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c0005 Computational models of
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s0010 Introduction

p0015 Various sensory organs continuously provide our brains with uncertain information about
our environment. Critically, every sensor has its specific limitations. For example, the sensitivity
of our eyes’ photoreceptors is optimized for use during daylight (e.g., photoreceptor sensitivity
of nocturnal insects is much higher1). Our ears are specialized for detecting differences in sound
pitch, but they provide only imprecise estimates for the location of a sound’s source.

p0020 Imagine you are in a dimly lit bedroom at night and you hear the sound of a mosquito. To
obtain the most precise estimate of the mosquito’s location, the brain should combine uncer-
tain spatial information furnished by the auditory and visual senses. Critically, the brain
should integrate sensory signals only when they pertain to the same event, but process
them independently when they come from different events. For example, we are all familiar
with those vague black spots on the wall that look annoyingly like mosquitos in the dark.
These immobile black spots should not be integrated with the mosquito’s buzzing sound
around the head. In short, to generate a coherent percept of the environment, the brain needs
to infer whether or not sensory signals are caused by common or independent sources. This
process has been termed multisensory causal inference.2

p0025 In this chapter, we will explore the computational operations that the brain may use to
solve these two challenges involved in multisensory perception, i.e., (1) how to weight and
integrate signals that come from a common source into a unified percept and (2) how to infer
whether signals come from common or independent sources.

p0030 In the first section, we will introduce the normative Bayesian framework focusing on
perception based on input from a single sensory channel and prior expectations. In the sec-
ond section, we will describe how the brain integrates signals from multiple sensory channels
pertaining to the same event into a unified percept (i.e., so-called forced fusion model). In the
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third section, we will explore the more general case of multisensory perception in the face of
uncertainty about the world’s causal structure, i.e., uncertainty about whether signals are
caused by common or independent sources. Hence, this final case combines the two chal-
lenges facing the brain in a multisensory world: causal inference and weighted sensory inte-
gration. Each section first describes the normative Bayesian model and then briefly reviews
the empirical evidence that shows the extent to which data from human or nonhuman pri-
mates are in accordance with those computational principles.

s0015 Combining information from a single sensory channel with prior knowledge

p0035 Any sensory signal that reaches the cerebral cortex is inevitably contaminated with various
sources of noise. Let us consider how an observer can estimate the location of an event for
spatial orienting from visual inputs. An observer’s eyes are bombarded with photons, and
each eye’s lens refracts the photons such that a ray of focused light hits the retina. There, pho-
toreceptors and ganglion cells transform the electromagnetic radiation into action potentials.
This eventually, via several synapses, results in an activity pattern in the visual cortex. Impor-
tantly, noise may be introduced at each of those processing stages. The eye’s view can be
partially obscured by a dirty window, and its lens is unlikely to be perfectly in focus; the
transformation from photons to action potentials functions in bulk3; and synaptic transmis-
sion is a probabilistic process.4 In short, the sensory organs and systems provide the brain
only with an uncertain or noisy estimate of a particular property (e.g., spatial location) of
events and objects in the outside world.

p0040 To constrain perceptual inference, the observer can combine the noisy sensory evidence with
prior knowledge or expectations. For example, in our natural environment, it is very unlikely to
observe a concave human face, where the tip of the nose faces away from the observer. When
an observer is shown the inside of a mask, the brain often falsely interprets the image such that
the nose is perceived to be facing the observer. The visual hollow-face illusion, as this effect was
dubbed, is only one of many examples where prior knowledge affects our perception.5

p0045 The normative Bayesian framework in neuroscience posits that the brain forms a probabi-
listic generative model of the sensory inputs that is inverted during perceptual inference (¼
recognition model). Bayesian probability theory offers a precise formulation of how observers
should combine uncertain information such as different sorts of noisy sensory evidence and
prior knowledge to form the most reliable representation of the world. It thus sets a bench-
mark of a so-called “ideal observer” or optimal performance given a particular loss function
against which an organism’s neural and behavioral responses can be compared.

p0050 Fig. 5.1A shows the graphical model that illustrates the generative process for the spatial
localization example above based on a single sensory channel and prior knowledge. A hidden
source at the true location S generates a noisy sensory signal representation X. The true loca-
tion S is sampled from a prior distribution, which is often assumed to be a Gaussian with
mean m: S w N(mprior, s

2
prior). The sensory signal is corrupted by noise, i.e., sampled from a

Gaussian centered on the true source location: x w N(S, s2sensory). The generative model de-
fines the probability of each sensory input given a particular source location P(xjS). During
perception, the observer needs to invert this generative model to compute the posterior prob-
ability P(Sjx), i.e., the probability of a spatial location given the sensory input x, by combining
sensory evidence and prior knowledge. According to Bayes’ rule, the posterior probability of
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a spatial location given a particular sensory input, P(Sjx), is proportional to the product of the
likelihood P(xjS) and the prior P(S):

PðSjxÞ ¼ PðxjSÞ � PðSÞ
PðxÞ fPðxjSÞ � PðSÞ (5.1)

p0055 The normalization constant P(x) can be obtained from the product of the likelihood func-
tion and the prior by marginalizing (i.e., integrating) over all possible locations S:

PðxÞ ¼
Z

PðxjSÞ �PðSÞ � dS (5.2)

p0060 The observer then needs to minimize a particular loss function that specifies the cost of
selecting the estimate bS given the true location S to report a final point estimate. For instance,
using the squared error loss function, the observer would report the mean of the posterior dis-
tribution as the final spatial estimate. By contrast, using a zero-one loss function, the observer

f0010 FIGURE 5.1 Generative models corresponding to the three different cases. (A) Single sensory signal: a hidden
source generates a sensory signal that is corrupted by noise. (B) Forced fusion: a hidden source generates two sensory
signals (e.g., auditory and visual) that are independently corrupted by noise. (C) Causal inference model explicitly
models the potential causal structures that could have generated the two sensory signals (e.g., auditory and visual).
In the full segregation model component (left), two independent hidden sources generate the auditory and visual
signals. In the forced fusion model component, a common source generates two sensory signals (e.g., auditory and
visual). A Bayesian causal inference estimate combines the estimates obtained from those two model components
using a specific decision function (e.g., model averaging). Adapted from Kording KP, Beierholm U, Ma WJ, Quartz S,
Tenenbaum JB, Shams L. Causal inference in multisensory perception. PLoS One. 2007;2(9):e943.
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would report the maximum a posteriori estimate (MAP), i.e., the mode of the posterior distri-
bution. Critically, under Gaussian assumptions of both prior and likelihood, the posterior mean
and mode are identical, i.e., both loss functions yield the same final estimate. However, asym-
metric posterior distributions lead to different estimates for the posterior mean and MAP.6,7

p0065 Priors can emerge at multiple timescales potentially ranging from seconds to evolutionary
times. For instance, during evolution, certain hardwired neural priors may have emerged as a
result of selection pressures.8 Likewise, other hardwired priors may be fine-tuned during
neurodevelopment when the immature brain is exposed to the statistics of the sensory in-
puts.9 Finally, the brain is thought to rapidly adjust priors to changes in the input statistics
across and perhaps even within trials where the posterior of the current trial or time point
forms the prior for the next trial or time point.10,11 Priors are critical to constrain perceptual
inference in the face of uncertainty resulting from noise, occlusion, etc. As we will derive in
greater detail in the next “forced fusion” section, the influence of the prior on the final pos-
terior estimate should be greatest if the sensory input is noisy and uncertain. This is because
different sorts of evidence (e.g., prior vs. sensory evidence or different sensory evidences)
should be combined in a manner weighted by their relative reliabilities (see Forced fusion:
integrating sensory signals that come from a common source section for details).

p0070 Priors can be formed about all sorts of properties such as spatial location, shape, speed, etc.
Indeed, numerous studies have demonstrated how prior knowledge or expectations shape and
bias perceptual inference in our natural environment or designed experimental settings: the
light-from-above prior (objects with ambiguous depth seem to face forward if the shadow is
below them12), the circularity assumption (we tend to think that an object’s depth is equal to
its width13), the foveal bias (relevant objects are more likely to appear in the center of our field
of view14,15), the slow speed preference (most objects do not move or tend to move slowly16,17),
and the cardinal orientation prior (vertical and horizontal orientations can be more frequently
found18). In the latter example, the experimentally determined probabilities of the human prior
distribution for orientations were shown to match the environmental statistics for orientations
that were found in a large set of photographs.18 In addition to the long-term priors, the brain
can also rapidly adapt priors to the dynamics of statistical regularities. In laboratory experiments,
participantsmay learn thedistribution fromwhich the stimuli are sampled (e.g., the rangeof stim-
ulus durations in a time-interval estimation task19). In the real world, they can adopt prior distri-
butions that apply to a particular situation (e.g., the typical velocities for a ball in a game of
tennis20).Multiple studies have also shown that the biasing influence of the prior isdas expected
(see above)dinversely related to the reliability of the sensory stimuli.16e20

p0075 At the neural level, a recent functional magnetic resonance imaging (fMRI) study has shown
that the brain estimates the reliability or precision of sensory representations in primary visual
cortex (V1) on a trial-by-trial basis.21 Participants were presented with visual gratings that var-
ied in their orientation across trials. On each trial, they indicated the perceived orientation us-
ing a rotating bar. Critically, even though no external noise was added to the stimuli, the
precision of sensory representations in V1 may vary across trials because of internal neural
noise. Indeed, the uncertainty estimated from the activity patterns in the visual cortex varied
across trials. Moreover, it correlated positively with the variance of participants’ responses
and negatively with their orientation errors. The results of this study21 suggest that sensory
cortices represent stimulus uncertainty on a trial-by-trial basis and that this uncertainty affects
behavioral performance, as predicted by probabilistic models of Bayesian inference.
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s0020 Forced fusion: integrating sensory signals that come from a common source

p0080 Many events and objects in the natural environment can be perceived concurrently by
multiple senses that are each specialized for specific features of the outside world. Signals
from different senses can provide complementary information. For instance, honey can be
perceived as yellow by vision, but tastes sweet. Alternatively, multiple senses can provide
redundant information about the same physical property such as spatial location. Thus, we
can locate a puncture in a bicycle’s inner tube by vision, audition, or touch (i.e., seeing, hear-
ing, or feeling where the air flows out of the tube). In the case of redundant information
across the senses, multisensory perception enables the observer to form a more precise or reli-
able (reliability being the inverse of variance) estimate of the environmental property in ques-
tion by integrating evidence across the senses.

p0085 Fig. 5.1B shows the generative model for spatial localization based on redundant auditory
and visual information. The generative model assumes one single source at the true location
SAV that emits two internal sensory signals; in this case, a visual and an auditory signal: xA
and xV. As we do not allow for the two signals to be generated by two independent sources,
we refer to this generative model as the forced fusion scenario, where optimal performance
can be obtained by mandatory sensory integration. Again, as in the unisensory case, we as-
sume that the auditory and visual signals, xA and xV, are corrupted by independent Gaussian
noise. Hence, we sample xA and xV independently according to xA w N(SAV, s

2
A) and

xV w N(SAV, s
2
V).

p0090 During perceptual inference, the observer needs to compute the posterior probability of
the spatial location given auditory and visual inputs according to Bayes’ theorem:

PðSAVjxA; xVÞ ¼ PðxA; xVjSAVÞ � PðSAVÞ
PðxA; xVÞ fPðxA; xVjSAVÞ � PðSAVÞ (5.3)

p0095 Furthermore, as auditory and visual inputs are assumed to be conditionally independent
(i.e., independent noise assumption across sensory channels), we can factorize the
likelihood:22

PðSAVjxA; xVÞfPðxAjSAVÞ �PðxVjSAVÞ � PðSAVÞ (5.4)

p0100 Furthermore, most studies in multisensory integration assume an uninformative or flat
prior P(SAV), where we can ignore the influence of the prior. As a result, the maximum a pos-
teriori estimate turns into a maximum likelihood estimate:

PðSAVjxA; xVÞfPðxAjSAVÞ �PðxVjSAVÞ (5.5)

p0105 Assuming independent Gaussian noise and uninformative priors, the optimal, most pre-
cise (i.e., most reliable or with minimum variance) audiovisual estimate bSAV can be computed
as a reliability-weighted linear average of the two unisensory estimates22,23:

bSAV ¼ wA
bSA þ wV

bSV with wA ¼ rA
rA þ rV

and wV ¼ rV
rA þ rV

¼ 1� wA (5.6)
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f0015 FIGURE 5.2 Forced fusion model, maximum likelihood estimation, and psychometric perturbation analysis.
(A) Signal detection theoretic analysis of a 2IFC spatial discrimination task. For each true probe stimulus location Spr
(and standard stimulus location Sst at 0 degree), the observer computes a spatial estimate of the probe signal (xpr)
relative to the standard signal (xst): i.e., the spatial signal difference xpr � xst. Because of trial-specific external and
internal noise affecting both standard and probe stimuli, the signal difference is assumed to vary from trial to trial for
identical true stimuli locations, Spr and Sst, according to a Gaussian probability distribution with a standard deviation
of

ffiffiffi
2

p �ssensory that defines the summed sensory noise of the standard and probe stimuli. The observer provides a
“probe right” discrimination response when the spatial signal difference is greater than zero degrees visual angle (i.e.,
xpr � xst > 0�). (B) Psychometric function. For the data of panel A, a cumulative Gaussian shows the probability (or
fraction of trials; gray circles, including measurement noise) of “probe right” responses as a function of the true probe
location Spr. The probability “probe right” (in B) corresponds directly to the integral (i.e., dark shaded area in (A) of
the Gaussian probability distribution (in A) where xpr � xst > 0�). The point of subjective equality (PSE) refers to the
probe location associated with P(“probe right”) ¼ 0.5. The just noticeable difference (JND) refers to the difference in
probe stimulus locations at the two thresholds: P(“probe right”) ¼ 0.5 and P(“probe right”)z 0.84. In a 2IFC task, the
JND (in B) is equal to the standard deviation of the Gaussian probability distribution of signal differences (in A): i.e.
JND ¼ ffiffiffi

2
p � ssensory. C and D. Maximum likelihood estimation (MLE) under forced fusion assumptions: the observer is

presented with an audiovisual conflict stimulus (DAV), i.e., the visual signal is presented at �1
2DAV and the auditory

signal is presented at þ1
2DAV , as the standard in the first interval and an audiovisual congruent stimulus as the probe

in the second interval. The Gaussians (top) show the likelihood functions and unbiased spatial estimates (i.e.,
maximum likelihood estimates; vertical lines) from the standard stimulus separately for the visual signal
(xV ¼ SV;st ¼ �1

2DAV , dashed), the auditory signal (xA ¼ SA;st ¼ þ1
2DAV , dotted), and the combined audiovisual

signal as obtained from MLE-based integration (Eqs. 5.6 and 5.7, solid). The means of the Gaussian likelihood
functions for the audiovisual conflict stimuli (top) can be estimated as the PSEs of the cumulative Gaussians (bottom)
obtained from auditory, visual, and audiovisual 2IFC trials where the audiovisual spatial conflict stimulus is pre-
sented as the standard stimulus (i.e., see above Sst ¼ �1

2DAV) and the probe stimulus is presented at variable degrees
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where the reliability is defined as the inverse of the Gaussian’s variance: r ¼ 1
s2
. Moreover,

the reliability of this audiovisual estimate can be expressed as the sum of the two unisensory
reliabilities:

rAV ¼ rA þ rV which is equivalent s2
AV ¼ s2

A � s2
V

s2
A þ s2

V
(5.7)

p0110 Hence, the reliability of the audiovisual estimate is greater than (or equal to) the maximal
reliabilities of the unisensory estimates. Eq. (5.7) shows formally that multisensory integra-
tion increases the precision of the percept. The maximal multisensory variance reduction
by a factor of 2 can be obtained when the variances of the two sensory signals are equal.

p0115 In summary, the maximum likelihood estimation (MLE) model under forced-fusion as-
sumptions makes two critical predictions for human multisensory perception performance.
First, the variance associated with the multisensory percept is smaller than (or equal to)
the minimal variance of the unisensory percepts (Eq. 5.7). Second, the multisensory percept
is obtained by integrating sensory inputs weighted by their relative reliabilities (Eq. 5.6).

p0120 In the following, we will describe the standard psychophysical approach23,24 that allows us
to test whether human behavior is in accordance with these two MLE predictions. The main
steps for testing each of the two MLE predictions involve (1) estimating the unisensory var-
iances from perceptual performance on unisensory trials, (2) using Eqs. (5.6) and (5.7) to make
parameter-free MLE predictions about the multisensory variance and the sensory weights
applied during multisensory integration, and (3) comparing these predictions with the multi-
sensory variances and weights empirically measured during multisensory perceptual perfor-
mance. We will use an audiovisual spatial discrimination task as an example.25

p0125 To investigate whether audiovisual integration of spatial inputs leads to the MLE-
predicted variance reduction, we need to measure the variances associated with auditory,
visual, and audiovisual percepts. The empirical variances for these percepts (e.g., spatial es-
timates) can be estimated from participants’ responses in a two-interval forced choice (2IFC)
paradigm. On each trial, the observer is presented with a standard stimulus in the first inter-
val at zero degrees (Sst ¼ 0�) and a probe stimulus in the second interval at variable degrees of
visual angle along the azimuth (Spr). Standard and probe stimuli are both presented in the
visual, auditory, or audiovisual modalities. The observer discriminates whether the probe
stimulus is on the left or right side of the standard. Next, we fit psychometric functions,
i.e., a cumulative Gaussian (j), to the percentage “perceived right” responses as a function
of the visual angle of the presented probe separately for the visual, auditory, and audiovisual
conditions (e.g., using MLE for fitting26; see Fig. 5.2A and B).

of visual angle. (C) For equal visual and auditory reliabilities, the means of the Gaussian likelihood functions and the
PSEs of the corresponding cumulative Gaussian psychometric functions are equal to the average of the auditory and
visual means or PSEs. (D) If the visual reliability is greater (i.e., visual variance is smaller) than the auditory one, the
visual signal is assigned a greater weight. As a result, the mean of the audiovisual estimate is closer to the visual than
the auditory estimate. As shown in the figure, we can estimate the sensory weights from the PSEs of the psychometric
functions of the unisensory visual, unisensory auditory, and audiovisual conflict conditions in a 2IFC task. Adapted
from Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature.
2002;415(6870):429e433.
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jðSprÞ ¼ bffiffiffiffiffiffi
2p

p
ZSpr
�N

exp

 
� b2ðSpr � aÞ2

2

!
(5.8)

where a is the point of subjective equality (PSE), i.e., the probe location where the psychomet-
ric function equals 0.5, and it is equally likely for the observer to perceive the probe left or
right of the standard. Furthermore, the just noticeable difference (JND), i.e., the difference
in probe locations between the PSE and the point where the psychometric function equals
w0.84, is given by 1

b
. Importantly, as shown in Fig. 5.2A and B, the PSE and JND obtained

from the psychometric function as a cumulative Gaussian correspond directly to the mean
(m) and standard deviation (s) of the Gaussian distribution that describes the perceptual noise
for the auditory, visual, or audiovisual spatial estimates.27 More specifically, as we used a
2IFC paradigm in which sensory noise of both standard and probe contribute equally to
the signal differences (xpr � xst), we can compute the perceptual variance for the auditory, vi-
sual, and audiovisual conditions from the JNDs of their psychometric functions according to
JND2 ¼ 2s2. Using Eq. (5.7), we can then assess whether the empirically measured AV vari-
ance is in accordance with the MLE-predicted AV variance computed from the unisensory
auditory and visual variances.

p0130 To investigate whether observers integrate sensory signals weighted by their relative reli-
abilities as predicted by MLE, we use a so-called perturbation analysis.28 For the perturbation
analysis, we need to introduce a small nonnoticeable conflict between the auditory and visual
signals of the audiovisual standard stimulus (n.b. no audiovisual conflict is introduced for the
probe stimulus). For instance, we can shift the auditory signal by þ1

2DAV and the visual signal
by �1

2DAV relative to SAV,st congruent (¼0�). If the auditory and visual signals are equally reli-
able and hence equally weighted in the AV spatial estimate, the perceived AV location of the
conflict AV stimulus is equal to the perceived location of the corresponding congruent AV
stimulus (see Fig. 5.2C, top panel). Yet, if the visual reliability is greater than the auditory reli-
ability, the perceived location (i.e., spatial estimate) for the AV conflict stimulus should be
biased toward the true location of the visual signal (i.e., in the above case shifted toward
the left; see Fig. 5.2D, top panel) and vice versa for greater auditory reliability. The more
frequently reported visual bias on the perceived sound location has been coined the ventril-
oquist effect, a perceptual illusion known since ancient times. Yet, the opposite bias from
audition to vision can also emerge if the visual signal is rendered less reliable.25 To summa-
rize, the crossmodal bias operating from vision to audition and vice versa provides us with
information about the relative sensory weights applied during multisensory integration.
Formally, we can quantify the weights applied to the auditory and visual signals from the
PSEs of the psychometric functions obtained from the AV conflict conditions by rewriting
Eq. (5.6) (see Fig. 5.2C and D, lower panels):23

wA;emp ¼ PSEDAV � SV;st

SA;st � SV;st
with wV ¼ 1� wA (5.9)

p0135 Note that this equation implicitly assumes that unisensory auditory and visual perception
are unbiased (i.e., the PSEs of the unisensory psychometric functions are equal to zero). These
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empirical sensory weights can then be statistically compared with the MLE-predicted weights
computed from the JNDs of the unisensory psychometric functions according to Eq. (5.6).

p0140 Critically, measuring the sensory weight requires a difference in the location of unisensory
component signals, i.e., the presentation of incongruent audiovisual signals. While a greater
intersensory conflict may enable a more reliable estimation of sensory weights, it progres-
sively violates the forced fusion assumption and makes it less likely that observers assume
a common source for the sensory signals. As a rule of thumb, a DAV equal to the JND of
the more reliable sensory signal has been proposed to be adequate.24

p0145 Numerous psychophysical studies have suggested that human observers integrate two
sensory signals near-optimally, i.e., as predicted by the forced fusion model outlined above.
For instance, near-optimal integration has been shown for visual-tactile size estimates in a
seminal study by Ernst and Banks.23 Four participants judged, by looking and/or feeling,
whether the height of a raised ridge stimulus was taller than a standard comparison height.
The true height of the ridge varied with small deviations from the standard height on a trial-
by-trial basis. The used apparatus allowed the researchers to independently decrease the vi-
sual reliability by addition of visual noise at four different levels. Psychometric functions
were fit to the unisensory and bisensory responses such that MLE-predicted and empirical
weights and variances could be compared (as described above). Results indicated that the vi-
sual variance increased and visual weights decreased with increasing visual noise levels (as
predicted by Eq. 5.6). Importantly, the empirical visual weights and visual-haptic variances
were similar to the MLE-predicted weights and variances for all four noise levels (with a
notably clear bisensory variance reduction when the visual and haptic perceptual reliability
were similar; Eq. 5.7); thus suggesting that visual and haptic sensory signals were integrated
in (near-) optimal fashion.23 A follow-up experiment by the same group, using similar stimuli
and apparatus, replicated the finding of an optimal variance reduction for visual-tactile size
estimates (in conditions with negligible spatial disparity between the two sensory-specific
cues).29 Other examples of multisensory integration for which human behavior was shown
to be in line with MLE include audiovisual location estimates,25 audiovisual frequency
discrimination,30,31 visual-tactile object-shape judgments,32 audiovisual duration estimates,33

and audiovisual motion-speed discrimination.34

p0150 At the neural level, neurophysiological studies in nonhuman primates have shown that
neural populations35 and single neurons36,37 integrate sensory signals weighted by their reli-
abilities in line with MLE predictions in visual-vestibular motion discrimination tasks.
Furthermore, Fetsch et al.35 showed that the variances and sensory weights obtained from
decoding spiking rates in a population of multisensory neurons were qualitatively compara-
ble with the variances and weights observed at the behavioral level. At a more implementa-
tional level, these authors have proposed the divisive normalization model.38,39 This
normalization model mediates reliability-weighted sensory integration, because the activity
of each neuron is normalized by the activity of the entire pool of neurons.

p0155 Additional evidence in support of reliability-weighted multisensory integration at the neural
level comes from several human fMRI studies showing that the connectivity between unisen-
sory regions and association regions such as the superior temporal sulcus depends on the rela-
tive audiovisual reliabilities in speech recognition tasks.40,41 Likewise, the blood oxygenation
level-dependent response induced by somatosensory inputs in parietal areas was modulated
by the reliability of concurrent visual input during a visuohaptic size discrimination task.42
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p0160 Despite considerable evidence in support of MLE-optimal integration in human and
nonhuman primates, accumulating research has also revealed situations where the sensory
weights and reduction in multisensory variance are not fully consistent with the predictions
of MLE. These findings highlight assumptions and limitations of the standard MLE forced
fusion model for multisensory perception.

p0165 Focusing on the sensory weights, numerous studies have shown that human observers
overweight a particular sensory modality in a range of tasks. Most prominently, in contrast
to the classical study by Alais and Burr25 showing MLE-optimal auditory and visual weights
in spatial localization, Battaglia et al.43 reported that observers rely more strongly on visual
than auditory signals for spatial localization. Likewise, a series of studies have shown audi-
tory overweighting in audiovisual temporal judgment tasks,44,45 vestibular overweighting in
visual-vestibular self-motion tasks,46,47 visual overweighting in a visual-vestibular self-
rotation task,48 and haptic overweighting in a visual-haptic slant discrimination task.49 In
all of those studies, the sensory modality that is overweighted was the modality that is usu-
ally more reliable for this particular task in everyday experiences. One may therefore argue
that the brain adjusts the weights of the sensory inputs not only based on the input’s current
reliability but also imposes a modality-specific reliability prior that reflects the modality’s reli-
ability for a particular property or task in everyday life.43,45

p0170 With respect to the second MLE prediction of multisensory variance reduction, numerous
studies, covering a variety of sensory modalities and tasks, have also shown a decrease in
multisensory variance that is smaller than predicted by the forced fusion model (Eq. 5.7).
For example, this was shown for audiovisual interval duration judgments,44 audiovisual
speed discrimination,50 visual-haptic slant discrimination,49 and visual-haptic size and depth
estimation tasks.51,52 This “suboptimal” integration performance can be explained by several
key assumptions of the forced fusion model that may not hold in our natural environment.
First, the forced fusion model assumes that two signals are necessarily generated by one sin-
gle source. However, in the real world, sensory signals can be generated by common or in-
dependent sources, leading to uncertainty about the world’s causal structure (see next
section). Likewise, in some experimental settings, the observer may take into account this
causal uncertainty, in particular if conflict trials are included or artificial stimuli are used
that do not enhance the observer’s forced fusion or common source assumptions.50,51 Second,
the MLE model assumes that the sensory noise is independent between sensory modalities.22

This assumption may be violated in some multisensory estimation tasks where dependencies
exist between sensory modalities as a result of crossmodal adaptive calibration (e.g., auditory
spatial estimates can be recalibrated by synchronous visual signals through a process that is
different from multisensory integration).51,53e56 Third, the MLE model does not include addi-
tional sources of noise that may be added after integration, e.g., during decision-making and
response selection.44,52

s0025 Causal inference: accounting for observer’s uncertainty about the world’s
causal structure

p0175 The forced fusion model presented in the previous section accommodates only the special
case of where two signals come from a common source. As a result, it can only model that

5. Computational models of multisensory integration10

I. Foundations of multisensory perception

10005-SATHIAN-9780128124925

To protect the rights of the author(s) and publisherwe inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s),

Elsevier and typesetter TNQBooks and Journals Pvt Ltd. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher

and is confidential until formal publication.

These proofsmay contain color figures. Those figuresmay print black andwhite in the final printed book if a color print product has not been planned. The color figures will

appear in color in all electronic versions of this book.



two signals are integrated in a mandatory fashion. Yet, in our natural environment, our
senses are bombarded with many different signals. In this more naturalistic scenario, an
observer should bind signals into one coherent and unified percept only when they come
from a common source, but he needs to treat them separately when they come from indepen-
dent sources. Critically, the observer does not know the causal structure underlying the sen-
sory signals. Instead, he needs to infer whether signals come from common or independent
sources from the signals themselves. A range of correspondence cues such as temporal coin-
cidence and correlations, spatial colocation, and higher-order cues such as semantic, phono-
logical, metaphoric, etc., correspondences (see Chapter 11)57e69 are critical cues informing
observers about whether signals come from a common source and should thus be integrated.
Hence, multisensory perception in our natural environment relies on solving the so-called
causal inference problem.2 It requires observers not only to deal with uncertainty about
perceptual estimates but also with causal uncertainty, i.e., their uncertainty about the world’s
causal structure.

p0180 Spatial ventriloquism is a prominent audiovisual perceptual illusion that illustrates not
only reliability-weighted integration (see Forced fusion: integrating sensory signals that
come from a common source section) but also how the brain arbitrates between integration
and segregation in the face of uncertainty about the causal structure of the world. At small
spatial disparities, the perceived location of an auditory event (e.g., the voice of a puppeteer)
shifts toward the location of a temporally correlated but spatially displaced visual event (e.g.,
the facial movements of the puppet) and vice versa depending on the relative auditory and
visual reliabilities as described in the forced fusion section.25 This spatial biasing (i.e., the
ventriloquist effect) breaks down or is at least attenuated at large spatial disparities and au-
diovisual asynchronies when it is unlikely that auditory and visual signals are caused by a
common source.70e74

p0185 Initial modeling approaches introduced coupling priors to allow signals from different
senses to bias each other without being integrated into one single unified percept.75,76

More recently, Körding et al.7 (and simultaneously Sato et al.77) proposed a Bayesian causal
inference model that explicitly models the potential causal structures (i.e., common source or
independent sources) that could have generated the sensory signals. Fig. 5.1C shows the
generative model for Bayesian causal inference in an audiovisual spatial ventriloquist para-
digm and localization task.

p0190 The generative model of Bayesian causal inference assumes that common (C ¼ 1) or inde-
pendent (C ¼ 2) sources are determined by sampling from a binomial distribution with
P(C ¼ 1) equal to the common-source prior Pcommon. The common source prior thus quantifies
the observers’ “unity assumption”78 or prior tendency to integrate signals from different sen-
sory modalities into one unified percept.

p0195 For a common source, the “true” location SAV is drawn from the spatial prior distribution
N(mprior, s

2
prior). For two independent causes, the “true” auditory (SA) and visual (SV) loca-

tions are drawn independently from this spatial prior distribution. The spatial prior distribu-
tion models an observer’s prior expectations of where events may happen (see Combining
information from a single sensory channel with prior knowledge section). For instance, we
can model a central bias or expectation that events happen in the center of the visual field14,15

by setting mprior ¼ 0� and adjusting its strength in terms of the variance s2prior.
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f0020 FIGURE 5.3 Explicit and Implicit Bayesian Causal Inference. (A) Explicit causal inference. The posterior
probability of a common source P(C ¼ 1jxA,xV) is shown as a function of the internal auditory and visual signals (xA
and xV). It decreases for increasing spatial disparities between the internal audiovisual signals. The observer is
assumed to report a common source if the posterior probability for a common source is greater than a threshold CIth
(e.g., if P(C ¼ 1jxA,xV) > 0.5). Critically, even if the true auditory and visual source locations are identical (i.e.,
SA ¼ SV), the internal visual and auditory signals can differ because of internal and external noise (e.g., the area
circumscribed by the dashed black circle covers 95% of the bivariate Gaussian probability distribution
P(xA,xVjSA ¼ 0�,SV ¼ 0�)). Right panel: probability of a common source judgment (across trials) as a function of
spatial disparity DAV between the auditory and visual sources (SA and SV) as predicted by the Bayesian causal
inference model (see text). (B) Implicit causal inference. Auditory location responses: simulated auditory location
responses as a function of audiovisual spatial disparity (DAV, columns 1 to 5) according to Bayesian causal inference
for the three decision functions: model averaging (top row), model selection (middle row), and probability matching
(bottom row). The black triangles indicate the true visual source location SV and the black disks the true auditory
source location SA. For one trial per panel with xA ¼ SA and xV ¼ SV: the dashed lines show the audiovisual posterior

probability distributions P(SAVjxA,xV,C ¼ 1) and audiovisual spatial estimates bSAV;C¼1 (i.e., maximum a posteriori
estimates; vertical lines) for the forced fusion model component. The dotted lines show the auditory posterior

probability distributions P(SAjxA,C ¼ 2) and auditory spatial estimates bSA;C¼2 for the full segregation model

component. Finally, the vertical solid lines indicate the Bayesian causal inference estimate bSA; BCI . The solid lines
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p0200 Finally, exactly as in the unisensory and the forced fusion cases, noise is introduced inde-
pendently for each sensory modality by drawing the sensory inputs xA and xV independently
from normal distributions centered on the true auditory (or visual) locations with parameter
sA (or sV). Thus, sA and sV define the noise (i.e., reliability) of the inputs in each sensory
modality.

p0205 In total, the generative model includes the following free parameters: the common-source
prior Pcommon, the spatial prior standard deviation sprior, the auditory standard deviation sA,
and the visual standard deviation sV.

p0210 Given this probabilistic generative model, the observer needs to infer the causal structure
that has generated the sensory inputs (i.e., common source or causal judgment) and the loca-
tion of the auditory and/or visual inputs (i.e., spatial localization task). Critically, as we will
see below, an observer’s spatial estimates inherently depend on his strategy of how to deal
with his uncertainty about the underlying causal structure. In other words, the observer’s im-
plicit causal inference codetermines his spatial estimate during a localization task.

p0215 The posterior probability of the underlying causal structure can be inferred by combining
the common-source prior with the sensory evidence according to Bayes’ rule:7

PðC ¼ 1jxA; xVÞ ¼ PðxA; xVjC ¼ 1Þ � Pcommon

PðxA; xVÞ (5.10)

p0220 In explicit causal inference tasks (e.g., common source or congruency judgments), ob-
servers may thus report common or independent sources by applying a fixed threshold
(e.g., CITh ¼ 0.5) to the posterior probability of a common source:

bC ¼
�
1 if PðC ¼ 1jxA; xVÞ � CITh
2 if PðC ¼ 1jxA; xVÞ < CITh

(5.11)

p0225 As expected and shown in Fig. 5.3A, the posterior probability for a common source de-
creases with increasing spatial disparity between the auditory and visual signals. Indeed,
numerous studies have demonstrated that participants are less likely to perceive signals as
coming from a common source for large intersensory conflicts such as audiovisual spatial
disparity or temporal asynchrony.62e64,70e73,79,80

p0230 Critically, the estimate of the auditory and visual source location needs to be formed
depending on the underlying causal structure: in the case of a known common source
(C ¼ 1), the optimal estimate of the audiovisual location is a reliability-weighted average of
the auditory and visual percepts and the spatial prior (i.e., this is the forced fusion estimate

delineating the gray shaded area define the probability distributions (i.e., normalized histograms) of the Bayesian

causal inference estimates across many trials P
�bSA;BCI

��SA;SV�. The distributions were generated from 10,000

randomly sampled xA, xV for each combination of SA, SV, with the parameters for visual noise: sV ¼ 1�, auditory
noise: sA ¼ 2.5�, central spatial prior distribution: mprior ¼ 0� and sprior ¼ 10�, and common source prior: Pcommon ¼ 0.5
(n.b. the same parameter values were used in panel A). Adapted from Wozny DR, Beierholm UR, Shams L. Probability
matching as a computational strategy used in perception. PLoS Comput Biol. 2010;6(8).

=
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of Forced fusion: integrating sensory signals that come from a common source section, Eq.
(5.6), with addition of the spatial prior):

bSAV;C¼1 ¼

xA
s2
A

þ xV
s2
V

þ mprior

s2
prior

1
s2
A

þ 1
s2
V

þ 1
s2
prior

(5.12)

p0235 In the case of known independent sources (C ¼ 2), the optimal estimates of the auditory
and visual signal locations (for the auditory and visual location report, respectively) are in-
dependent from each other (i.e., the so-called full segregation estimates).

bSA;C¼2 ¼

xA
s2
A

þ mprior

s2
prior

1
s2
A

þ 1
s2
prior

and bSV;C¼2 ¼

xV
s2
V

þ mprior

s2
prior

1
s2
V

þ 1
s2
prior

(5.13)

p0240 Critically, the observer does not know the underlying causal structure and hence needs to
provide a final estimate of the auditory and visual locations that account for this causal un-
certainty. More specifically, the observer can combine the estimates under the two causal
structures using various decision functions such as “model averaging,” “model selection,”
or “probability matching,”81 as described below.

p0245 According to the “model averaging” strategy, the observer accounts for his causal uncer-
tainty by combining the integrated, forced fusion spatial estimate with the segregated, task-
relevant unisensory spatial estimate (i.e., either auditory or visual; whichever needs to be
reported) weighted in proportion to the posterior probability of the underlying causal struc-
tures. This strategy minimizes the error about the spatial estimates under the assumption of a
squared loss function.7

bSA ¼ PðC ¼ 1jxA; xVÞ � bSAV; C¼1 þ ð1� PðC ¼ 1jxA; xVÞÞ � bSA; C¼2 (5.14)

bSV ¼ PðC ¼ 1jxA; xVÞ � bSAV; C¼1 þ ð1�PðC ¼ 1jxA; xVÞÞ � bSV; C¼2 (5.15)

p0250 According to the “model selection” strategy, the observer reports the auditory (bSA) or vi-
sual (bSV) spatial estimate selectively from the more likely causal structure. This strategy min-
imizes the error about the inferred causal structures, as well as the error about the spatial
estimates given the inferred causal structures.

bSA ¼
( bSAV;C¼1 if PðC ¼ 1jxA; xVÞ � 0:5bSA;C¼2 if PðC ¼ 1jxA; xVÞ < 0:5

(5.16)
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bSV ¼
( bSAV;C¼1 if PðC ¼ 1jxA; xVÞ � 0:5bSV;C¼2 if PðC ¼ 1jxA; xVÞ < 0:5

(5.17)

p0255 According to “probability matching,” the observer reports the spatial estimate of one
causal structure stochastically selected in proportion to its posterior probability.

bSA ¼
( bSAV;C¼1 if PðC ¼ 1jxA; xVÞ � abSA;C¼2 if PðC ¼ 1jxA; xVÞ < a

with aw Uniformð0; 1Þ (5.18)

bSV ¼
( bSAV;C¼1 if PðC ¼ 1jxA; xVÞ � abSV;C¼2 if PðC ¼ 1jxA; xVÞ < a

with aw Uniformð0; 1Þ (5.19)

p0260 As illustrated in Fig. 5.3B, Bayesian causal inference transitions gracefully between sensory
integration and segregation as a function of intersensory conflict irrespective of the specific de-
cision function. In other words, while the forced fusion model allows only for a linear combi-
nation of the sensory signals (bSAV;C¼1 in Fig. 5.3B), Bayesian causal inference models (bSA; BCI)
combine sensory signals nonlinearly as a function of intersensory conflict. They predominantly
integrate sensory signals approximately in line with forced fusion models, when the conflict is
small, but attenuate integration for large conflicts. Numerous studies since the inception of
multisensory integration as a research field in its own right have provided qualitative evidence
for the computational principles governing Bayesian causal inference. For instance, several
studies have demonstrated an inverted U-shape function for % perceived synchronous or
the McGurk effect as a function of audiovisual synchrony of speech signals.60,62,63,67

p0265 Over the past decade, accumulating research has also quantitatively compared human
behavior with the predictions of Bayesian causal inference in a range of tasks including au-
diovisual spatial localization,7,15,74,77,79e86 audiovisual temporal discrimination,86e88 visual-
vestibular heading estimation,89 audiovisual speech recognition,90 audiovisual distance
perception,91 and audiovisuoetactile numerosity judgments.92 In the following, we discuss
the role of (1) reliability of the sensory inputs, (2) the common source prior, and (3) the de-
cision function in Bayesian causal inference.

p0270 To investigate the influence of sensory reliability on how human observers arbitrate be-
tween sensory integration and segregation, Rohe and Noppeney79 presented participants
with auditory and visual spatial signals at multiple spatial disparities and visual reliabilities.
In a dual task, observers performed Bayesian causal inference implicitly for auditory spatial
localization and explicitly for common source judgment. The study showed that visual reli-
ability shapes multisensory integration not only by determining the relative sensory weights
but also by defining the spatial integration window. As expected by Bayesian causal infer-
ence, highly reliable visual signals sensitized observers to audiovisual disparity thereby
sharpening the spatial integration window.79

p0275 In addition to bottom-up sensory signals, Bayesian causal inference depends on the so-
called “common source prior,” embodying an observer’s prior expectations that two signals
are caused by a common source. This raises the question whether these common source
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priors are hardwired in an individual, specifically for a particular task and stimulus charac-
teristics. For instance, in a conversational setting with a single speaker, we should be more
inclined to integrate his/her facial movements with the syllables he/she is uttering for
improved speech comprehension. By contrast, in a busy pub where we are bombarded
with many conflicting auditory and visual speech signals, unconstrained information integra-
tion would be detrimental. In a first study, Odegaard and Shams86 showed that common
source priors are relatively stable across time (also see Beierholm et al.85), yet task-specific.
More specifically, they did not generalize from a spatial ventriloquism task to a double flash
illusion task. Yet, in a follow-up study where they dynamically manipulated the probability
of audiovisual signals being synchronous and colocated, in a ventriloquist paradigm, they
demonstrated that observers dynamically adapt their common source priors to the environ-
mental statistics.74 Indeed, dynamic adjustment of common source priors had also previously
been shown during audiovisual speech perception.93e95

p0280 Finally, Wozny et al.81 investigated in a large cohort of more than 100 observers, whether
observers are more likely to use model averaging, model selection, or probability matching as
decisional functions in Bayesian causal inference. Surprisingly, they demonstrated that hu-
man observers predominantly use probability matching in audiovisual spatial localization.
While probability matching may be thought of as being suboptimal for static environments,
humans have been shown to use this strategy in a variety of cognitive tasks (e.g., reward
learning96,97). The authors proposed that probability matching may be a useful strategy to
explore potential causal structures in a dynamic environment. In summary, accumulating
psychophysical research has shown that human perception is governed qualitatively and
to some extent quantitatively by the principles of Bayesian causal inference, raising the ques-
tion of how the brain may compute Bayesian causal inference.

p0285 At the neural level, extensive neurophysiological and neuroimaging evidence has demon-
strated that multisensory integration, as indexed by multisensory response enhancement or
suppression relative to the unisensory responses, depends on a temporal and spatial window
of integration.98,99 Spatial windows of integration may be related to neuronal receptive field
properties. By contrast, temporal windows of integration may rely on computation of temporal
correlations (e.g., see recent model using the Hassenstein-Reichardt detector100) and have
recently been associated with brain oscillations.101e103 Models for the neural implementations
of Bayesian causal inference have been proposed, but their biological plausibility still needs to
be shown.104e107

p0290 At the neural systems level, two recent neuroimaging studies by Rohe and Noppeney82,83

investigated how the brain accomplishes Bayesian causal inference by combining psycho-
physics, fMRI, Bayesian modeling, and multivariate decoding. On each trial, participants
localized audiovisual signals that varied in spatial discrepancy and visual reliability. The
studies demonstrated that the brain computes Bayesian causal inference by encoding multi-
ple spatial estimates across the cortical hierarchy. At the bottom of the hierarchy, in auditory
and visual cortical areas, location is represented on the basis that the two signals are gener-
ated by independent sources (¼ segregation). At the next stage, in the posterior intraparietal
sulcus, location is estimated under the assumption that the two signals are from a common
source (¼ forced fusion). It is only at the top of the hierarchy, in the anterior intraparietal sul-
cus, that the uncertainty about whether signals are generated by common or independent
sources is taken into account. As predicted by Bayesian causal inference, the final location
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is computed by combining the segregation and the forced fusion estimates, weighted by the
posterior probabilities of common and independent sources.

s0030 Conclusions

p0295 Bayesian models of perceptual inference define how an observer should integrate uncer-
tain sensory signals to provide an accurate and reliable percept of our environment. They
thus set a benchmark of an ideal observer against which human perceptual performance
can be compared. Forced fusion models and psychophysical studies have highlighted that
human observers integrate sensory signals that come from a common source weighted
approximately in proportion to their relative reliabilities. More recent models of Bayesian
causal inference account for an observer’s uncertainty about the world’s causal structure
by explicitly modeling whether sensory signals come from common or independent sources.
A final Bayesian causal inference estimate is then obtained by combining the estimates under
the assumptions of common or independent sources according to various decision functions.
Accumulating psychophysical and neuroimaging evidence has recently suggested that hu-
man observers perform spatial localization and speech recognition tasks in line with the prin-
ciples of Bayesian causal inference.
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Abstract

Normative Bayesian models of perceptual inference define how observers should combine uncertain information across

multiple sensory channels and prior knowledge to obtain the most reliable percept of our environment. In this review, we

first introduce forced fusion models that describe how observers integrate sensory signals along with prior knowledge

approximately weighted in proportion to their relative reliabilities. Yet, these models describe only the special case of

mandatory integration that applies when signals come necessarily from a common source; they cannot model situations

where signals can come from common or independent sources. In these more naturalistic situations, observers should

integrate signals from common sources but segregate those from independent sources. Recent hierarchical models of

Bayesian causal inference solve this so-called causal inference problem by explicitly modeling the world’s causal structure

(i.e., common or independent sources). To account for observers’ uncertainty about the world’s causal structure, a final

Bayesian causal inference estimate is then obtained by combining the estimates under the assumptions of common or

independent sources according to various decision functions (e.g., model averaging). Growing psychophysical and

neuroimaging evidence suggests that human observers arbitrate between sensory integration and segregation in line with

the principles of Bayesian causal inference.

Keywords:

Bayesian causal inference; Maximum likelihood estimation; Multisensory perception; Prior probability distribution;

Probabilistic computational models; Reliability-weighted integration.
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