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We study the ‘‘color weight” for a number of rather different paradigms. In well researched heterochro-
matic photometry methods we find that the ‘‘weights” determined by settings of naive observers are clo-
sely determined by the CIE luminance functional. This is very different for tasks that involve mid- and
high-level aspects of perception. In several cases we find equipollence for the display red, green and blue
channels. Moreover, in such cases the very nonlinear maximum-rule fits the data rather better than a lin-
ear functional. These findings are of interest when photometry needs to be applied for stimuli that are
different from the high temporal and low spatial frequency gratings typical for flicker photometry.
These results are relevant for science, ergonomics and art.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction M-cone spectral absorption functions, with the L-cones being
‘‘Luminance” has been one of the great success stories of the
20th century. It denotes the effect that lights of different wave-
lengths have on the visual system. A standardized version of lumi-
nance was established by the CIE in 1924, when it was realized that
there was a good method that led to reliable results across differ-
ent observers. This method was heterochromatic flicker photome-
try, in which observers minimize the visible flicker of two
alternating lights of different wavelengths by adjusting their rela-
tive intensity. The CIE 1924 V(k) function represents the average
empirical functions of many observers, amended by other mea-
surements mainly at the short-wavelength end of the spectrum.
The major advantage of heterochromatic flicker photometry is
the additivity of the resulting luminance values, termed Abney’s
Law. The luminance of two mixed lights is the sum of its individual
luminances. This way, the luminance of any broadband distribu-
tion of light can be determined by multiplying it with the V(k)
function and adding over wavelength. The standard observer can
thus be incorporated into a physical measuring device, which
sometimes makes people forget that the device is measuring a
photometric quantity that is based on human visual sensitivity.

Luminance also seems to have a physiological counterpart. The
V(k) function can be described as a weighted addition of the L- and
weighted by a factor close to 2. There does not seem to be input
from the S-cones to luminance. This weighting is similar to the
way magno-cellular retinal ganglion cells and geniculate cells
add their cone-inputs (Derrington, Krauskopf, & Lennie, 1984;
Lee, Martin, & Valberg, 1988). These early-stage neurons primarily
underlie the visual system’s response at high temporal frequencies,
and are now thought to be the physiological substrate for photo-
metric luminance, as determined by flicker photometry. Notably,
when visual stimulation equates the luminance of its components
to achieve ‘‘iso-luminance” or ‘‘equi-luminance”, some aspects of
visual perception behave qualitatively different, in particular
motion perception. All of this supports the notion that photometric
luminance is firmly grounded in the human visual system.

Despite these overwhelming advantages of using photometric
luminance as a way to measure the effectiveness of lights to stim-
ulate the visual system, there are some drawbacks as well. Flicker
photometry by definition uses relatively high temporal frequen-
cies, and numerous experiments have shown that the precise
way cone inputs are weighted does depend on the temporal and
spatial aspects of the stimuli (e.g., Gegenfurtner & Hawken, 1995;
Stromeyer, Chaparro, Tolias, & Kronauer, 1997). Even more
important is the obvious shortcoming that luminance covers only
one – arguably important – aspect of our perceptual experience.
It is in strong disagreement with our experienced subjective
weighting of different lights. Therefore a similar functional was
established based on heterochromatic brightness matching
(Commission Internationale de l’Eclairage, 1988). The resulting
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spectral sensitivity curve is distinctly different from V(k), but due
to failures of additivity it is not widely used.

On a generic display unit the red, green and blue channels have
luminances in (roughly) the ratios R:G:B = 3:6:1 (CIE Proceedings,
1988; Eisner & MacLeod, 1980; Smith & Pokorny, 1987). Since
luminance is a linear functional of spectral radiant power density,
this implies that a bright blue r = g = 0, b = 1 will be equiluminant
with a ‘‘yellow” r = g = 0.1, b = 0 (where we assume that the maxi-
mum of any RGB-channel is 1). Unless in a completely dark room
with no other lights present, this ‘‘yellow” will look like a dark drab
brown, not appearing yellow at all (Buck, 2014). It will never bal-
ance against the bright blue. The closest ‘‘balance” between the pri-
mary colors of the display unit for graphical applications appears
to be more like R:G:B = 1:1:1, the ‘‘equipollent” condition. Indeed,
the ‘‘principal” colors

R ¼ f1;0;0g;Y ¼ f1;1; 0g;G ¼ f0;1; 0gÞC ¼ f0;1;1gÞ
B ¼ f0;0;1g;M ¼ f1;0;1g ð1Þ

appear to mutually balance each other, implying that the
‘‘weight” functional is all but linear, but something more like
max[r,g,b]. On the display unit white (W = {1,1,1}) is the union of
R, G and B, thus these primary colors appear like ‘‘parts” of white.

In this study we compare a set of eight mutually quite distinct
paradigms that require observers to ‘‘balance” all pairs of the prin-
cipal colors R (red), G (green), B (blue), C (cyan), M (magenta) and Y
(yellow). We attempt to fit the results with a linear functional of
the type wR R+wG G+wB B (the numerical coefficients to be
adjusted appropriately). We focus primarily on color alone. How-
ever, it is in no case necessary to explain colorimetric concepts to
the naive observers. Indeed, we avoid any discussion of color as
much as possible. Our study is aimed at addressing ‘‘weight”, not
‘‘luminance”, ‘‘saturation”, or something like that. The ‘‘weight”
will typically be in the compositorial sense (Monroe, 1926;
Morriss, Dunlap, & Hammond, 1982; Pinkerton & Humphrey,
1974; Wright, 1962; MacManus, Edmonson, & Rodger, 1985;
Locher, Overbeeke, & Stappers, 2005; Mokaran, 2007; Parada-
Castellano, 2016; Wise & Wise, 1988).
2. Methods

2.1. Display

The display is the screen of an Apple MacBook Pro 15” (mid
2007 model). It was spectrophotometrically calibrated with a Kon-
ica Minolta Spectroradiometer CS-2000A (Konica Minolta Holdings
Inc., Marunouchi, Tokio, Japan). The luminance of the display white
was 317 cd/m2. The display was linearized using the Bergdesign
SuperCal method (To, Woods, Goldstein, & Peli, 2013). The white
point was x = 0.312, y = 0.339. The R,G,B primaries of the monitor
had CIE 1931 xyY color coordinates of R = {0.5995, 0.3406, 68.9},
G = {0.3259, 0.5723, 197.4}, and B = {0.153, 0.1346, 53.2}. In the
following, we will indicate colors in terms of the linear display
Red, Green and Blue.

Notice that the relative R, G, B colorimetric coordinates of most
monitors are approximately the same. This is no coincidence, as
the optimal choice maximizes the volume of the monitor gamut
relative to that of the color solid. The optimum can be computed
from the CIE color matching functions and the standard daylight
spectrum (see Koenderink, 2010). Not surprisingly, all monitors
come close. The choice of the primaries R, G, B automatically fixes
the C (=G+B), M (=R+B), Y (=R+G) secondaries. Here we use ‘‘princi-
pal colors” for the set RYGCBM (these are special in the above men-
tioned sense, we do not imply any relation to opponent colors). The
principal colors are also constrained by our visual system. The sum
of R and G has to be balanced with respect to the red-green color-
opponent mechanism, resulting in a unique yellow. Similarly, the
sum of R, G, and B has to be balanced with respect to both oppo-
nent mechanisms, resulting in a neutral white.

2.2. Presentation

Observers viewed the display binocularly from a distance of
57cm, using their preferred optical correction when necessary.
The full screen measures 20 by 33 degrees of visual angle, although
many of the paradigms use only a minor part of that. See Fig. 1 for
an illustration of the paradigms.

The presentation software was written in Processing2+ (http://
procesing.org), a variety of Java aimed at artists and designers. It
allows full spatial, temporal and colorimetric control for our needs
and allows fast development. User interaction was limited to the
use of the left–right and up-down arrow keys, whereas the space
bar signified user initiated next trial.

Unless mentioned otherwise (see paradigm VIII below), a fixa-
tion cross was omitted, indeed, free viewing was considered
natural.

2.3. Observers

Seventeen observers participated in the experiment. Ten obser-
vers were students of the Justus Liebig Universität at Giessen, Ger-
many. These were predominantly female and in their early
twenties. Their color vision was checked by the Ishihara test, all
passed. Seven observers were staff members with some knowledge
of colorimetry. Where this becomes critical in the analysis it will be
mentioned. Our experiment was in agreement with the Helsinki
declaration, was approved by the local ethics committee (LEK
2013-0018) and all observers provided informed consent.

3. Experiments

In all cases we seek to determine a ratio of ‘‘equal weight” for a
pair of principal colors, say F1 and F2. It is repeated for all pairs of
(distinct) principal colors R, G, B, C, M and Y. Because we want to
stay as close to the full-strength principal colors as possible, one
color is attenuated, the other kept at full strength.

Thus an equality aF1 = F2 will be reported as a ratio R12 = 1/a,
whereas the equality F1 = a F2 is reported as R12 = a. In the
analysis we work with logarithmic representations. This implies
log R12 = �log a in the former and log R12 = log a in the latter case.
Thus the equipollent case F1 = F2 leads to log R12 = 0. The parameter
a automatically switches over from one side of the equation to the
other as the observer passes equipollence. None of the observers
noticed this happening.

In all cases a warning signal (far outside the stimulus area) is
provided to notice the observer that one or the other limit of the
parameter range was reached.

Observers were instructed to start a trial by looking at either
extreme, then use large increments to find the approximate envi-
ronment of the point of balance, finally switch to small increments
to do their setting. In some cases the region of subjective equality
is ill defined and all the observer can do is indicate the approxi-
mate ratio using the large increments. In other cases a single small
increment might be close to a just noticeable difference. Trials are
started at random settings of the ratio.

The various paradigms are visited in random order, different for
each observer.

3.1. The paradigms

Heterochromatic photometry has a long history, perhaps start-
ing with Abney’s work (Abney & Festing, 1886; Burns, Smith,

http://procesing.org
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Fig. 1. This figure shows momentary screen grabs for the eight experiments. Although they yield a true view of the geometry (screen size was 20 by 33 degrees of visual
angle), they cannot suggest the nature of the dynamic structure. Moreover, they show just one colorimetric setting, whereas the program changes settings from case to case
and the observer has continuous control over certain parameter combinations. Thus the actual view may be very different from these examples. From left to right, top to
bottom: I. Pictorial content. The two hues alternate at a fairly low rate. At some setting the picture becomes unrecognizable. II. Split-field comparison. The presentation is
static. At some settings the figure ‘‘looks balanced”. III. Figure-ground segregation. The presentation is static. At some setting figure/ground switches or becomes undefined.
IV. Minimum flicker. The color of the field alternates at a high rate. One is aware of an ‘‘unrest”. At some setting the unrest is minimally noticeable. V. Perceptual Grouping.
The figures may be seen as a star or as two triangles, usually a left and a right pointing one. At some settings neither the left nor the right pointing ‘‘wins”. VI. Indirect
comparison. Here the two disks are static, but the background very dynamic: the noise pattern is refreshed at frame rate. This renders the gray level of the background
ambiguous (‘‘both light and dark”). At some setting the ‘‘weight” (in the sense of pictorial composition) of the two disks balances. VII. Legibility The presentation is static.
Large type tends to be legible, but small type may be illegible. The observer attempts to find the setting that allows the finest print to be read. VIII. Apparent rotation. This uses
a dynamic presentation, so the figure only suggests the geometry. Typically the observer is aware of either clockwise or counterclockwise rotational movement. At some
setting the rotation gives rise to a ‘‘vibration” and moves neither clockwise, nor counterclockwise.
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Pokorny, & Elsner, 1982; Lennie, Pokorny, & Smith, 1993; Wagner
& Boynton, 1972; Walsh, 1965). ‘‘Color weight” is something else
again (Alexander & Shansky, 1976; Bullough, 1907), although at
least ‘‘related”. We use ‘‘color weight” in the sense of pictorial com-
position, related to what has been termed ‘‘Prägnanz” by
Wertheimer (1923). It is somewhat related to measures of salience
used in visions science and computer vision (see Itti, Koch, &
Niebur, 1998; Tatler, Hayhoe, Land, & Ballard, 2011 for a recent
review and criticism), although both terms are used in various
senses. We prefer to use ‘‘color weight” in an operational sense,
leaving open the possibility that it might be method dependent.
We used the following paradigms, listed in conceptually arbi-
trary order. We will use the roman numerals I, II. . .VIII, to refer
to these instances in the main text. There are various alternatives
that we considered, but eventually did not include (Cooper & Lee,
2014). Several of these methods are in common use, or have at
least been described and investigated before. Some methods are
apparently novel, such as the indirect comparison on a nondescript
background. We make no particular claims as to originality here.
We also did not try to emulate existing methods. We did decide
on the methods on purely phenomenological grounds. All the stim-
uli are illustrated in Fig. 1.
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3.1.1. Paradigm I: Pictorial content
This is a case on which some literature exists (Cavanagh, 1991;

Kindlmann, Reinhard, & Creem, 2002; Livingstone & Hubel, 1987,
1988). A monochrome photograph is default rendered by mapping
pixel intensity i (say) on the achromatic color i W + (1 � i) K, where
‘‘K” (‘‘key” in the printer’s jargon) stands for black (that is {0,0,0}),
but it may also be chromatically rendered as i C1 + (1 � i) C2, where
C1 and C2 are any two distinct colors. When either C1 = K or C2 = K
one obtains a ‘‘normal” (though ‘‘colored”) image that is easily rec-
ognized for what it is. But for certain choices of C1 and C2 it may be
very hard to become aware of the pictorial content. This is the case
for so-called ‘‘equiluminant” images. In the presentation images
toggle between a ‘‘positive” and a ‘‘negative” (in the sense of the
silver-based photography of the past). The toggle frequency is 2 Hz.

3.1.2. Paradigm II: Splitfield comparison
This case is familiar as ‘‘photometry by direct comparison”. The

test field is composed of two abutting geometrically identical
patches, classically two ‘‘half fields” of a circular disk split by its
vertical diameter (Boynton & Kaiser, 1968). The conventional task
is to ‘‘minimize the distinctness of the border”, whereas our task
is explicitly to ‘‘balance the left–right weights”. In the case of this
paradigm the background was a constant medium gray.

3.1.3. Paradigm III: Figure-ground segregation
A chess board is perceived as a regular pattern of white and

black squares. When the squares are filled with distinct colors it
may be hard to become aware of the chess board pattern at all. This
is the case for so-called ‘‘equiluminant” colors (Livingstone &
Hubel, 1984), that is to say, this paradigm is one possible opera-
tional definition of ‘‘equal weights” out of many. In our implemen-
tation we use a texture composed of a mosaic of two different
shapes, either of which can appear as either figure or ground, much
like the familiar Rubin faces–vase figure. At one side of the equilib-
rium point one sees one pattern, at the other side the other pattern.
Near equilibrium there is no evident pattern. Depending on the
hues one hardly notices a texture at all, the colors appear to ‘‘melt
into each other”.

3.1.4. Paradigm IV: Minimum flicker
Look at a circular disk filled with one of two colors that toggle at

a fairly fast rate (18 Hz frame rate). For certain pairs of colors the
alternation becomes hard to notice. This is the classical case of
‘‘flicker photometry”. In some cases the flicker will completely van-
ish at some ratio, in others there will remain a hard to describe
spatiotemporal ‘‘unrest”, which has to be minimized. The method
is generally preferred because known to lead to linear behavior
(de Vries, 1948; Ikeda, 1983; Ives, 1912; Le Sueur, Mollon,
Granzier, & Jordan, 2014; Pokorny, Smith, & Lutze, 1989).

The nature of the ‘‘unrest” left at the setting of ‘‘minimum
flicker” is very hard to describe and probably idiosyncratic. One
simply has to trust that observers ‘‘know” how to minimize it
(see Pokorny et al., 1989). The circular flickering patch was pre-
sented on a medium gray background.

Residual flicker can be minimised using a phase shift, although
it is rarely possible to achieve the impression of a static field. We
did not use such an additional control parameter, as it would ill
fit our general paradigm. Moreover, it is unclear how to interpret
a phase shift in the context of pictorial weight. In practice, no par-
ticipant had specific problems in minimising the degree of residual
unrest in the field.

3.1.5. Paradigm V: Perceptual grouping
Perceptual grouping depends on the balance of colors too

(Takahashi, Ohya, Arakawa, & Ishisaka, 2010). We use a configura-
tion of two equilateral triangles each oriented with one side verti-
cal, one triangle pointing to the left, the other to the right. The
triangles were superimposed, their barycentra coinciding, thus
appearing as a hexagonal star. The intersections define seven areas,
a regular hexagon and six small equilateral triangles. The latter we
group in sets of three, ‘‘belonging” to one of the large equilateral
triangles. Depending upon the coloration one becomes immedi-
ately aware of an arrow pointing left, or, in other cases of an arrow
pointing right. It crucially depends upon the colors of the parts. For
some choices of colors it becomes very hard to decide whether the
configuration points to the left or to the right. This may be taken as
an operational definition of ‘‘equal weight” of the colors. Experi-
enced observers might note that the triangles might not point left
or right, but in some oblique directions. In practice, none of the
participants remarked upon this. We used a randommosaic of gray
tones as background, uniformly distributed on (0.25–0.75). Thus
the luminance of the background is not precisely defined.

3.1.6. Paradigm VI: Indirect comparison
We present two equally sized circular disks at some separation

on a neutral background. The geometry is symmetrical with
respect to the frame. The disks are filled with distinct colors. In
some cases one notices an unbalance to one side, in other cases
an unbalance to the other side. For certain color choices the ‘‘com-
position” may become ambiguous, or ‘‘perfectly balanced”. In this
paradigm a random noise background is used, refreshed at
frame-rate. It looks a bit like a snowstorm, having no particular
gray-tone, which is the reason for this choice. This is an important
condition, since we want to compare the two disks with each
other, not each disk with its background. With this type of dynamic
background the disks are neither lighter nor darker than the
ground. This is the reason for this choice.

3.1.7. Paradigm VII: Legibility
Black type (of some reasonable size) printed on a white page is

perfectly legible, so is white type printed on black paper. But type
of certain colors printed on certain (different!) backgrounds may
become illegible. This may be taken as another operational defini-
tion of ‘‘equal weight” of the colors. The paradigm seems perhaps
somewhat related to the ‘‘minimally distinct border” method
(Gunther & Dobkins, 2005; Kaiser & Greenspon, 1971; Lindsey &
Teller, 1989; Pokorny, Graham, & Lanson, 1968; Pokorny et al.,
1989; Schwarz, 1956) and acuity criteria (Ingling, Grigsby, &
Long, 1992).

In our implementation we used an array of text set in various
font sizes, similar to an acuity test chart. The largest type was leg-
ible in all color combinations, the smallest type was never legible.
The participants were free to base their setting on the top or bot-
tom half of the display, but were asked to divide their attention
about equally.

3.1.8. Paradigm VIII: Apparent rotation
Richard Gregory proposed an ingenious method in which to

compare two colors with a pair of light and dark achromatic colors,
using the phenomenon of ‘‘apparent motion” (Cavanagh & Anstis,
1991; Cavanagh, MacLeod, & Anstis, 1987; Chaudhuri & Albright,
1990; Gregory, 1985; Kaiser, Vimal, Cowan, & Hibano, 1989). This
may be taken as yet another operational definition of ‘‘equal
weight” of the colors. It is usually implemented as a translation,
the observer typically being aware of vertical bars, either moving
to the left or to the right. At some well defined ratio of the weights
the motion apparently stops. In our implementation we used a
rotating wheel layout. The observer typically notices clockwise or
anti clockwise rotating sectors (instead of bars), except in a ‘‘bal-
anced” condition where the wheel ideally would come to a stand-
still. For this paradigm a fixation mark has to be provided, because
in this case small eye movements tend to interfere with the task.
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The rotational method implemented here is advantageous because
fixation is much easier than in the case of translational motion. Far
from equilibrium the rotation movement dominates the aware-
ness, near equilibrium one has a confused experience of ‘‘flicker”,
or ‘‘irregular motion reversals”. Various participants complained
it gave them a headache. However, the equilibrium point could
be precisely set by all participants.

In all case the participants used the arrow keys of the keyboard
to control the relevant parameter. Pairs UP/DOWN and LEFT/RIGHT
allow slow and fast rates of change. The space bar was used to sig-
nal completion of a setting. When the parameter reached the upper
or lower limit its value was clipped and the participant received a
notice in one corner of the screen. After each setting the next pre-
sentation appeared with randomly chosen initial parameter value.
The sequence of presentations was randomised for each
participant.
4. Analysis

Overall, the experiment yields a large dataset, since there are 6
(6 � 1)/2 = 15 pairs of principal colors, thus 15 * 8(number of para-
digms) = 120 measurements per observer. With 17 observers this
implies 2040 measurements, each measurement represented as a
real number (the natural logarithm of the ratio) between minus
and plus infinity. In practice the range turned out to be limited
to (�0.15,+1.1).

There are numerous ways to analyze such data. We start by dis-
cussing the initial analysis for two paradigmatic cases, namely
minimum flicker (IV) and indirect comparison (VI). In the first case
one expects to find that CIE luminance explains the data, in the sec-
ond case probably not. We show results of observer #2, but very
similar results are encountered for the others.

The raw settings of observer #2, paradigm IV are illustrated in
Fig. 2 left. These raw data form the input for all further analysis.
Can these ratios be explained through a linear functional wRR
+wGG+wBB for some triple of weights (subject to the conditionwR+-
wG+wB = 1)? Then one could summarize 15 independent observa-
tions through only 2 degrees of freedom, a major gain. Of course,
the very existence of such a functional implies that there should
be no ‘‘intransitive triangles” (Thurstone, 1927), that are cases of
ratios a/b, b/c, c/a such that

log½ða=bÞðb=cÞðc=aÞ�–0 ð2Þ
A numerical check yields 20 intransitive triangles in this case,

that is 100% of the possible triples. Of course, this is trivial because
Fig. 2. Left. The raw settings of observer #2 for the flicker paradigm (IV). There are 15 di
charts indicate the ratios set by the observer. Right. The raw settings of observer #2 for th
for the case of flicker (IV). The settings are very different.
exact zeroes never occur in real life, a better measure of the intran-
sitivity is the range or variance of these values. Granted the exis-
tence of intransitivities, one needs to fit the function in some
‘‘best” sense. It is of some interest to see which triples are mostly
involved in such intransitive behavior though. Here R-C-Y is worst,
R-G-B next.

We attempt to fit such a functional to the observations by min-
imizing the sum of squares of the differences of the predictions of a
given model with the actual responses. The result is wR:wG:
wB = 0.231:0.590:0.179, which happens to be very close to the
CIE luminance ratios of the display primaries (0.223:0.602:0.175),
as measured with a spectroradiometer. Using these weights one
can ‘‘explain” all observations. The fit is very good, with R-
squared at 0.96. Thus, for observer #2 and paradigm IV, the CIE
convention works fine and one might say that our experiment
was really superfluous and only affirmed general wisdom.

Of course, (non-)linearity comes in degrees. For instance, one
might attempt to fit a more general Minkowski functional such as

Wðr; g;bÞ ¼ ðwRrn þwGgn þwBb
nÞð1=nÞ ð3Þ

The best fitting Minkowski exponents have values close to one,
scattering a bit, depending upon the observer. (This may be taken
as an empirical proof of the CIE luminance notion.) Fig. 3 illustrates
the case for observer #2 and the minimum flicker paradigm (IV).
Here the best fitting exponent is slightly larger than one, about 1.2.

Next consider the case of indirect comparison (VI) for the same
observer #2. Here the raw settings look rather different (Fig. 1
right). In this case (paradigm VI) the transitivity violations are
about two times as large as in the previous case (paradigm IV).
(For observer #2 the median transitivity violation for paradigm
VI is 1.99 as large as that for paradigm IV.) The fit of the linear func-
tional does not so well, the R-squared being only 0.230. In this case
a very nonlinear functional,max[wR r, wG g, wB b], works much bet-
ter, for R-squared increases to 0.570. The best fitting weights are
wR:wG:wB = 0.332:0.361:0.307, very close to equipollent. The dif-
ference between these two cases is huge, as Fig. 4 illustrates.

Whereas one finds best fitting Minkowski exponents near to 1
in the flicker case, one finds about 4 or higher in the indirect com-
parison case. The maximum rule does about as well as a high expo-
nent, whereas an exponent of two (‘‘Guth’s vector model” [Guth &
Lodge, 1973]) is significantly worse, although better than 1 (the CIE
luminance).

Almost all observers yield results very similar to what was
shown for observer #2. When analyzing the results of all observers
the main choice is to use a kind of ‘‘exploratory data analysis”, or to
stinct principal color pairs that have been compared. The angular sections of the pie
e indirect paradigm VI. One should compare these settings to those in the left figure



Fig. 3. A search for the best fitting Minkowski exponent (Eq. (5)) yields values close
to one for the flicker paradigm (IV; this is observer #2). Of course, it is only to be
expected that one often finds values slightly different from one that do a little better
than exactly one. For strong conclusions one needs to consider the influence of
scatter in the data.
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apply a more focussed method akin to ‘‘factor analysis”. It is found
that many different methods eventually converge on very similar,
or even identical results. We discuss a method that is focussed and
direct, only summarily mentioning similar results that can be
obtained by (very) different means.

A major shortcut would be to represent the raw settings of an
observer (15 numbers) through a single scalar. This is only possible
if one imposes some prior structure though. Here we introduce the
notion that the anchor points of the results should be the linear CIE
luminance functional and the equipollent, nonlinear (max-rule)
condition. This turns out to be reasonable because essentially the
same results are obtained using clustering on the raw data or prin-
cipal component analysis (PCA). Given these empirical findings, the
focussed method is to be preferred, since – for instance – the first
principal component (PC) is very close to CIE luminance, though
inevitably different because of the random variations in the data.
That is why focussed methods yield ‘‘cleaner” results. Their main
drawback is that one might miss unexpected features. We have
explored the general methods (like PCA, or clustering) far enough
that one can rest assured that nothing of possible interest is
ignored.

In the case of the CIE linear luminance functional one expects a
certain set of ratio observations, for the equipollent max-rule case
one expects all ratios to be essentially equal to unity. Thus one way
Fig. 4. The best fitting weights for observer #2 in flicker (IV, shown at left) and the indire
to the equipollent condition. Moreover, the former applies to a linear, the latter to a ver
to compress the data is to project the ratios on the vector predicted
from CIE luminance. By suitable normalization one obtains a scalar
that will be zero for the equipollent and one for the CIE luminance
case. Doing this reduces the data set to a data matrix of 8 (number
of chromatic paradigms) by 17 (the number of observers). That this
is ‘‘reasonable” follows from the fact that the R-squared between
the CIE luminance and the first principle component of the raw
data is 0.981. The first principle component explains 32.4% of the
variance. (Fig. 5 left shows an example for one observer: the obser-
vations correlate very well with the luminance prediction.) Appar-
ently the difference between the ‘‘focussed” and the ‘‘exploratory
data analysis” (no prior assumptions) approaches is not so large.
However, it needs 7 PCs in order to explain 75% of the variance,
so there is quite a bit of non-luminance-related variation. Since
the equipollent max-rule prediction is the null-vector, there can
be no PC that specifically correlates with it. The unavoidable spread
in the observations (Fig. 5 right) causes contributions to all PCs,
including the first one.

This is a really major reduction. One expects the matrix ele-
ments to be in the range zero to one, perhaps clustering on zero,
one, or both zero and one. The actual result is something a little
more diffuse, as is evident from the histogram shown in Fig. 6.

The next simplification is to reorder the paradigms and the
observers so as to bring the data matrix into a more meaningful,
especially simple order. It is achieved through sorting on the sum
of matrix elements in rows or columns. The result is shown in
Fig. 7. Apparently the choice of paradigms is such that roughly
equal amounts of the two different types are present.

The sorting yields a meaningful ordering of paradigms as well
as a meaningful ordering of observers, whereas the raw data
matrix is in strong disarray. The paradigms are in the order shown
in Table 1.

The top of this order is most like the linear CIE luminance func-
tional, the bottom represent cases that are much more like the
equipollent, max-rule case. A clustering on the raw data (explora-
tory data analysis without prior assumptions) yields four clusters.
The first cluster contains mainly (92%) paradigms I, VII and IV, the
second cluster mainly (72%) paradigms II and VI, the third cluster
mainly (69%) paradigms III, VIII and (some) IV, whereas the fourth
cluster is 91% paradigm V. Apparently, the first cluster contains the
linear cases, the second and fourth clusters the most nonlinear
ones. Another way to check this is to look at the fraction of cases
in which a linear function fitted the observations better than a
nonlinear one. This is 89% for cluster 1, 97% for cluster 2, 49% for
cluster 3 and 0% for cluster 4. Thus only cluster 3 (paradigms III,
ct paradigm (VI, shown at right). The former is close to the CIE luminance, the latter
y nonlinear functional, the max-rule.



Fig. 5. Regression of the observations against the luminance functional predictor. The log-ratios as determined by the linear CIE luminance functional are plotted on the
vertical, the observed log-ratios on the horizontal axis. For the minimum flicker paradigm (shown at left) the data closely follow the CIE luminance as derived from the
spectrophotometric data. (Of course, using the best fit linear functional for this observer does even better.) In case of the direct comparison paradigm (shown at right) the R2

for this observer drops to 0.29. The observed ratios all cluster on zero (the dashed vertical line), that is the equipollent condition.

Fig. 6. The smoothed histogram of all (17 * 8 = 136) coefficients of the data matrix.
Notice that it is far from normal, but more akin to a uniform distribution. Of course,
things are smeared out because all observers and all methods have been pooled.
There is already a slight hint that both the equipollent and the CIE luminance limits
might prove to be of relevance. (Vertical scale is the probability density.)

Fig. 7. At left the data matrix. At center the matrix has been sorted by column, followed
represents an observer, each column a paradigm. The white-black color scale is centered
the CIE linear functional, white to the equipollent max-rule case.

Table 1
The paradigms in the order indicated by the doubly sorted data matrix.

1. Legibility (VII)
2. Pictorial content (I)
3. Minimum flicker (IV)
4. Figure-ground segregation (III)
5. Perceptual grouping (V)
6. Apparent rotation (VIII)
7. Direct comparison (II)
8. Indirect comparison (VI)
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VIII and IV) can be considered ‘‘mixed”. The dendrogram shown in
Fig. 8 yields additional detail. Clustering on the raw data thus
yields results that reflect the order quite well.

The order of observers is also highly relevant, but it makes little
sense to list it here because the observers are treated anony-
mously. In examples it evidently makes a difference whether
at right sorted by row. This already shows much of the relevant structure. Each row
at the median and runs between the 10% and 90% quantiles. Black means affinity to



Fig. 8. Dendrogram on the raw data using Ward linking showing some major
clusters. The comparison methods (II and VI) split off first, then Perceptual grouping
(V). Figure-ground, flicker, legibility and pictorial structure cluster together, as
shown by the highlighting.
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observers are selected from the top or the bottom of the order. The
colorimetric ‘‘professionals” prove to be not different from the
‘‘naive” observers.
Fig. 9. Left: The top (drawn) and bottom (dashed) rows of the sorted data matrix (the
columns of the matrix (the extremes of distribution over observers). Here the fundament
rule becomes very explicit. (Vertical scale indicates probability density.)

Fig. 10. At left the RGB-weights for each paradigm over all observers. At right the
The top and bottom rows and left and right columns of the data
matrix summarize much of the results. These are shown as
smoothed histograms in Fig. 9.

Yet another way to look at the result is to check the conformity
to the CIE linear luminance functional and the equipollent max-
rule for all paradigms. A first overview is obtained by studying
the observations in the RGB-chromaticity diagram (Fig. 10).

The data suggest that there are significant idiosyncracies,
although it is not really possible to distinguish these from random
scatter. In order to check for this we had a number of observers
repeat settings fifteen times. Because this is very time consuming,
the number of principal colors was limited to just red, green and
blue and the methods to indirect comparison (VI, strongly nonlin-
ear) and legibility (VII, linear). The result is presented in Fig. 11.
The conclusion is clearcut: the spread for individual observers is
much less than the spread for the group. Especially the weights
for the linear case (VII, legibility) are seen to be somewhat idiosyn-
cratic. The weights for the nonlinear case (VI, indirect comparison)
cluster closely on the equipollent point.

The segregation into two different regimes is apparent from the
pooled data of all individual settings in Fig. 11. There exists a linear
discriminant (e.g., the line connecting yellow and cyan) such that
the data for the two methods are fully separated. This implies that
the odds against the data to derive from a single distribution are
extremes of distribution over methods). Right: The left (drawn) and right (dashed)
al dichotomy between the linear CIE luminance functional and the equipollent max-

cut-out rectangle (indicated in the RGB-triangle at left) has been magnified.



Fig. 11. The spread for settings by individual observers (distinguished by color) in the RGB-chromaticity diagram (left). At right the enlarged region indicated at left as
rectangular outline. The covariance ellipses are for one standard deviation. The black crosses indicate the CIE luminance prediction and the equipollent point. The results for
paradigm VII (legibility) cluster around the former, those for paradigm VI (indirect comparison) about the latter. For analysis purposes we arbitrarily set the height of the
triangle to have unit length.

Fig. 12. The fraction of variance of the raw data (log-ratios) explained by the CIE
linear luminance functional derived from the spectrophotometric display calibra-
tion. The paradigms are in the order established above. Apparently, the fraction
explained decreases almost monotonically in this order. Left to right: legibility (VII),
pictorial content (I), minimum flicker (IV), figure-ground segregation (III), Percep-
tual grouping (V), apparent rotation (VIII), direct comparison (II), indirect compar-
ison (VI).
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6.18 � 1026. This is overwhelming evidence that the distributions
for the two methods are perhaps not the same. Next consider the
case per observer in more detail. At a first, coarse, estimate, the dis-
tances in the chromaticity diagram between the means of their set-
tings for the two methods ranges from 0.317 to 0.439 (median
0.410), whereas the spreads range from 0.014 to 0 0.036 (median
0.025). The ratios of distance over standard deviation (z-scores)
range from 12.1 to 21.8 (median 14.7). This strongly suggests that
the segregation between the two regimes extends to each individ-
ual observer. These numbers are perhaps somewhat suspect,
because the chromaticity diagram has the structure of the projec-
tive plane (no Euclidian metric) and the individual settings are not
necessarily normally distributed. A method based on rank orders is
perhaps to be preferred. In comparing two point sets one such
statistics uses the frequency distribution of in-cluster distances
to that of the between-cluster distances (Liu & Modarres, 2011).
The standard Mann-Whitney test can then be used to compare
these distributions. For the comparison of methods per observer
we found that the ratio of the medians of the distances varies
between 7.64 and 12.8 (median 9.22). The Mann-Whitney tests
yielded p-Values that are all less than 0.0001. Thus we can indeed
extend the above finding to all individual observers. This raises the
question whether the observers are mutually different? The same
non-parametric method can be used for this. We found that in
the vast majority of cases the p-values were smaller than 0.001,
indicating that the observers are indeed mutually different. There
was only one exception when the p-value was larger than 0.05.
The overall conclusion is that there exist idiosyncratic differences
between observers but that all observers are very different (in
the same way) for the two tasks VI and VII. Therefore it is highly
likely that increasing the number of repeats per observer would
not change this conclusion.

The conformity to the CIE linear luminance functional can be
checked by looking at the difference between the actual observa-
tions and the prediction by the CIE luminance functional, pooled
over all observers for any given paradigm. This is a very conserva-
tive test, since any observer apparently has ‘‘best fitting” weights
different from the colorimetric weights. The latter have been
derived from the spectrophotometric calibration of the display unit
and the CIE 1961 xyz tables. For some paradigms this explains
more than three-quarters of the variance, for others as little as
one percent (Fig. 12). In the order established above one obtains
a near monotonic relation (Kendall’s tau 0.93). This neatly corrob-
orates the interpretation.

For the equipollent max-rule such an analysis is not possible
since the prediction would be that all observations – the log-
ratios – should be identically zero. Here the luminance prediction
should suggest a certain pattern that simply would fail to apply.
A way to check this is to look at the ranges of the raw data and
the difference between the raw data and the luminance prediction
(Fig. 13). Indeed, one encounters exactly the expected pattern. For
paradigms that conform to the CIE luminance the data range is
large and subtracting the prediction brings them down to a low
level. In contradistinction, for paradigms that do not conform to
the CIE luminance the data range is small and subtracting the pre-
diction puts them up to a high level. Again, the distribution over
the paradigms is close to monotonic (Kendall tau 0.86).



Fig. 13. The interquartile ranges of the raw data (dark gray bars) and the differences between the raw data and the CIE luminance prediction (light gray bars). The paradigms
are in the order established above. At the left side almost all of the range of the raw data is due to luminance. At the right end of the scale subtracting the luminance prediction
increases the scale. The range of the raw data is probably simply random variation. Notice the almost monotonic dependence on the order.
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5. Conclusions

As evident from the formal analysis, there exists a clearcut
dichotomy between the linear CIE functional and the equipollent
max-rule. This is apparently the difference between colorimetry
proper (in the conventional CIE sense) and what graphical artists
consider ‘‘simple eye measure”. This suggests that there is a very
real need for a variety of ‘‘color science” that deviates from conven-
tional scientific (that is colorimetric) wisdom. As mentioned in the
introduction, this is hardly new, nor surprising, but – perhaps
unfortunately – it fails to be generally recognized in vision science.
Note that a similar ‘‘max-rule” had been proposed by Land for his L,
M, S channel normalization (see Land, 1964; for review, see
McCann, 2017).

There remain a few observations that appear somewhat surpris-
ing and perhaps not without interest. One is that the simple max-
rule beats the familiar proposals for nonlinear brightness func-
tions, such as Guth’s ‘‘vector model”, for our data set. More impor-
tantly, the dichotomy is not perfect. There appears to be a
spectrum of results that depend upon the particular operational-
ization of ‘‘color weight”. Of course, it is common knowledge that
the various methods usually designated ‘‘heterochromatic pho-
tometry” mutually diverge widely. Some are linear, some are not,
and that to various degrees. The major advantage of additive mea-
sures such as luminance is, of course, that they can be directly
computed from the wavelength distribution of lights. This is not
possible with the non-linearities that are present in some of our
color-weight measures.

We propose that this indicates an interesting field of endeavor,
although it is usually considered a nuisance, the idea being that
‘‘correct” methods should all converge to luminance. However, ‘‘lu-
minance” is perhaps more of a convenience than a fact, or – per-
haps a happier formulation – a singular perspective. Naive
observers couldn’t care less, they simply go on their guts, with a
wide spectrum of results.

Conventional wisdom in colorimetry would probably single out
flicker photometry or minimally distinct border as the ‘‘most cor-
rect” methods. Indeed, these turn out to yield results that are close
to the CIE linear functional. In recent times the method proposed
by Gregory (our VIII ‘‘apparent rotation”) has been added and is
widely used because indeed very convenient and reliable. Direct
comparisons have always been regarded with suspicion. Indeed,
they end up closely to the equipollent max-rule. A priori, we
expected pictorial structure, figure-ground and perceptual group-
ing to be close to the equipollent max-rule regime. This is not fully
born out by the present results though.
As a matter of course, all these paradigms are sensitive – some-
times even very sensitive – to the particular parameter choices.
Apparently there lies a wide area of investigation open here.

‘‘Color weight” and CIE ‘‘luminance” are categorically distinct
concepts. This may be considered an empirical fact as demon-
strated by the present data. The bottom line is that given the appli-
cation one should select an appropriate operational definition of
‘‘color weight”. CIE luminance is not the universal panacea. Our
results do show that heterochromatic photometry is in principle
possible and clearly distinct from luminance.
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