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Neural Coding for Shape and Texture in Macaque Area V4
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The distinct visual sensations of shape and texture have been studied separately in cortex; therefore, it remains unknown whether
separate neuronal populations encode each of these properties or one population carries a joint encoding. We directly compared shape
and texture selectivity of individual V4 neurons in awake macaques (1 male, 1 female) and found that V4 neurons lie along a continuum
from strong tuning for boundary curvature of shapes to strong tuning for perceptual dimensions of texture. Among neurons tuned to
both attributes, tuning for shape and texture were largely separable, with the latter delayed by �30 ms. We also found that shape stimuli
typically evoked stronger, more selective responses than did texture patches, regardless of whether the latter were contained within or
extended beyond the receptive field. These results suggest that there are separate specializations in mid-level cortical processing for
visual attributes of shape and texture.
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Introduction
Area V4 is an important intermediate stage in the ventral visual
pathway specialized for object recognition. Many studies have
reported that V4 neurons are selective for the shape of visual
stimuli (Desimone and Schein, 1987; Kobatake and Tanaka,
1994; Gallant et al., 1996; Pasupathy and Connor, 2002; Nandy et
al., 2013; El-Shamayleh and Pasupathy, 2016), and many others
have reported V4 selectivity for surface properties (e.g., color,
brightness, and texture) (Zeki, 1973; Schein and Desimone, 1990;
Heywood et al., 1992; Conway and Tsao, 2006; Arcizet et al.,
2008; Bushnell et al., 2011; Namima et al., 2014; Okazawa et al.,

2015). But because most previous studies have focused exclu-
sively on the encoding of either shape or surface characteristics,
we know little about how both types of information are multi-
plexed in the responses of individual neurons.

We investigated how form and texture information are jointly
encoded in primate V4, a question that has received strikingly
little attention anywhere in visual cortex compared with, for ex-
ample, the multiplexing of form and color signals (Livingstone
and Hubel, 1988; Johnson et al., 2001, 2008; Lennie and Movshon,
2005; Conway et al., 2007; Shapley and Hawken, 2011; Bushnell and
Pasupathy, 2012). Nevertheless, this is important to address be-
cause it has been theorized that early and mid-level stages of the
ventral visual pathway are specialized for encoding textures
rather than the boundaries of objects (Adelson, 2001; Movshon
and Simoncelli, 2014): in the terminology of Adelson (2001), the
encoding of “stuff” rather than “things.” This assertion is based
on the argument that much of the visual world is made of stuff,
even the surface of things are made of stuff, and that selectivity for
local orientation and spatial frequency (SF) in V1 and selectivity
for texture in V2 and V4 may all be interpreted as encoding the
stuff in an image (Adelson, 2001; Movshon and Simoncelli, 2014;
Ziemba and Freeman, 2015). Indeed, bottom-up shape selectivity
could arise as a consequence of a statistical representation of natural
scenes (Movshon and Simoncelli, 2014; Ziemba and Freeman,
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Significance Statement

Object recognition depends on our ability to see both the shape of the boundaries of objects and properties of their surfaces.
However, neuroscientists have never before examined how shape and texture are linked together in mid-level visual cortex. In this
study, we used systematically designed sets of simple shapes and texture patches to probe the responses of individual neurons in
the primate visual cortex. Our results provide the first evidence that some cortical neurons specialize in processing shape whereas
others specialize in processing textures. Most neurons lie between the ends of this continuum, and in these neurons we find that
shape and texture encoding are largely independent.
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2015), allowing no mechanistic basis for a distinction between
shape and texture selectivity, at least through mid-level process-
ing. In this construct, recognition of objects may be based on
distinct form selectivity that emerges only in the highest stages of
the ventral pathway. While attractive, this idea remains conjecture
in the absence of a direct comparison between the responses of indi-
vidual neurons to shapes and textures.

To determine whether, and how, stimulus information re-
lated to form and texture are multiplexed by individual neurons,
we directly compared the responses of V4 neurons with a variety
of shape and texture stimuli. Our stimulus set included a subset of
shape stimuli previously used to characterize tuning for
boundary curvature in V4 (Pasupathy and Connor, 2001) and
a custom-designed set of texture stimuli inspired by human
texture perception (Tamura et al., 1978; Liu and Picard, 1996;
Rao and Lohse, 1996). We also studied the responses to com-
bination stimuli in which a texture was painted on the surface of
preferred and nonpreferred shapes, the latter being determined
for each neuron. To determine whether simple image elements,
in terms of local orientation and SF information, can explain V4
responses to both shapes and textures, we evaluated whether a
hierarchical max (HMax) model of V4 responses (Serre et al.,
2005; Cadieu et al., 2007), built by pooling phase-invariant, ori-
ented units, can provide a good fit for the observed data. Our
results provide key insights into the differential encoding of shape
and texture in V4.

Materials and Methods
Animal preparation
Two macaque monkeys (Macaca mulatta; M1: 9 years old, male; M2: 10
years old, female) participated in this study. All animal procedures con-
formed to National Institutes of Health guidelines and were approved by
the Institutional Animal Care and Use Committee at the University of
Washington. Each monkey underwent a surgery for headpost implanta-
tion followed by several months of training to perform a fixation task
during a receptive field (RF) mapping procedure and visual stimulation
for the main experiment (details below). A V4 recording chamber was
placed over the left prelunate gyrus on the basis of a preoperative struc-
tural MRI scan. We made a small (10 –15 mm) craniotomy over V4, 1–2
days before the start of recording.

Data collection
In each recording session, one tungsten microelectrode (FHC) was ad-
vanced perpendicular to the brain surface until a well-isolated single-unit
signal was obtained. Neural signals were amplified and filtered (band-
passed signal between 150 Hz and 8 kHz) by a data acquisition system,
MAP software (Plexon, RRID:SCR_003170). Time stamps of spiking
activity, eye position (EyeLink, SR Research, RRID:SCR_009602), and
stimulus events (based on photodiode signal) were stored at 1 kHz sampling
rate for off-line analysis (Offline sorter, Plexon, RRID:SCR_000012;
MATLAB, The MathWorks, RRID:SCR_001622).

Once a well-isolated single unit was identified, RF location was deter-
mined by a hand-mapping procedure. To avoid biased sampling of
shape-selective or texture selective neurons, we used a variety of visual
stimuli for initial hand-mapping of RFs, including 2D shapes with dif-
ferent boundary curvature functions (Pasupathy and Connor, 2001) and
sinusoidal, hyperbolic, and polar gratings (Gallant et al., 1993). After the
RF mapping procedure, we conducted the main experiment with a stan-
dard set of shape and texture stimuli (described next). During RF map-
ping and the main experiment, monkeys held their gaze within the
fixation window (1° radius) while 4 –5 visual stimuli were presented
sequentially within the RF of the cell under study. Each stimulus was
presented for a 300 ms duration preceded by a 300 ms blank interstimu-
lus interval. Each stimulus was repeated in random order, multiple times.
Only cells with at least six repetitions for each stimulus condition were
included in the data analysis.

Visual stimuli
The main experiment included 394 stimulus conditions: 225 shapes; 168
textures; 1 blank condition for assessing baseline activity. Details of the
shape and texture stimulus groups are described below. The size of visual
stimuli was scaled with the RF eccentricity so that all parts of the shape
stimulus were within the estimated RF region (see Fig. 1C), where the
estimated diameter was 1.0° � 0.625 � RF eccentricity (based on Gattass
et al., 1988). All shape and texture images were adjusted to have the same
mean RGB pixel values, [100, 100, 100], equal to �16 cd/m 2, and were
presented against a gray background (8 cd/m 2).

2D shape stimuli. We used a set of 30 closed shapes to probe shape
tuning. This is a subset of the standard set of shapes constructed by
Pasupathy and Connor (2001) based on a systematic combination of
convex and concave boundary fragments (see Fig. 1A). Each stimulus was
presented at 1, 2, 4, or 8 orientations (in 45° increments) depending on
rotational symmetry, and the circle stimulus was presented at three lu-
minance contrasts (1, 16, 46 cd/m 2), for a total of 225 shapes.

Texture patches. To choose a tractable set of texture stimuli that span a
broad range of perceptual qualities of texture, we worked within a 3D
space defined by axes that are widely considered to be relevant for human
texture perception: coarse versus fine, directional versus nondirectional,
and regular versus irregular (Tamura et al., 1978; Liu and Picard, 1996;
Rao and Lohse, 1996). We devised simple methods to quantify the degree
of coarseness, directionality, and regularity in a given image, represented
many candidate textures in this space and then chose a subset that sam-
pled the space along all three dimensions.

We defined coarseness by the method of Rosenfeld and colleagues
(Hayes et al., 1974), which measures the size of the elements forming the
texture. At every point of texture image, we computed the average pixel
value over different sized neighborhoods (2k � 2k, where k � 0, 1, 2, . . . , 6).
We then computed the difference of these values between neighboring
pairs of points in the vertical and horizontal directions of the texture
image, with nonoverlapping neighborhoods. The value of k that yielded
the biggest difference in either direction provides a measure of the size of
the texture element at that point. The average of k values over the entire
image was taken as a coarseness measure. A small k implies a fine image
while a large k implies a coarse image.

To compute the level of directionality of an image, we first performed
a 2D Fourier transform on the texture images to get a magnitude map
F(sf, �), where sf and � indicate the SF and angle, respectively, in polar
coordinates. We divided this map into 8 orientation bands (22.5° each)
and computed the average magnitude in each band. The summed mag-
nitude in the top two orientation bands normalized (divided) by the
overall magnitude across all bands was our measure of directionality.
This metric provides a measure of oriented energy in an image indepen-
dent of the specific orientation of the image.

Our regularity index was a quantitative measure of nonrandom repet-
itive pattern in a texture image. This measure is given by the highest peak
prominence in the 2D autocorrelation map of an image. The 2D auto-
correlation map, � (x, y) is obtained with the following equation:

�� x, y� � �
m�1

M �
n�1

N

I�m, n� � I�m � x, n � y�/�
m�1

M �
n�1

N

I2�m, n�

where I(m, n) indicates M � N texture image.
To build our texture stimulus set, we first calculated the three indices

for a set of 112 textures in the Brodatz texture dataset (a commonly used
texture dataset) (Brodatz, 1966), and 32 textures from a commercial
library (www.textures.com). Raw scores were transformed into z scores,
and each image was placed in one of two groups along each dimension:
that is, fine or coarse, regular or irregular, and directional of nondirec-
tional, based on the sign of the z scored value along that dimension. We
then constructed 8 texture categories corresponding to the two possible
groups along each dimension. Our texture stimulus set (see Fig. 1B)
includes 2–3 textures for each of the 8 categories. Each texture was rep-
resented through a circular aperture. To dissociate selectivity for a
specific instantiation of a texture (i.e., phase of orientation) from higher-
order tuning for texture statistics, we presented each texture at 4 orien-
tations in 45° increments. We also presented each texture at two sizes:
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one that matched the size of the large circle (see Fig. 1A, first shape) and
was completely contained within the estimated RF size and a second that
was twice as large. The two scale conditions were achieved by applying
two different sized circular masks to the same texture stimulus. There-
fore, textures shown through small and large apertures are identical
within the RF, but textures with large aperture have additional informa-
tion in the RF surround (see Fig. 1C). Total number of texture stimuli
was 168 (21 textures � 4 orientations � 2 apertures); this includes 84
small and 84 large aperture textures. In addition to shape stimuli and
texture patches, we also interleaved 40 natural scenes, but responses for
these are not analyzed here.

Textures through shape apertures. We conducted control experiments
to determine whether neuronal responses are jointly modulated both by
texture and shape attributes of a stimulus. In 43 neurons, we studied the
response to 30 (3 � 10) stimuli constructed by presenting 10 textures
through three different shape boundaries. One of these shapes was always
a circle. The other two were customized to each neuron and included one
shape that evoked strong responses and another that evoked weak re-
sponses. We used the same 10 nondirectional textures (see Fig. 1B, bot-
tom two rows) for all neurons.

Data analysis
Quantification of neural response magnitude. For each stimulus, we com-
puted average response rate by counting spikes within a window from 50
to 400 ms after each stimulus onset to allow for onset and offset response
latency of V4 neurons (Zamarashkina et al., 2017).

Permutation test. We asked whether the best response to a shape stim-
ulus was larger than the best response to a texture patch within the RF
(small aperture texture) (see Fig. 2B). To determine whether the higher
best response for shape stimuli across V4 neurons could be simply due to
the larger set of shape stimuli (shape � 225; small aperture texture � 84),
we conducted a permutation test. For each permutation, we randomly
reassigned the shape and texture responses and computed the difference
between the best shape versus texture responses. We repeated this pro-
cess 10,000 times. The one-sided p value of the test calculated as the
proportion of sampled permutations where the difference in best re-
sponse values was greater than or equal to the observed difference. We
conducted a similar analysis comparing best shape response to best large
aperture texture response.

HMax model simulation. The difference in responses between shape
and texture stimuli could result from differences between the two sets of
stimuli in terms of simple image features, specifically orientation and SF
content, and the conjunctions of orientations. If this was the case, the
HMax model, previously shown to provide a good description of V4
responses to shape stimuli (Riesenhuber and Poggio, 1999; Serre et al.,
2005; Cadieu et al., 2007) in terms of orientation conjunctions, should
explain overall trends in shape and texture selectivity observed in our V4
data.

Briefly, the HMax model consists of four (S1, C1, S2, C2) layers. The
selectivity (i.e., template matching) and invariance (i.e., max pooling)
operations are performed in alternating layers. S1 units correspond to
simple cells in V1. They are designed to have Gabor RF profiles with six
different sizes and four orientations, and their responses are determined
by normalized dot product of the Gabor filter and the image patch within
the RF. Outputs from S1 units are then max pooled to build C1 units with
larger orientation-tuned RFs. S2 units receive inputs from a combination
of C1 units with various sizes, positions, and orientations. Thus, S2 units
build selectivity for complex patterns by pooling signals from a variety of
orientations. Last, the same max pooling operation is repeated between
S2 and C2 layers. The response of S2 unit is given by the following:

r � g� �i wixi�i xi

2
� k�

where xi and wi are the response and the synaptic weight of ith C1 unit.
The constant k (0.0001) prevents division by zero, and g(u) is the sigmoid
function to implement an inhibitory mechanism and defined by the
following:

g�u� �
s

1 � exp����u � 	��

where �, 	, and s are free parameters to determine the shape of the
sigmoid function. Finding a HMax model instantiation that best de-
scribes the responses of a V4 neuron amounts to finding the weights, wi,
from a set of C1 to S2 units that best describes the response. To avoid
overfitting, we restricted the number of C1 units to 13, the median value
of the optimal number of C1 units determined by a cross-validation
procedure in the original paper (Cadieu et al., 2007). Thus, 16 parameters
(synaptic weights for 13 C1 units and 3 sigmoid parameters) were ad-
justed to simulate individual neural responses (for further details, see
Cadieu et al., 2007). We evaluated the model fitting performance (corre-
lation coefficients on the training and test sets) by the median of 10-fold
cross-validation results and found that shape responses of most neurons
were successfully predicted by the HMax model (see Results). The HMax
model fits to texture data were based only on the responses to small
texture stimuli that were confined to the RF.

APC model for curvature selectivity. To quantify curvature selectivity of
each neuron, Pasupathy and Connor (2001) proposed the angular posi-
tion and curvature (APC) model in which neural responses are fit with a
2D Gaussian function in the plane of boundary curvature and object-
centered angular position. In this space, curvature values ranged from
�0.3 (shallow concave) to 1.0 (sharp convex), and angular position pro-
gressed from right (0°) in a counterclockwise direction: i.e., right, top
(90°), left (180°), and bottom (270°). Each shape in our stimulus set
included multiple convex and concave features, and the neuron’s re-
sponse were modeled as the maximum response predicted across all
component features. Thus, the predicted response r is given by the
following:

r � max
p
�k � �

i�1

2

e��Xip�
i�2/ 2��i
2�

where 
 and � indicate the mean and SD of the curvature and angular
position dimensions (indexed by i), k represents the amplitude of the 2D
Gaussian, and Xip represents the curvature (i � 1) and angular position
(i � 2) value of a specific feature p. Therefore, this model allows us to see
how response of a single unit is well explained by the preference to a
particular boundary feature.

Regression model for texture selectivity. To ask how the perceptual di-
mension (coarseness, directionality, regularity, and contrast) modulate
neural responses to texture, we conducted linear regression analyses
with these four dimensions as independent variables. The formula is
as follows:

Zresponse � 	1 � ZCoarseness � 	2 � ZDirectionality � 	3 � ZRegularity

� 	4 � ZContrast,

where both independent and dependent variables are standardized so
that their means are equal to 0 and SDs are equal to 1. Here, we addition-
ally defined a contrast index that was not used in the texture selection
procedure. The contrast index, IContrast, is given by the following:

IContrast � �� ��4�
n

where � and �4 are the SD and kurtosis of the gray level distribution of an
image and n � 1/4 was fixed (Tamura et al., 1978).

Separability of tuning for shape and texture. Based on the control data
where we varied shape and texture simultaneously, we assessed whether
tuning for shape and texture could be described as mathematically
separable (i.e., whether the shape preference was consistent under
different texture conditions and vice versa). First, we estimated the
one-dimensional shape and texture tuning functions by averaging over
the texture and shape dimensions, respectively. The product of these
functions represented the predicted responses for stimuli defined by both
shape and texture features. Separability was quantified for each neuron

4762 • J. Neurosci., June 12, 2019 • 39(24):4760 – 4774 Kim et al. • Encoding Form and Texture Stimuli in V4



by computing the correlation coefficient between measured and pre-
dicted responses. For comparison, we also considered an additive model
where the predicted responses were given by the sum of the components
of shape and texture tuning functions.

Effect sizes of shape and texture. Based on the control data where we
varied shape and texture simultaneously, we performed two-way
ANOVA to calculate the effect sizes of shape and texture variables. The
effect size, � 2, is defined as the proportion of total variance that is attrib-
utable to an effect of interest (Cohen, 1973). Its formula is as follows:

�2 �
SSEffect

SSTotal

wherec SS represents the sum of squares used in a two-way ANOVA.
Onset of shape- and texture-dependent response modulation. To compare

the time course of shape and texture-dependent response modulation, peri-
stimulus time histograms (PSTHs) were constructed by convolving spike
trains with a Gaussian kernel (� � 5 ms). For each stimulus group (i.e.,
shapes, large and small aperture textures), Mann–Whitney U test within
a 20 ms sliding window (moving in 1 ms steps) was conducted to deter-
mine whether mean spike count from top 50% preferred stimuli signif-
icantly deviated from that for bottom 50% nonpreferred stimuli ( p 	
0.01). The onset time for shape or texture selectivity was determined as
the earliest time when Mann–Whitney U test results were significant in
30 consecutive windows.

Experimental design and statistical analysis
Details of experimental procedure and visual stimuli are described above
(see Data collection, Visual stimuli). For all statistical tests presented

here, independent group comparisons were performed using non-
parametric Mann–Whitney U test. And paired-data comparisons were
performed with the Wilcoxon Signed Rank test. The strength of linear
relationship between pairs of variables was assessed by Pearson’s corre-
lation coefficient. A p value 	0.05 was considered significant.

Data and software availability
The data and analysis code that support the findings of this study are
available from the corresponding author upon reasonable request.

Results
We studied the responses of 101 single units in two macaque
monkeys (M1: 47 cells; M2: 54 cells) to a variety of shapes and
textures as shown in Figure 1. The shapes (Fig. 1A) are a subset
of those used previously to systematically characterize tuning for
boundary curvature in V4 (Pasupathy and Connor, 2001),
whereas the textures (Fig. 1B) span three fundamental dimen-
sions for texture perception: regularity, coarseness, and direc-
tionality (Tamura et al., 1978; Liu and Picard, 1996; Rao and
Lohse, 1996).

We found that many neurons were driven well by our shape
and texture stimuli, but most showed a significant bias for one or
the other stimulus set. For example, Neuron 1 (Fig. 2A, left-most)
fired up to 32 Hz for shape stimuli (green; maximal response is
normalized to 1), whereas no texture stimulus in our set, small or
large (red and blue, respectively), caused the neuron to fire 
20%
of the maximum shape response.

Figure 1. Visual stimuli. A, Shape stimuli. We used a subset (30 of 51) of the 2D shapes developed by Pasupathy and Connor (2001) to study how boundary conformation influences V4 responses.
Most shapes were presented at 8 rotations (45° increments); a few shapes (those identified with a superscript) were presented at fewer rotations (1, 2, or 4, as noted in figure) due to rotational
symmetry. The circle was presented at three luminance contrast levels (1, 16, 46 cd/m 2) relative to the background (8 cd/m 2), for a total of 225 shape stimuli. B, Texture stimuli. We constructed eight
(2 3) texture categories based on three dimensions that influence human texture perception (coarse vs fine, directional vs nondirectional, regular vs irregular), and selected 2–3 representative
textures for each category (see Materials and Methods). Each texture was presented through a circular aperture of two sizes and at four orientations at 45° increments, for a total of 168 texture
stimuli. C, Examples of shape, large aperture texture, and small aperture texture stimuli. All parts of the shape stimulus were within the estimated RF region (yellow dotted line). The diameter of the
large aperture texture stimuli was twice that of the estimated RF. Small aperture texture condition was created by applying a RF sized circular aperture to large aperture texture.
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Neurons 2 and 6 (Fig. 2A) also showed stronger and more
broadly distributed responses to shapes than to texture. In other
cases, however, shape and texture response distributions were
similar (e.g., Neurons 4 and 5) both in terms of peak response and
width of the distribution, or the texture response distribution was
broader than that for shapes (Neuron 3). For all six examples, the
maximum and the range of responses to textures that extend
beyond the RF (large aperture, blue) were similar or smaller than
those for small aperture textures (red), likely due to surround
suppression.

To summarize these observations across the population, we
characterized the response frequency histograms for shape and
texture using two simple metrics each: the maximum response
magnitude and the SD of the normalized responses. Across the
population, we found that the peak response across shape stimuli
was positively correlated with the peak response across texture
stimuli (Fig. 2B; r � 0.65, p 	 0.001 for best response). This was
also true when mean responses were considered (r � 0.57, p 	
0.001 for normalized mean response). But the strongest neural
response for 2D shape stimuli was significantly greater than that
for texture stimuli confined to the RF (Wilcoxon Signed Rank
test: p 	 0.001 in Monkey 1, p � 0.009 in Monkey 2; Fig. 2B). To

rule out the possibility that this was simply because our shape
set was larger (225 shapes vs 84 small-aperture textures), we
examined statistical significance of individual neurons using a
permutation test (see Materials and Methods). Figure 2B (filled
symbols) identify neurons for which there was a statistically sig-
nificant (p 	 0.05) difference between the best shape and best
texture responses. For 52 of 101 neurons across our population,
responses to the preferred shape were significantly greater than
those to the preferred texture, factoring out stimulus set size. On
the other hand, only 19 neurons had responses to the best texture
stimulus that significantly exceeded the best shape response.

To compare the relative spread of responses for shapes and
textures, we first normalized the responses to discount the influ-
ence of peak firing rates and then computed the SD for each
response distribution (Fig. 2C). As with the example neurons, we
found that some neurons exhibited a broader range of responses
for shape stimuli (Fig. 2C, points below the diagonal), whereas
others exhibited a broader range for texture stimuli (Fig. 2C,
above the diagonal); still other neurons lie along the diagonal
because both stimulus classes evoked similar ranges of responses.
The ratio of the SDs for shape versus texture responses (Fig. 2D),
which is the same regardless of whether responses are normal-

FE

DCB

A

Figure 2. Example neurons and population results. A, Response frequency histogram for shape (top row) and texture (bottom row) stimuli for 6 example neurons (columns). Red and blue
histograms represent responses to small and large aperture textures, respectively. Responses for each neuron were normalized to the maximum across all shape and texture stimuli (maximum values
are shown for each neuron). Triangles represent the background responses (no visual stimulus). B, Maximum response across all shape stimuli (x axis) is plotted against the maximum response across
all small aperture texture stimuli (y axis) for each neuron from Monkey 1 (black) and Monkey 2 (gray). Filled symbols represent neurons with a statistically significant difference between the strongest
shape and texture response, assessed with a permutation test (see Materials and Methods). In both monkeys, the maximum response across shape stimuli was typically greater than the maximum
response across texture stimuli. C, SD of the response frequency histogram for shape (x axis) is plotted against that for texture stimuli (y axis). Asterisks indicate mean value. Yellow highlight
represents region where SD ratio for shape versus texture lies between 2/3 and 3/2. Points corresponding to examples in A are identified. D, Histogram of the SD ratio: SDshape/SDtexture.
Yellow highlight as in C. E, F, SD values for shuffled shape and texture responses. Shape and texture responses for each neuron were shuffled and SDs were recomputed for two randomly
divided groups: Group 1 (N � 225, number of shapes) and Group 2 (N � 84, number of textures). F, Gray bars represent SD ratios computed from E. This process was repeated 10,000
times and width of the distribution from the observed data, quantified by the interquartile range of log (SD ratio), was always at least 5 times broader than that from the shuffled data.
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ized, provides an intuitive visualization of the relative spread of
responses (Fig. 2D, histogram). Across our population, the ratio
of SDs span a broad range representing the continuum from
texture selective (values 		 1) to shape-selective neurons (values 


1). The breadth of this SD ratio histogram is significantly and
substantially larger than expected by chance, which is largely con-
fined to the yellow region (2/3 	 SD ratio 	 3/2) indicated in
Figure 2E, F. The ratio of SDs for shape versus texture was also
skewed: there was a small group of highly shape-selective neurons
(SD ratio 
 2) that was not matched by a similar subpopulation
for textures. Finally, we also found that the average SD for shape
was greater than that for texture (Fig. 2C, asterisks, shape � 0.15,
texture � 0.12; Mann–Whitney U test, p 	 0.001), consistent
with firing rates being greater for shape (Fig. 2B). Overall, these
results support the hypothesis that there exists a continuum of
neurons in V4 ranging from those specialized to encode texture
to those specialized to encode shape.

In our study, the shape and texture stimuli were equated for
mean luminance, so the observations in Figure 2C cannot be due
to a simple difference in overall luminance. To determine
whether the spread of SD ratios observed in Figure 2C was due to
differences between our particular shape and texture stimulus
sets in terms of fundamental spatial features, such as orientation
conjunctions or more generally the SF � orientation content, we
fit each neuron’s shape responses to the HMax model of V4 shape
selectivity proposed by Cadieu et al. (2007), and then compared
the predicted SD for shape and texture responses across the set of
best-fitting models. The HMax model, which has been previously
shown to provide a good fit for V4 shape responses (Cadieu et al.,
2007; Wei and Dong, 2015), builds shape selectivity by pooling
the output of oriented filters (see Materials and Methods) and
can thus provide a good fit for responses dictated by combina-
tions of orientation at different spatial frequencies and relative
locations. For each V4 neuron, we identified the HMax model
that provided the best fit to the observed shape responses. Figure
3A–C shows the results for an example neuron that responded
strongly to a variety of shapes, all of which included a sharp
convexity to the left. The locations and orientations of C1 sub-
units (Fig. 3B, ellipses) are consistent with this shape preference.
Shape responses predicted by the best-fitting HMax model were
strongly correlated with the measured responses (r � 0.94 on the
training set and 0.92 on the test set), and the response range
across shapes for the model and neuron were comparable (SD for
the observed shape responses � 0.24; SD for predicted shape
responses � 0.22). This model predicts a broad range of re-
sponses to texture stimuli (Fig. 3C, red dots, SD � 0.21), but the
observed texture responses were weak and spanned a narrow
range (SD � 0.03). A second example is illustrated in Figure
3D–F for a neuron that was selective for shapes having a concave
curvature at the bottom. Again, the best fitting HMax model
provided a good fit for shape responses (r � 0.85 on the training
set and 0.76 on the test set; SDs are 0.16 and 0.15 for observed and
predicted responses, respectively), but a very poor fit for texture
responses (r � 0.12; SD � 0.06 and SD � 0.13 for observed and
predicted responses, respectively).

The results across all neurons were consistent with the exam-
ples in Figure 3. The best fitting HMax models, optimized based
on shape responses, provided a good fit for shape (median r �
0.75 on the training set and 0.61 on the test set) but a poor fit for
the texture responses (median r � 0.02) (Fig. 4A,B). These best-
fitting models also predicted that response ranges (SD values)
should be similar for shape and texture stimuli for most neurons
(Fig. 4C). This resulted in a narrow spread of SD ratios (Fig. 4D)

compared with the V4 data (Fig. 2D). Specifically, few points fell
outside of the yellow region. Thus, the HMax model, which
predicts V4 shape responses based on a combination of inputs
varying in orientation, scale, and location, predicts comparable
response ranges for our shape and texture stimuli. Results were
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Figure 3. HMax model prediction of responses to texture stimuli. A, The top 20 preferred
shape and texture stimuli of an example neuron (#7). B, Shape template for the S2 unit corre-
sponding to the best fitting HMax model based on the responses to shape stimuli. Each ellipse
indicates position, orientation, and size of complex-cell like subunit (C1 unit). Grayscale repre-
sents weighting strength with darker color denoting stronger weight. C, Predicted responses
(y axis) based on the best HMax model fit (shown in B) for shape (gray) and texture (red) stimuli
are plotted against measured responses (x axis). For this neuron, the HMax model provided an
excellent fit for shape responses, but not for texture responses. Predicted texture responses
showed a much broader range than the observed data. D–F, The results from another example
neuron. The same conventions as in A–C.
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similar when we optimized HMax models with texture data in-
stead: fits to texture data were marginally better than before (me-
dian r � 0.23; Fig. 4F) and those to shape data were worse
(median r � 0.07; Fig. 4E), but the range of responses were sim-
ilar for shape and texture stimuli (Fig. 4G,H), as in Figure 4C.
Finally, when we optimized HMax models based on both shape
and texture responses simultaneously (Fig. 4I–L), the median
goodness of fit was substantially lower for textures (median r �
0.24 training set, 0.10 test set) than for shapes (r � 0.71 training

set, 0.56 test set), but the resulting best-fit models began to cap-
ture the dissociation between the range of responses for shape
and texture evident in our V4 data (Fig. 4K,L).

It is possible that the inability of the HMax model to provide a
good fit for V4 responses to texture stimuli was due to the limited
SF bandwidth of the original HMax model or the fitting con-
straints we imposed in terms of the fixed number of subunits to
model data. To consider these possibilities further, we first tested
whether upsampling or downsampling the texture stimuli would
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Figure 4. SD ratios from HMax model prediction. A–D, Population results for HMax models optimized based on shape responses only. Model goodness of fit for shape (A) and texture (B) responses
across all neurons. Goodness of fit was determined as the median correlation coefficient (r) of 10-fold cross-validation test sets. Triangles represent median. HMax models provided a good fit for
shape responses (median r � 0.61) but a poor fit for the texture responses (median r � 0.02). Predicted response ranges (SD values) for shape and texture stimuli were similar (C), and the SD ratios
(gray bars in D) spanned a narrow range. SD ratios from the observed data (as in Fig. 2D) are overlaid in white (D) for comparison. D, Light gray bars represent overlap between gray and white
distributions. White bars are all the same in D, H, L. Yellow shaded area as in Figure 2. E–H, HMax model results optimized based on texture responses only. HMax models provided a poor fit for both
shape (median r is 0.07) and texture (median r is 0.23) responses. Model results in terms of SD values and ratios (G, H ) were similar to those in C, D. I–L, HMax models optimized simultaneously based
on shape and texture responses. Models provided a good fit for shape responses (median r � 0.56) but a poor fit for texture responses (median r � 0.10). In this case, the distribution of SD ratios
were similar to V4 data (compare gray and white bars in L), but the SDs for predicted texture responses were unlike observed data: note the lack of low (	0.05) and high (
0.2) SDs for texture in
K compared with Figure 2C. Asterisk indicate mean value.
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improve fits. The HMax model has a total input field of 180 � 180
pixels, and the basic tile sizes at the S1 (Gabor) layer range from
32 to 60 pixel square fields (Cadieu et al., 2007). Results were very
similar when the texture stimuli were presented within a 128 �
128 region corresponding to the V4 RF (as in the simulations
above) or downsampled to 64 � 64 pixels or upsampled to 256 �
256 pixels (with truncation beyond the HMax input field). For all
tested neurons (N � 101), median r values on the test set for
texture responses were 0.28, 0.23, and 0.15 for the smallest to
largest patch size, respectively. For comparison, that for the shape
data was 0.56, 0.61, and 0.52, respectively. In other words, scaling
the SF content of texture patches (or equivalently scaling the SF
range of the model) did not produce better fits. Fits to texture
data were not improved when we included smaller spatial scale
(e.g., S1 units of 20 pixel square field) to increase the HMax
model’s SF bandwidth. Here again, the median r across the test set
was 0.19 for all tested neurons (N � 101). It is possible that a
greater diversity of V1 basis filters (e.g., Victor et al., 2006) would
improve the performance of the HMax model, but this was not
assessed. Last, rather than restricting the fits to 13 subunits, we
optimized the number of subunits for each neuron by cross-
validation. Specifically, for each neuron, we identified the
number of subunits beyond which adding subunits failed to
improve performance on the test set. In this case, across all
tested neurons (N � 101), the mean number of subunits was
11, and the median r of HMax texture fit was slightly higher
(0.31 vs 0.23).

In summary, these results indicate that a model that success-
fully explains V4 shape responses does not also do a good job of
predicting texture responses, and vice versa. This implies that the
broad range of SD ratios observed in V4 are not a trivial con-
sequence of our stimulus choice and that shape and texture
selectivity may arise from separate mechanisms (see Discus-
sion). Second, while the HMax model provides a reasonable fit
for shape responses in many neurons, it does a poor job of cap-
turing texture selectivity in V4 suggesting that a straightforward
combination of orientations and SFs, cannot explain both the
shape and texture responses of V4 neurons. Next, we quantify
tuning for shape and texture stimuli in terms of tuning for
boundary curvature and the perceptual dimensions of texture.

Tuning for boundary curvature and perceptual dimensions
of texture
We found that many of the neurons that exhibited a broad range
of responses to shape stimuli (those in the bottom right of the
scatter in Fig. 2C) also exhibited strong tuning for boundary
curvature. Figure 5 shows two such example neurons. For Neu-
ron 2, the preferred shapes (those eliciting the strongest respons-
es; Fig. 5A, top), all had a broad concavity to the top of the shape.
In contrast, the nonpreferred shapes (those eliciting the lowest
responses; Fig. 5A, bottom) lacked such a feature and often had a
sharp point or convex curvature at the top of the shape. To quan-
tify such curvature preference, we fit the angular position and
curvature (APC) model (Pasupathy and Connor, 2001) (see
Materials and Methods), the parameters of which indicated a
preference for a concavity (curvature � �0.27) pointing at 91.7°
counterclockwise from rightward (thus, upward; Fig. 5, for de-
tails of fit, see legend) and produced predicted responses that
were strongly correlated with the measured responses (r � 0.74,
p 	 0.001; Fig. 5C). Figure 5D–F shows results from an example
neuron from the second monkey. This neuron responded pref-
erentially to shapes with a concave curvature to the top-right of
the shape. The curvature preference was well described by the
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Figure 5. Tuning for boundary curvature in shape-selective neurons. A, Shape stimuli that
evoked the strongest (preferred) and weakest (nonpreferred) responses from an example neu-
ron (#2; also in Fig. 2). For this neuron, shapes evoked a broader range of responses than
textures: SD for shape � 0.23; SD for texture � 0.07. B, Responses to shape stimuli were best
explained by a 2D Gaussian APC model with a peak at a curvature of �0.27 at 90°, reflecting the
preference for concave curvature to the top of the shape. C, Responses predicted by the best fit
APC model (y axis) are well correlated with the observed responses. D–F, Results from a second
example neuron (#8). The same conventions as in A–C. This neuron responded strongly to
shapes with a concave contour at top right of the shape (45°). SD for shape � 0.22; SD for
texture � 0.02. G, Neurons whose responses are well predicted by the APC model (filled sym-
bols, APC model goodness of fit 
 0.6) are identified on a scatter plot of response range for
shape and texture stimuli (same as Fig. 2C). This included 42 of 101 neurons across our dataset
(right, histogram). Top right, Histogram represents the distribution of SD differences (shape �
texture) for highly shape-selective (black bars) and other neurons (white). Mean SD shape
minus SD texture was significantly different for the two groups of neurons (Mann–Whitney U
test, p 	 0.001). Triangles represent median values of the distributions. Gray bars represent
overlap between two distributions. Data points corresponding to the example neurons in A–C
(#2), and D–F (#8) are identified. Asterisks indicate that difference between two distributions
are statistically significant at the level of p 	 0.001 (Mann-Whitney U-test).
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best-fit APC model (Fig. 5E), and there was a strong correlation
between observed and predicted responses (r � 0.71; p 	 0.001;
Fig. 5F).

In Figure 5G, we highlight those neurons that are highly
shape-selective (best-fit by APC model, r 
 0.6, 42 of 101; filled
circles) on the continuum of the response range (SD) scatter plot.
Highly shape-selective neurons tended to be overrepresented in
the lower half where SD for shape 
 SD for texture: there was a
significant and substantial difference (Mann–Whitney U test,
p 	 0.001) between highly shape-selective (filled circles) and
other neurons (open circles) in terms of their shape SD minus
texture SD (Fig. 5G, histogram on diagonal). By demonstrating
that the responses of a subpopulation of V4 neurons with a larger
dynamic range for shapes versus textures can be explained by
tuning for boundary features, we give credence to the idea that
neurons with a larger dynamic range for shapes versus textures do
have a greater tendency to be involved in coding an aspect of
boundary form.

In contrast to the shape-selective neurons discussed above,
other neurons that exhibited a larger range of responses to texture
stimuli were tuned along one or more of the perceptual di-
mensions of texture that we varied. For example, the preferred
textures of Neuron 9 (Fig. 6A, top) all lacked parallel-oriented
elements, whereas the nonpreferred textures (Fig. 6A, bottom) all
included them (regardless of orientations), suggesting a selectiv-
ity for textures that score low on the axis of directionality. Indeed,
there was a strong negative correlation between directionality
and neuronal response (r � �0.63, p 	 0.001; Fig. 6B). Figure 6C,
D shows results from a neuron from the second monkey that had
a strong preference for coarse textures.

We determined which neurons were quantitatively well fit by
a texture model using linear regression along the perceptual di-
mensions of directionality, coarseness, regularity, and contrast
(see Materials and Methods). In Figure 6E, we identify those
texture-selective neurons (filled symbols) among all neurons on

the axes of response range (SD) for the shape and texture stimu-
lus sets. Neurons with responses that were well predicted by the
texture model (r 
 0.6, filled symbols, 27 of 101), tended to have
a larger dynamic range for texture stimuli than did other neurons
(open symbols, r 	 0.6): there was a statistically significant dif-
ference in shape SD minus texture SD between these two groups
of neurons (Mann–Whitney U test, p 	 0.001; histogram on
diagonal). There was minimal overlap between neurons tuned to
texture dimensions and those tuned to curvature (Fig. 5G vs 6E;
42 vs 27; 6 neurons overlapped). This is consistent with the idea
that many individual neurons may be specialized to encode either
shape or texture. In Figure 6E, texture selectivity was evaluated
based on neural responses to large-aperture textures, but we
verified that results for large and small apertures were similar:
weights for each independent variable (i.e., perceptual texture
dimension) showed strong and statistically significant positive
correlation (r values for coarseness, directionality, regularity, and
contrast were 0.65, 0.68, 0.70, and 0.69, respectively).

Separable tuning for shape and texture
To determine whether shape tuning was consistent across differ-
ent surface textures, for each neuron, we chose 2D shapes that
evoked a strong, a moderate, and a weak response. We then pre-
sented the 10 nondirectional texture stimuli (Fig. 1B, bottom two
rows) within each of these three shape apertures. If neuronal
selectivity for shape and texture information are largely indepen-
dent, texture tuning should be similar regardless of the shape
aperture, and shape preference should be preserved regardless of
texture. Figure 7 shows the responses of six neurons to the shape-
texture combination stimuli. Response patterns are quite differ-
ent across these neurons. In some cases (Fig. 7A), the response
modulation across the three shapes was stronger than modula-
tion across the 10 textures. In other cases, texture had the larger
influence on the neuronal responses (Fig. 7B). And in still others,
both shape and texture modulate responses (Fig. 7C–F). For 43
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Figure 6. Tuning for perceptual dimension of texture. A, Texture stimuli that evoked the strongest (preferred) and weakest (nonpreferred) responses from an example neuron (#9). The
nonpreferred textures are directional, oriented at different directions, unlike the preferred stimuli, which tend to be nondirectional for this neuron. SD for shape � 0.13; SD for texture � 0.20. B,
Neural responses for all texture stimuli (y axis) plotted as a function of the directionality index (x axis) shows a statistically significant ( p 	 0.001) negative correlation. C, D, Example neuron (#10)
that responded strongly to coarse rather than fine textures. SD for shape � 0.08; SD for texture � 0.11. E, Neurons whose responses are well predicted by the texture model (see Materials and
Methods; filled symbols, texture model goodness of fit 
 0.6) are identified on the scatter plot of response range for shape and texture stimuli. This included 27 of 101 neurons across our dataset
(right, histogram). These texture-selective neurons (filled circles) and the other neurons (open circles) showed a significant difference in distribution of shape SD minus texture SD
(Mann–Whitney U test, p 	 0.001; see top right, histogram). Triangles represent median values of the distributions. There was limited overlap (n � 6) between neurons with APC model
goodness of fit 
 0.6 and those with texture model goodness of fit 
 0.6 (compare filled symbols in Fig. 5G vs Fig. 6E). Data points corresponding to the example neurons in A and B (#9),
and C and D (#10) are identified.
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Figure 7. Joint coding of shape and texture. A, Responses of an example neuron (#11) to 10 nondirectional textures (x axis) presented through three different shapes apertures (line colors).
Responses to the three shapes presented with a uniform luminance contrast are also shown (leftmost symbols) for comparison. Error bars indicate �1 SEM. This neuron exhibited a broader range
of shape responses than texture responses (SD for shape � 0.19, SD for texture � 0.10), but overall, shape preference was largely preserved across textures. B, Example neuron (#12) with a strong
preference for texture but not shape (SD for shape � 0.07, SD for texture � 0.16). All details as in A. C, Neuron 8 showed selectivity along shape and texture (Figure legend continues.)
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neurons in which the control experiment was conducted, we cal-
culated the effect size (see Materials and Methods) of shape and
texture variables, respectively (Fig. 7G). Neurons tuned along
both dimensions have a large effect size along both dimensions.
In all cases, tuning for shape and texture tuning were largely
independent. To quantify the independence of shape and texture
tuning, we evaluated whether responses to shape-texture combi-
nation stimuli can be predicted by the product of the tuning for
shape and texture (see Materials and Methods). The correlation
coefficients, r between model and data, are shown for the six
example neurons (Fig. 7H) and the mean r was 0.90 � 0.08 (N �
43; Fig. 7I, x axis), indicating that the multiplicative model cap-
tures �81% of the variance in the data. In most cells, the multi-
plicative model (Fig. 7I, x axis) gave a better prediction than an
additive model did (Fig. 7I, y axis) but either would imply sepa-
rable tuning.

Different time courses for shape and texture processing
To compare the time course of shape and texture selectivity, for
each neuron, we constructed average PSTHs based on the top
50% (preferred) and bottom 50% shape and texture stimuli (see
Materials and Methods). For neuron 16 (Fig. 8A), responses to
preferred and nonpreferred shapes (left) diverged soon after re-
sponse onset (�50 ms from the stimulus onset), and the differ-
ence was sustained throughout the stimulus presentation period.
However, for texture stimuli (middle and right panels), preferred
and nonpreferred PSTHs diverged only �100 ms from the stim-
ulus onset. This delayed separation was observed for both large
and small aperture textures. Figure 8B shows an example neuron
from Monkey 2 showing a similar pattern of results.

We found a similar trend across the population. Figure 8C
shows a scatter plot of the time of onset of texture selectivity (see
Materials and Methods) ( y axis) versus shape selectivity (x axis).
Across the population, shape selectivity emerged early (mean on-
set time was 55 ms; SD � 16 ms), whereas texture selectivity was
delayed by �30 ms. Mean onset times for texture selectivity were
similar regardless of the size of aperture (Fig. 8C,D): 84 and 85 ms
for texture selectivity based on large (filled symbols) and small
(open symbols) aperture textures, respectively. In both monkeys,
the differences between onset times for shape and texture selec-
tivity were statistically significant (Wilcoxon Signed Rank test,
p 	 0.001). These results indicate that the encoding of boundary
shape and surface texture may occur with different temporal
dynamics.

It may be argued that the delayed onset of texture processing
could be associated with weaker response modulation to textures
compared with shapes. To address this concern, we divided our
data into three groups depending on the ratios of the SDs for

shape versus texture responses (Fig. 2D), and then compared
mean latency for shape and texture processing in each group of
neurons: Group 1 (N � 15; SD ratio 	 0.66), Group 2 (N � 42;
0.66 	 SD ratio 	 1.5; Fig. 2D, yellow shaded area), Group 3
(N � 44; SD ratio 
 1.5). Shape selectivity emerged earlier than
texture selectivity for all three groups. The difference was the
largest for Group 3 (54 ms for shape, 96 ms for large aperture
texture, 92.69 ms for small aperture texture), which included
neurons that exhibit a greater range of responses for shape. But
delayed onset of texture selectivity was also observed for Group 2
(55 ms for shape, 82 ms for large aperture texture, 85 ms for small
aperture texture) and Group 1 (59 ms for shape, 77 ms for large
aperture texture, 79 ms for small aperture texture), which in-
cluded neurons more selective for texture. Therefore, it is safe to
conclude that texture information processing is delayed than
shape information processing in area V4.

Discussion
We used systematically designed stimuli to compare the responses of
V4 neurons to shapes and textures. Our results reveal four novel and
potentially fundamental properties of form-texture encoding in vi-
sual cortex. First, individual V4 neurons exhibit joint, separable
tuning for shape and texture. Second, neurons span a continuum
from strongly shape-selective to strongly texture-selective, but
overall V4 responses were more strongly modulated by object
boundary features rather than by texture. Third, many V4 neu-
rons were highly selective along the texture dimensions of
coarseness, regularity, and directionality thought to be impor-
tant for texture perception in human subjects. Finally, shape
and texture information processing followed different tempo-
ral dynamics: texture selectivity emerged significantly later
than shape. These results argue for an important role for area
V4 in the emergence of object-based structural codes from
surface characteristics-based representations in earlier stages
of the ventral pathway.

Encoding “things” and “stuff” in area V4
Previous studies in V4 demonstrated selectivity for object fea-
tures (Kobatake and Tanaka, 1994; Pasupathy and Connor, 1999)
and for texture (Arcizet et al., 2008; Okazawa et al., 2015). But
because most studies focus either on the encoding of “things” or
“stuff,” we do not know whether different subgroups of V4 neu-
rons are selective for shape and texture, or whether the same
neurons carry information about both. Specifically, Ziemba and
Freeman (2015) have argued theoretically that tuning for texture
in terms of higher-order image statistics could produce shape
selectivity as a byproduct. But our results, which document joint,
separable V4 tuning for boundary shape and texture, argue
against this possibility. Because image statistics would change
substantially depending on the texture painted on the surface of a
shape, any shape preference that is based on tuning for higher-
order image statistics would be highly dependent on surface tex-
ture attributes of the stimulus. Therefore, the texture-invariant
shape tuning that we document here cannot be based on tuning
for higher-order image statistics. Because textures may be envi-
sioned as being composed of small shape elements (Julesz, 1981;
Galun et al., 2003), tuning for shape versus texture may be based
on preference for scale: neurons that prefer small shape elements
may exhibit texture tuning while neurons that prefer large stimuli
may exhibit shape tuning. However, because many neurons in
our dataset exhibit joint tuning at multiple scales, for example,
simultaneous selectivity for shape and for fine (as opposed to

4

(Figure legend continued.) dimensions. Preference for fine textures was observable only within
the preferred shape boundary. D–F. Additional example neurons (#13, #14, #15) that exhibited
joint tuning for shape and texture. G, Effect size (see Materials and Methods) of texture was
compared with that of shape for each of 43 neurons subjected to the control experiment. Data
points corresponding to the example neurons (A–F) are identified. H, To quantify the indepen-
dence of shape and texture tuning, we evaluated whether responses to shape-texture combi-
nation stimuli can be predicted by the product of the responses to shape and texture. Scatter
plots show observed responses versus those predicted by a multiplicative model (see Materials
and Methods) for neurons in A–F. I, Comparison between multiplicative (x axis) model and
additive ( y axis) model. Goodness-of-fit (r) values were quantified by the correlation coefficient
between observed and predicted responses across all neurons (n � 43). Multiplicative model
(median r � 0.91) generally provides a better fit than an additive model (median r � 0.86).
Asterisk indicate median value.
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coarse) textures, stimulus scale alone cannot explain V4 encoding
of shapes and textures.

Instead, our results support the hypothesis that the responses
of individual V4 neurons are informed by two largely separate
and independent computations that inform shape and texture
selectivity, respectively. Recent studies suggest that texture selec-
tivity may be based on computing high-order image statistics

from the visual image (Freeman et al., 2013; Okazawa et al.,
2015), whereas shape selectivity may be based on the structure of
larger scale contrast boundaries within the RF (Popovkina et al.,
2019). Modeling of neural activity with deep convolutional neu-
ral networks (CNNs) may provide additional clues into how the
brain builds a complex object recognition system from simple
earlier representations (Cadieu et al., 2014; Yamins et al., 2014).
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difference emerged at 100 ms after stimulus onset. B, Second example neuron showing delayed emergence of texture selectivity (shape-dependent modulation  51 ms; texture-dependent
modulation  88 ms; earlier onset was determined for small aperture texture condition). C, Across all neurons, onset of shape selectivity (x axis) is plotted against onset of texture selectivity (y axis).
Filled and open symbols represent large and small aperture conditions, respectively. Data points from the same neuron are connected by a vertical line. In a few neurons (data points without vertical
line), onset of texture selectivity could not be defined for one of the aperture conditions due to weak responses. Most data points lie above the diagonal line, indicating that texture information is
processed later than shape information. D, Marginal histograms for onset times for shape (gray), large aperture texture (black), and small aperture texture (white). Triangles represent the mean of
each distribution (shape � 55.72 ms, large aperture texture � 85.53 ms, small aperture texture � 85.78 ms). On average, onset of shape selectivity was �30 ms faster than onset of texture
selectivity.
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For example, a recent study that probed a CNN with shape stim-
uli like those used to study V4 neurons reported that units in
the middle layers of the CNN provide the best-known image-
computable model for V4-like translation-invariant boundary
curvature selectivity (Pospisil et al., 2018). Another study (Gei-
rhos et al., 2018) reported that, unlike human observers,
ImageNet-trained CNNs tend to classify objects according to lo-
cal textures rather than shapes, and this texture bias can be over-
come and changed toward a shape bias if trained on a suitable
dataset. Future work should seek to understand whether and how
shape and texture information is jointly encoded in CNNs.

Our results suggest that V4 includes a form-texture contin-
uum between two conceptually distinct endpoints, similar to that
in V1 for simple and complex cells (Hubel and Wiesel, 1968), or
in MT for pattern and component cells (Movshon et al., 1985). In
V4, “form cells” exhibit strong response modulation for shapes
but weak modulation for texture, whereas “texture cells” show
strong tuning for texture but weak tuning for shape. As in
analogous continua in V1 and MT, most neurons lie in be-
tween and exhibit moderate shape and texture tuning. Overall,
our results support the idea that partially overlapping subsets
of V4 neurons contribute to the encoding of shape and texture
in visual scenes.

Emergence of object representation in V4
One of the major challenges in natural vision is the segmentation
of objects from surround texture, a process critical for successful
object recognition (Thielscher and Neumann, 2003; Grigorescu
et al., 2004). Past studies have argued that mechanisms of contex-
tual modulation could facilitate object segmentation. For exam-
ple, the influence of surround suppression on neuronal responses
may be stronger for images that provide a homogeneous stimu-
lation of the RF and surround (Coen-Cagli et al., 2015). In par-
ticular, iso-orientation surround suppression could suppress the
encoding of uniform texture (Grigorescu et al., 2003; Wei et al.,
2013; Schmid and Victor, 2014) and enhance the representation
of object boundaries. Our discovery of stronger responses to
shapes in V4 is consistent with this process called detexturization
(Gheorghiu et al., 2014) and with psychophysical studies that
argue for a primary role for boundary information in object rec-
ognition (Biederman and Ju, 1988; Davidoff and Ostergaard,
1988; Elder and Velisavljevic, 2009; Fu et al., 2016). Because neu-
rons in V1 and V2 primarily encode surface characteristics (but
see border-ownership coding in V2) (Zhou et al., 2000), a pref-
erence for encoding objects in V4 could reflect its fundamental
role in the computation of object-based representations in the
ventral stream. Future studies with more diverse stimulus sets
will be required to determine whether our results hold up for
more realistic objects where form and texture are rendered with
3D realism.

V4 selectivity for perceptual dimensions of texture
Several recent physiological studies have documented selectivity
for naturalistic texture in V2 and V4, and have described such
selectivity on the basis of higher-order image statistics (Freeman
et al., 2013; Okazawa et al., 2015). Consistent with these previous
studies, we too find selectivity for texture in V4 neurons. But
because we quantified our texture stimuli in terms of regularity,
coarseness, and directionality (dimensions critical for human
texture perception), we provide the first documentation of V4
selectivity for perceptual dimensions of texture. These results are
consistent with results from lesion studies in V4 demonstrating
impaired texture segregation (Merigan, 2000; Allen et al., 2009),

and they support a prominent role for V4 in the perception of
textures.

However, our texture dimensions also had several limitations.
First, we matched mean luminance across textures, but not local
contrast (see Materials and Methods). So, further studies are
needed to determine whether texture selectivity depends on con-
trast. Second, we did not consider roughness (or gloss) as a tex-
ture dimension but previous studies in V4 (Arcizet et al., 2008)
and IT cortex (Nishio et al., 2012) have reported selectivity for
this stimulus attribute. Our dataset included neurons whose re-
sponses were well modulated by our texture stimuli, but not well
described by the linear texture model used here (Fig. 6E, open
circles above the diagonal line). So additional texture dimensions
may need to be considered. Finally, for the texture stimuli, regu-
larity was not entirely orthogonal to directionality and coarseness
(strong directionality or low coarseness (fineness) was often cor-
related with regular texture), but it is not known whether this is a
general relationship in natural textures.

Delayed emergence of texture selectivity
Previous psychophysical studies have argued that rapid natural
scene categorization is primarily mediated by edge-based repre-
sentations because surface information takes longer to influence
categorization performance (Elder and Zucker, 1998; Fu et al.,
2016). In the rodent somatosensory cortex, Isett et al. (2018)
recently found that local geometry (shape) information was pro-
cessed by instantaneous firing, whereas surface texture (rough-
ness vs smoothness) was processed by a slower rate code. Our
demonstration of delayed onset of texture selectivity in V4 is
consistent with these previous studies.

Models of coarse-to-fine processing postulate that the visual
system first processes low-SF content of the image that carries the
“gist” of the scene and that higher SF content, which provides
spatial detail, is processed more slowly (Oliva, 2005; Allen and
Freeman, 2006; Hegdé, 2008). Other models propose that scene
segmentation may be initiated from the detection of boundaries,
then followed by filling-in between the edges (Lamme et al., 1999;
Grossberg, 2003; Huang and Paradiso, 2008; Poort et al., 2012).
Recent studies hypothesize that texture selectivity in V2 and V4
may be based on computing correlations in activity among neigh-
boring neurons (Okazawa et al., 2015; Ziemba et al., 2016), which
may depend on lateral cortical connections known to be slower
than feedforward connections (Grinvald et al., 1994; Kim and
Freeman, 2014).

In conclusion, our results begin to unravel how shape and
texture information are multiplexed in individual V4 neurons
across time, and across the V4 population, to underlie the per-
ception of objects and surfaces.
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