
a V1-level ocular imbalance is included.

In summary, our models predict that
tuning for FP and 3D motion in MT is
coincident with the spectrum of compo-
nent: pattern motion sensitivity. The bin-
ocular FP component model that we built
according to the constraints of Tailby et al.
(2010) fits the response pattern of the FP
neurons described by Czuba et al. (2014)
with no modifications. The best fit to the
data for the FP pattern model involves a
modification that decreases the pattern
sensitivity of the model. Conversely, the
responses of 3DT neurons are best fit by a
pattern model with an ocular imbalance,
whereas the component model is unable
to fit the data without the addition of di-
choptic inhibition that increases the pat-
tern sensitivity of the component model.
This is a striking and untested prediction
of our binocular models: that 3DT cells in
MT may be associated with pattern mo-
tion sensitivity, whereas FP motion tuned
cells will be associated with component
selectivity.

Dichoptic plaids with 3DT cells
We have presented models of MT cells
that are able to reproduce the results of
two key studies on dichoptic motion pro-
cessing in MT. Another test we performed
was to examine the tuning of the 3DT
model to the dichoptic plaid protocol of
Tailby et al. (2010), which we used to
characterize the FP models in Figures 5
and 6. This is interesting to consider be-
cause Tailby et al. (2010) may have en-
countered such cells during their study,
and exploring the stimulus space more
thoroughly may reveal predictions that
can be used to validate or dismiss the
models.

Figure 10A shows tuning curves for
monocular (blue trace) and dichoptic plaids
with 120° (red) and �120° (black) differ-

ences in component grating direction. With the dichoptic plaids, the
peak direction in the 3DT pattern unit shifts by 90°. The direction of
this peak shift reverses when the component gratings are swapped
between the two eyes. We found that the magnitude of the shift was
determined by the interocular difference in direction preference.
Figure 10B shows the effect of shifting the weight distribution in the
right eye, with successively lighter traces for each 30° shift in the
preferred direction of the right eye. The tuning curve shifts 15° for
each 30° shift in interocular direction preference. The strength of the
MT inhibitory weights had no effect on the magnitude of the shift:
even in the absence of inhibitory weights, the peak was still shifted
90° (data not shown). We found identical results for the 3DT com-

Figure 10. Dichoptic plaids in the 3DT pattern model. For all panels, response plotted is the MT output signal after the rectifi-
cation nonlinearity is applied. A, Direction tuning for monocular (blue trace) and�120° (black trace) and 120° (red trace) dichoptic
plaids in the 3DT pattern model. B, Dichoptic plaid direction tuning in the 3DT pattern cell as the shift in the weight distribution to
the right eye is varied from 180° (black trace) to 90° (lightest gray). C, Matrix of responses to dichoptic plaids in all direction
combinations (as in Fig. 3L) for the 3DT pattern model. Red lines indicate the stimulus space sampled by the protocol of Tailby et al.
(2010). Green lines indicate the BOpp protocol of Czuba et al. (2014). D, Response matrix to all monocularly (left eye) presented
plaids in the 3DT pattern cell model. E, Response matrix to all dichoptic plaids from the FP pattern cell model for comparison. F,
Response matrix for a monocular version of the pattern cell model with no V1 opponency or reduced inhibitory weights (as in Rust
et al., 2006).
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ponent unit as well (data not shown). Thus,
our model predicts that 3DT cells with 180°
differences in preferred direction between
the two eyes will show a shift in preferred
direction of 90° when tested with dichoptic
plaids.

To fully explore the response patterns
of the binocular models to all plaids, we
characterized the representative FP and
3DT pattern units (Figs. 5B, 8Q–T) using
the protocol of Rust et al. (2006) with
plaids of all direction combinations in 30°
steps. We tested both dichoptic (Fig.
10C,E) and monocular stimulation (Fig.
10D). Figure 10C (red line) shows the slice
through stimulus space of the plaids that
form the dichoptic 120° plaid protocol of
Tailby et al. (2010), whereas the green line
shows the dichoptic opponent motion
“plaids” that make up the BOpp protocol of
Czuba et al. (2014). The activated region
of the 3DT model’s plot (Fig. 10C) is
shifted by 180° in the full stimulus space
along the axis of grating direction in the
right eye compared with the FP model’s
plot (Fig. 10E). This reflects the 180°
shift in preferred direction of the right
eye in the 3DT model. The preferred
stimulus of the 3DT pattern cell was a
“counterphase” dichoptic plaid (com-
ponents at 0° and 180°), matching the BOpp stimulus of Czuba
et al. (2014) (Fig. 10C). The binocular FP pattern unit showed
a preference for stimuli centered around 180° motion in each
eye when tested dichoptically (Fig. 9E), as expected by con-
struction of its tuning curves, but without the trough in the
plaid matrix seen when stimulating the binocular model mon-
ocularly (Fig. 10D). This is because of the loss of monocularly
driven tuned normalization when the plaid is presented di-
choptically. When tested monocularly (Fig. 10D), the 3DT
unit showed a similar preference as a purely monocular ver-
sion of the model (Fig. 10F ), but the region of activation was
elongated in the stimulus space because of the reduced inhi-
bition in the binocular model.

It is unclear whether the experiments of Tailby et al. (2010)
would have uncovered this response pattern for 3DT units. They
did report that most of their cells had very similar direction
tuning in both eyes, which is consistent with the report by
Czuba et al. (2014) that a small proportion of MT cells had
monocularly opposed direction tuning (their Fig. 5). Tailby et
al. (2010) did not report the preferred directions measured
with monocular and dichoptic plaids, so shifts in the tuning
curve peaks may have been overlooked. Given that the PI is the
difference between the pattern and component partial corre-
lation coefficients, a shift in preferred direction with dichoptic
presentation should result in a reduction in PI. This follows
because the resulting tuning curve for the dichoptic plaid
should be poorly correlated with the tuning curve prediction
from the monocular gratings, which would have a different
preferred direction. This is what we found for our pattern 3DT
unit: the PI values were 3.1 and �1.3 for monocular and di-
choptic plaids, respectively, with the pattern correlation drop-
ping from 4.3 to �0.7 and component correlation also
decreasing from 1.2 to 0.6.

In summary, it is possible to reconcile the results of Tailby et
al. (2010) and Czuba et al. (2014) for 3DT neurons consistent
with our model. A full stimulus protocol that characterizes tun-
ing for plaids both monocularly and dichoptically would expose
the shift in tuning predicted by our models and reveal any con-
nection between pattern motion selectivity and 3D motion sen-
sitivity, as predicted above.

3D motion biased tuning in MT cells
The FP and 3DT cells described by Czuba et al. (2014) are two
ends of a spectrum of sensitivity to 3D motion observed in their
MT population. They described most of their cells as 3D biased,
indicating that these cells did not show strong direction selectiv-
ity (as defined by a DSI � 0.5) for the BOpp protocol but did have
a statistically significant preference for receding or approaching
directions of motion for oblique 3D directions. Figure 11A (red
points on the circle) shows the oblique 3D directions generated
when speed (1, 2, and 7.5 deg/s) and direction (0° or 180°) are
varied between the two eyes, as in Czuba et al. (2014) (see Mate-
rials and Methods). Points in the top half of the plot correspond
to motion away from the observer, whereas those in the bottom
half correspond to motion toward the observer. Cells that are 3D
biased responded more strongly overall to the set of stimuli with
3D directions that fall in one-half of the stimulus space (receding
or approaching) than to those that fall in the other half, as mea-
sured by a matched Wilcoxon signed rank test (matched stimuli
are shown connected by dashed red lines in Fig. 11A). Czuba et al.
(2014) also found that 3D biased cells tended to have similar
direction tuning in both eyes, similar to the FP cells, and �50% of
3D biased cells had a monocularity index 
 0.125, indicating they
tended to be ocularly balanced.

Czuba et al. (2014) and others have noted that 3D biased
responses may arise from differences in speed tuning between
the two eyes, but here we explore an alternative circuitry for

Figure 11. A model for a 3D motion biased cell using an MT ocular imbalance. A, Diagram showing the 3D motion direction
space generated by varying interocular stimulus direction and speed (Cynader and Regan, 1978; Czuba et al., 2014). Position of the
eyes is indicated by icons at 225° and 315°. The speeds we used to generate the 3D motion directions were 1, 2, and 7.5 deg/s. All
speeds drove the MT neuron well monocularly. Red dots around the circumference of the circle represent the 3D directions sampled
by our protocol. Dashed red lines connect the stimuli, which were matched in the statistical test for 3D bias as used by Czuba et al.
(2014). Blue shaded half-circle represents the stimulus space where the left eye in our model FP component cell sees its preferred
direction of motion. Yellow shaded half-circle represents the same for the right eye. B, 3D direction tuning for the FP component
cell with an ocular imbalance such that the right eye weights are 70% the strength of the left eye weights. From 0° to 180° are all
receding motions, whereas from 180° to 360° are approaching motions.

6578 • J. Neurosci., June 15, 2016 • 36(24):6563– 6582 Baker and Bair • Modeling Binocular Motion Integration in MT



generating a 3D biased tuning curve. We
exploited a difference in the monocular
distribution of motions generating the
3D directions to build a model unit that
would be classified as 3D motion biased.
Consider an FP unit that prefers left-
ward motion. The left eye for this unit
would see its preferred direction motion
in Figure 11A (semicircle shaded in
blue), whereas the right eye would see its
preferred direction in the yellow semi-
circle. Noting that the top quadrant
(blue region) corresponds to receding
motion where only the left eye sees its
preferred direction while the bottom
quadrant (yellow region) corresponds
to approaching motion where only the
right eye sees its preferred direction, we
reasoned that an FP unit with both eyes
tuned to leftward motion and an ocular
imbalance favoring input from the left
eye should show a tuning bias for mo-
tion directed away from the observer.

Figure 11B shows a direction tuning
curve for such an FP component unit
stimulated with the oblique directions
represented by Figure 11A (red points).
The 3D direction tuning curve is skewed
toward receding motions (3D directions
between 0° and 180°). This result is highly
statistically significant (p 
 0.002; Wil-
coxon signed rank test). The unit is tuned
to 170°, slightly away from pure FP left-
ward motion. In addition, even though an
ocular imbalance in the component unit
was necessary to achieve these results (AR

� 0.7), the monocularity index value for
this cell is 0.12, falling within the range of
ocular imbalances that Czuba et al. (2014)
tk;2found for their 3D biased cells. The
DSI for this unit tested with the BOpp pro-
tocol is 0.1; thus, this unit is 3D biased, not
3D tuned, by the criteria of Czuba et al.
(2014).

Importantly, 3D biased cells con-
structed in this way must conform to the
following pattern. If an MT unit is left eye-
dominant, it will be biased for receding
motion if both eyes prefer leftward FP
motion and biased for approaching mo-
tion if both eyes are tuned for rightward
motion, and vice versa if the right eye is
the dominant eye. This is a specific and
readily testable prediction of this model

Figure 12. MT models with binocular disparity tuning. A, Plots of disparity tuning in the FP component model with binocular
disparity for correlated (blue trace), anticorrelated (red trace), and uncorrelated (black trace) dynamic random dot stimuli. B,
Disparity tuning in the FP pattern model with binocular disparity with dynamic random dots as in A. C, D, Dependence of monocular
PI on V1 opponency strength and MT inhibitory weight strength in the FP component (C) and pattern (D) models with disparity. V1
opponency precedes disparity computation in these models (see Materials and Methods). E, F, Dichoptic PI values as opponency
and inhibitory strength vary in the component (E) and pattern (F) models. G, H, The difference between dichoptic and monocular

4

PI as V1 opponency and MT inhibitory strength are varied in
the component (G) and pattern (H) models. I, Plot showing
how DSI for the BOpp stimulus varies as MT inhibitory strength
and V1 ocular dominance are varied in the 3DT pattern model
with disparity selectivity. J, Plot of DSI obtained with the BSame

stimulus as MT inhibition strength and MT ocular imbalance
level are varied in the 3DT pattern model.
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for producing MT units with 3D motion biased responses.

MT models with motion and binocular disparity selectivity
We have presented the simplest models that could capture obser-
vations from recent binocular motion studies, but a complete
binocular model of MT requires disparity tuning, which is ex-
pressed by the majority of MT cells (Maunsell and Van Essen,
1983; DeAngelis and Uka, 2003). Because V1 inputs to MT are
thought to be primarily binocular (Movshon and Newsome,
1996), and disparity is computed when binocular integration oc-
curs, it is reasonable and parsimonious to build a model where
the V1 channels are jointly motion and disparity tuned, confer-
ring both motion and disparity selectivity to the model MT unit.
This leaves the key question of whether our results from the
motion-only models still hold when we incorporate the con-
straints on the circuitry necessary for generating jointly tuned
responses.

The jointly tuned model we built incorporates cascaded compu-
tations for both motion and binocular disparity energy to create
complex (i.e., phase-invariant) DS and disparity-tuned V1 channels.
The two main changes to the framework for the motion models
shown in Figure 1 were as follows: (1) the initial motion energy stage
(Fig. 1A) was opened up to allow the even and odd linear filter
channels to remain separate through the normalization and oppo-
nency stages; and (2) the opponency and V1 integration stages (Fig.
1C,D) were replaced by the circuitry shown in Figure 2, which im-
plements the binocular disparity energy model (Ohzawa et al.,
1990). Because the models require monocular opponency with sub-
sequent rectification preceding binocular integration, the disparity
circuitry has a form that is very similar to that proposed by Read et al.
(2002) for tuned-excitatory cells. All the V1 channels share the same
disparity preference, in this case for 0 disparity (tuned excitatory).
These jointly tuned V1 inputs are then subject to the same MT
weights and output nonlinearity as used in the motion-only models
to produce spiking MT responses. We tested our jointly tuned MT
units, built with the same parameters as our canonical FP models
(Fig. 5A,B), with correlated and anticorrelated dynamic random dot
stimuli used to characterize binocular disparity tuning. Both the
component (Fig. 12A) and pattern (Fig. 12B) models showed strong
tuning for disparity, with the tuning curve for anticorrelated dots
inverted and reduced in amplitude as is typical of V1 and MT dis-
parity-tuned cells (Cumming and Parker, 1997; Krug et al., 2004).
This attenuation is not seen in the classical disparity energy model
but has been shown to arise when the subunits of the disparity energy
computation are rectified (Read et al., 2002), as occurs in our model
at the opponency stage (Fig. 2B), which includes rectification (see
Materials and Methods, Eq. 10).

In the jointly tuned models, we repeated our simulations test-
ing the dependence of pattern motion sensitivity on monocular
and dichoptic opponent suppression, as presented above for the
motion-only models (Figs. 5C–H, 6C,E,G). Both the component
(Fig. 12C,E,G) and pattern (Fig. 12D,F,H) models with disparity
tuning share similar trends with the nondisparity models, most
critically the requirement for monocular opponency to see the
drop in PI observed with dichoptic presentation (Fig. 12G,H).
The main difference is that the monocular V1 opponency has an
even stronger effect on PI values than in the motion models,
leading to large increases in PI in both the component (Fig. 12C)
and pattern (Fig. 12D) models for any value of opponency �0
compared with monocular plaids in the motion-only models.
This reflects the fact that the rectification, which occurs after
opponency, precedes the squaring in the disparity energy com-
putation, thus resulting in a stronger suppressive effect.

We then tested a 3DT version of the disparity-tuned pattern
model with the dichoptic protocols of Czuba et al. (2014), com-
paring the dependence of DSI on MT inhibitory weight strength
and V1 (Fig. 12I) or MT (Fig. 12J) level ocular imbalances, as we
did for the motion-only model with binocular V1 inputs (Fig. 9C
and Fig. 9D, respectively). The results are very similar between
the motion-only and joint motion-disparity tuned models,
showing that our results are robust and apply to circuits having a
wide variety of mechanisms of binocular integration at the V1
level, including no integration, simple additive combination, or
plausible disparity energy computations.

Discussion
We have presented the first image-computable binocular model
of pattern and component motion selectivity in MT and found
evidence for a previously unpredicted and untested relationship
between pattern motion sensitivity and tuning for 3D motion.
We built component and pattern units that reproduce key bin-
ocular response features of MT cells that have not been previously
explained. Our unified models can account for the decreased
response to pattern motion when plaids are presented dichopti-
cally (Tailby et al., 2010) and the recently reported tuning for 3D
motion (Czuba et al., 2014). We found that motion opponent
suppression is key to explaining decreased sensitivity to global
motion when plaids are presented dichoptically. This mechanism
explains the observed drop in pattern index for cells across the
full range of pattern motion selectivity. Our models reproduced
MT responses to dichoptic plaids using V1 channels ranging
from strictly monocular to balanced binocular V1 responses, and
the same mechanisms were relevant for the decrease in pattern
sensitivity across the range of ocular dominances. Using this same
circuitry, we also constructed FP, 3D-biased, and 3D-tuned MT
model units that fit the experimentally observed responses to the
dichoptic motion protocol of Czuba et al. (2014). We showed
that FP and 3DT units qualitatively fit with the expected re-
sponses for component and pattern cells, respectively. We found
that model units that are sensitive to IOVD signals can be built
from binocular V1 inputs, provided the V1 channels are ocularly
imbalanced. Last, we showed that our results all hold in the mod-
els when binocular disparity computations are incorporated in
the V1 stages.

Model predictions
Our models generated the following major predictions: (1) V1
inputs to MT will exhibit motion-opponent suppression, and this
opponency will be stronger in the inputs to pattern cells than in
the inputs to component cells. Opponent suppression can be
measured by comparing responses to drifting and counterphase
gratings (Qian and Andersen, 1995; Thiele et al., 2000) presented
monocularly to V1 neurons identified as projecting to MT. (2)
Opponent motion suppression occurs before binocular integra-
tion in V1. There is experimental evidence for a significant mon-
ocular source of motion opponent suppression in MT neurons
(Majaj et al., 2007). (3) The 3D-tuned cells will be pattern-
selective when tested monocularly, whereas FP-tuned will be
component-selective. This can be tested experimentally by add-
ing monocular 120° plaid tuning to the protocol of Czuba et al.
(2014). (4) The 3D-biased cells without interocular differences in
speed tuning can show 3DT depending on their ocular domi-
nance and direction preference, with left eye-dominant MT units
being biased for receding motion if tuned for leftward FP motion,
and approaching motion if tuned for rightward motion, and vice
versa for right eye-dominant units. This correspondence can be
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measured within 3D motion protocols that test oblique 3D direc-
tions (Maunsell and Van Essen, 1983; Czuba et al., 2014). (5) MT
units with opposite direction preferences in each eye will show a
shift in preferred direction with dichoptic plaids. This can be
tested electrophysiologically, by recording the responses of 3D-
tuned MT neurons to dichoptic and monocular plaids. Although
Tailby et al. (2010) did not report tuning shifts in their cells, it is
unclear whether 3D-tuned cells were included in their dataset.
They reported that most, but not all, cells had similar tuning
across eyes, and their methods for isolating units may have
overlooked cells with large interocular differences in direction
preference.

Accounting for disparity selectivity in MT
While focusing on explaining responses to binocular motion
stimuli, we have also presented preliminary models incorporat-
ing disparity selectivity to show that our results hold in such
models. There are many other properties of disparity tuning in
MT that must be considered to build a complete jointly tuned MT
model. Changing disparity (CD) signals may provide another cue
for perception of motion-in-depth. Sanada and DeAngelis (2014)
used stimuli that isolated IOVD and CD cues for MID and found
evidence that both cues contributed to MID responses in MT
neurons, although IOVD cues were far more effective. Applying
their protocol will require incorporating sensitivity to changing
disparity into our model framework. Disparity studies may pro-
vide additional constraints on sources of opponent inhibition, as
disparity-tuned motion-opponent suppression has been de-
scribed in studies of transparent motion in MT (Qian and Ander-
sen, 1994; Bradley et al., 1995). Opponent suppression may be
mediated by reciprocal interactions between disparity channels
in MT or from interactions between disparity-tuned V1 subunit
inputs to MT, as proposed in models of IOVD processing (Saba-
tini and Solari, 2004).

Incorporating disparity tuning at the V1 level into our MT
framework opens up many complex questions. Discrepancies be-
tween disparity tuning in V1 and MT suggest that MT does not
simply inherit disparity tuning from V1 (for review, see Cum-
ming and DeAngelis, 2001). The strength and type of disparity
tuning of V1 inputs to MT have not been characterized. More-
over, a recent study (Ponce et al., 2008) showed that disparity
tuning in macaque MT was decreased when V2 was cooled,
whereas motion selectivity was unaffected, suggesting that V2
inputs contribute significantly to disparity in MT. Combining
data from V1 and V2 studies is therefore necessary for building
and testing joint motion-disparity MT models.

Sources of motion opponent suppression
The mechanism we identified as critical to explaining responses
to dichoptic plaids is monocular V1 motion opponency. Qian
and Andersen (1995) tested for opponency in V1 DS neurons by
comparing responses to single drifting gratings with those for
counterphase gratings, the latter which consist of concurrent and
colocalized preferred and antipreferred motion, presented binoc-
ularly. They found that the vast majority of neurons showed op-
ponent suppression, although at moderate strengths. Qian and
Andersen (1995) did not identify whether the source of this sup-
pression was monocular or binocular. Furthermore, the strength
of suppression shown by the specific V1 cells that project to MT
remains unknown. Additional evidence for monocular oppo-
nency contributing to suppression has been presented by Majaj et
al. (2007) in a study comparing contrast response functions in
MT neurons when opponent motion gratings were presented

monocularly or dichoptically. They found larger shifts, indicat-
ing greater suppression, for monocular presentation. A similar
protocol was used by Thiele et al. (2000), showing suppression in
MT neurons by comparing responses to drifting and counter-
phase gratings, although dichoptic presentation was not tested.
Thus existing evidence supports both motion opponency in V1
DS neurons and a monocular source of MT opponent suppres-
sion. To test explicitly for monocular opponent suppression in
V1, the protocol of Majaj et al. (2007) could be used in V1 DS
cells, comparing responses to drifting and counterphase gratings
presented monocularly (testing for monocular opponent sup-
pression) and optionally also dichoptically (dichoptic suppres-
sion). This would complete the link, showing that monocular
opponency in V1 could contribute to the opponency seen in MT.

Previous models of MT neurons
There are many existing monocular models of motion processing
in MT (Heeger, 1987; Grzywacz and Yuille, 1990; Nowlan and
Sejnowski, 1995; Simoncelli and Heeger, 1998; Bowns, 2002; Per-
rone and Thiele, 2002; Pack et al., 2004; Perrone, 2006; Rust et al.,
2006; Tsui et al., 2010). Each has limitations, such as not repre-
senting circuitry with realistic neural elements, or being fit for a
particular stimulus protocol and not easily generalizable to arbi-
trary visual stimuli; however, they also include aspects of motion
sensitivity in MT that should be included in future iterations of
our binocular models. Such features include multiple SF and TF
channels (Simoncelli and Heeger, 1998), and modeling the spa-
tial surround of V1 neurons (Tsui et al., 2010), which may pro-
vide a physiological mechanism for tuned normalization (Rust et
al., 2006). Future models should also include spiking circuits to
build V1 DS inputs (Baker and Bair, 2012), which opens up the
possibility for cross-correlation studies between V1 and MT.

Modeling of 3D motion perception and psychophysical data
Psychophysical and fMRI studies implicate MT as an important
stage for 3D motion processing (Rokers et al., 2011), with the role
of IOVD and CD cues being debated (Harris et al., 2008; Czuba et
al., 2010; Rokers et al., 2011). Previous work has shown that MID
stimuli can confound CD and IOVD cues in energy models that
compute CD and IOVD signals (Peng and Shi, 2014). A key ben-
efit of our image-computable framework is that the same stimuli
used in psychophysical protocols can be tested and refined di-
rectly in circuit models of MT processing. This is valuable be-
cause stimuli that are most relevant to generate perceptual effects
can differ substantially from those used to characterize cortical
neurons, the latter often being tailored to maximize single neu-
ron responses. Further bridging the gap between perceptual rel-
evance and physiological optimality will require extending our
model to large-scale populations at the MT level to facilitate stud-
ies of perceptual read-out.

Notes
Supplemental material for this article is available at http://www.imodel.
org/t/16/t1/index.html. The code for the simulation software Working
Model (WM), as well as all parameter files for the models, visual stimuli
and responses recorded for the simulations in the paper can be found at
www.iModel.org. This material has not been peer reviewed.
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