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a b s t r a c t

Multisensory perception is regarded as one of the most prominent examples where human

behaviour conforms to the computational principles of maximum likelihood estimation

(MLE). In particular, observers are thought to integrate auditory and visual spatial cues

weighted in proportion to their relative sensory reliabilities into the most reliable and

unbiased percept consistent with MLE. Yet, evidence to date has been inconsistent. The

current pre-registered, large-scale (N ¼ 36) replication study investigated the extent to

which human behaviour for audiovisual localization is in line with maximum likelihood

estimation. The acquired psychophysics data show that while observers were able to

reduce their multisensory variance relative to the unisensory variances in accordance with

MLE, they weighed the visual signals significantly stronger than predicted by MLE. Simu-

lations show that this dissociation can be explained by a greater sensitivity of standard

estimation procedures to detect deviations from MLE predictions for sensory weights than

for audiovisual variances. Our results therefore suggest that observers did not integrate

audiovisual spatial signals weighted exactly in proportion to their relative reliabilities for

localization. These small deviations from the predictions of maximum likelihood estima-

tion may be explained by observers' uncertainty about the world's causal structure as

accounted for by Bayesian causal inference.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sensory organs provide the brain with information about the

outside world. Information from different senses can be

complementary (e.g., an object's shape viewed from the front
(D. Meijer).
study.

Elsevier Ltd. This is an ope
but haptically explored from the back) or redundant (e.g., the

object's location). For example, both visual and auditory mo-

dalities provide uncertain information about the spatial po-

sition of a mosquito flying in a dimly lit room. In order to

obtain the most reliable and unbiased estimate (i.e., an esti-

mate that is associated with the least variance or uncertainty)
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an observer should integrate redundant sensory information

weighted in proportion to their relative reliabilities according

to maximum likelihood estimation (MLE) (Ernst & Banks,

2002). Reliability weighted integration according to MLE (i.e.,

the ‘ideal observer’ model; here simply called ‘MLE model’)

thus sets a benchmark of statistically optimal performance

against which human behaviour can be compared (Ernst &

Bülthoff, 2004).

In their seminal study, Alais and Burr (2004) showed that

human audiovisual localization conforms to the predictions of

theMLEmodel. In a 2-interval forced choice (2IFC) localization

task, participants were presented a so-called standard stim-

ulus in the middle in one interval and a so-called probe

stimulus at various locations along the azimuth in the other

interval. Standard and probe were either both auditory or vi-

sual or audiovisual. Participants indicated which of the two

stimuli (standard or probe) was located more on the left. The

reliability of the visual stimuli, a low contrast Gaussian blob,

wasmanipulated by blurring (i.e., increasing its size), whereas

the reliability of the auditory stimuli, short click sounds, was

kept constant. By introducing a small, unnoticeable spatial

conflict between the auditory and visual components of some

of the audiovisual stimuli Alais and Burr were able to deter-

mine the relative weights that participants assigned to the

auditory and visual signals during audiovisual integration. As

predicted by the MLE model, observers integrated auditory

and visual signals in proportion to their relative reliabilities

that were computed from the unisensory auditory and visual

conditions (n.b. the reciprocal of response variance corre-

sponds to the perceived reliability). They assigned a weight to

the visual signal that increased with the visual reliability.

Moreover, the variance (i.e., unreliability) of the audiovisual

spatial estimates was smaller than the variances of the uni-

sensory auditory and visual spatial estimates. Again, the au-

diovisual variance was closely predicted by the MLE model

based on the variance of unisensory percepts.

However, the conclusions of Alais and Burr (2004) are not

supported in a related study of audiovisual spatial integration

by Battaglia, Jacobs, and Aslin (2003). In this study, partici-

pants' integrated sensory signals weighted by their reliability,

yet the visual weights were significantly higher than predicted

by the MLE model. In our own lab, we have recently observed

similar visual overweighting during audiovisual spatial inte-

gration (here described as our pilot data, see Appendix A).

Battaglia et al. (2003) have argued that visual overweighting

may result from human observers imposing a prior on the

sensory reliabilities based on their everyday experiences: i.e.,

in most situations the visual spatial signal is far more reliable

than the auditory spatial signal. Such priors are not incorpo-

rated in the MLE model. Alais and Burr (2004) briefly mention

in the discussion that their participants were trained exten-

sively on the auditory localization task, whichmay potentially

have taught participants to trust their auditory sense more,

leading to a stronger auditory weight. Yet, a life-long prior on

the sensory modalities is just one of many possible accounts

of why human behaviour diverges fromMLE predictions (for a

recent review, see Rahnev&Denison, 2018). Most importantly,

in the multisensory and wider perception literature the find-

ings by Alais and Burr are interpreted and generally cited as

evidence that human observers integrate sensory signals or
cues in line with the MLE predictions. Multisensory integra-

tion according to MLE predictions is considered a generic and

fundamental mechanism of how human observers integrate

information from multiple sources. Therefore, it is important

to ascertain that naı̈ve human observers indeed integrate

sensory signals from vision and audition weighted in pro-

portion to their relative sensory reliabilities as predicted by

the MLE model.

In line with previous research the current study investi-

gated whether human behaviour is consistent with pre-

dictions of the MLE model in two steps: First, we investigated

whether participants integrated the auditory and visual sig-

nals in proportion to their unisensory reliabilities (i.e., we

compared empirical and predicted sensory weights). Second,

we investigated whether the variance reduction of the au-

diovisual percept is equal to the MLE predicted variance

reduction. Since we found the empirical sensory weights to be

significantly different from the MLE-predicted weights we

conclude that audiovisual spatial integration for untrained

participants is not adequately described by the MLE model.
2. Method

2.1. Maximum likelihood estimation model

The MLE model makes two key quantitative predictions for

observers' integrated audiovisual location estimates. First, an

observer should integrate the unisensory location estimatesbSA and bSV weighted in proportion to their relative sensory

reliabilities:

bSAV ¼ wA
bSA þwV

bSV

withwA ¼ rA
rA þ rV

¼
1

sA
2

1
sA

2 þ 1
sV

2

andwV

¼ rV
rV þ rA

¼
1
s2
V

1
sV

2 þ 1
sA

2

(1)

where wV and wA are the sensory weights and reliability ðrÞ is
the inverse of the sensory variance (s2).

Second, the sensory variance of the integrated estimate is

predicted to be lower than the sensory variance of either of the

unisensory estimates:

sAV
2 ¼ sA

2sV
2

sA
2 þ sV

2
<min

�
sA

2;sV
2
�

(2)

This second equation is generally considered the more

stringent test for the MLE model, as it confirms that the two

unisensory signals are truly integrated on a trial-by-trial basis

(i.e., the forced fusion assumption); whereas the first equation

may also hold (on average) if bSAV is fully determined by eitherbSA or bSV, but when the choice for either is made probabilisti-

cally in proportion to the sensoryweights (i.e., ‘cue switching’;

Ernst & Bülthoff, 2004).

2.2. Experiment overview

This study aimed to examine whether the MLE model accu-

rately predicts the results of untrained participants in an

https://doi.org/10.1016/j.cortex.2019.03.026
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audiovisual localization task that was designed to be nearly

identical to the study by Alais and Burr (2004). The most

striking difference is that we use only one visual reliability

level (but see Section 2.6.2.2), which is individually adjusted

for each participant to match his/her auditory reliability level

(see Section 2.6.1.3). Matching of the unisensory reliabilities is

important in order to maximize the MLE-predicted variance

reduction for audiovisual stimuli relative to the most reliable

unisensory stimuli (Eq. (2), Section 2.1). This experimental

choice was made to optimize the chances of arbitrating be-

tween MLE-based integration and ‘cue switching’.

2.3. Sample characteristics

The primary outcome measures were two group-level one-

sided paired t-tests that assessed the two key MLE predictions

(Eqs. (1) and (2), Section 2.1) by testing for differences between

the empirically determined and MLE-predicted sensory

weights and audiovisual variances (see Section 2.9). The null

hypothesis stated that the MLE model describes participants'
audiovisual integration adequately (i.e., in line with the find-

ings of Alais and Burr (2004) there is no significant difference

between MLE predicted and empirical weights or AV vari-

ances). Any significant (p < .05) difference between predicted

and empirical weights/variances indicated that the data were

not consistent with the MLE model; as previously reported by

Battaglia et al. (2003). For Battaglia et al.’s average effect size

(Cohen's d) of .58 (estimated across different stimulus reli-

ability levels; their Fig. 7) an a-priori power analysis revealed

that 36 participants were required to obtain high statistical

power (1-b ¼ .96, a ¼ .05, dz � .58; as computed with G*Power

3.1; Faul, Erdfelder, Buchner, & Lang, 2009; www.gpower.hhu.

de). Based on this power analysis, we decided to include

thirty-six participants in the final analysis and results (i.e.,

excluded participants were replaced until 36 complete data

sets were obtained, see Section 2.11).

All participants were university students with reportedly

normal hearing, (corrected to) normal vision and no history of

neurological or psychiatric disorder. Participants provided

informed consent and were compensated by means of study

credits or cash.2 The study was approved by the human

research review committee of the University of Birmingham

(approval numbers ERN_11-0470AP4 & ERN_15-1458P3).

2.4. Stimuli

The visual stimulus was a greyscale circular blob with a bivar-

iate Gaussian amplitude envelope. Its size (defined by the 2D

Gaussian's standard deviation, sblob; symmetrical in all di-

rections) was adjusted individually for each observer to equate
2 The option for compensation by cash was added after stage 1
in-principle-acceptance (IPA) of the manuscript in order to recruit
from a larger pool of potential participants.

3 The second ethics code was approved after IPA and is a
replacement of the first ethics code.

4 In the stage-1 IPA version of this manuscript low contrast
visual stimuli were said to be presented on a black background (1.
9 cd/m2 on .12 cd/m2). The background was changed from black
to grey after pilot testing revealed that the repeated abrupt
changes in brightness caused participants discomfort.
the unisensory spatial uncertainties for visual and auditory

spatial estimates (Section 2.6.1.3). Visual stimuli were pre-

sented for a duration of 16.7sec (msec) in low-contrast (20 cd/m2

in its centre) on a darker grey background (15 cd/m2).4

The auditory stimulus was a 16.7 msec burst of white noise

(70 dB SPL),5 which included a 5 msec on/off ramp. To create

virtual spatial sound sources along the azimuth, the auditory

signal was convolved with standardised head-related transfer

functions (Gardner & Martin, 1995; http://sound.media.mit.

edu/resources/KEMAR.html).

2.5. Two interval forced choice paradigm

All tasks presented auditory, visual or audiovisual stimuli in a

two-interval-forced choice (2IFC) paradigm. Fig. 1A provides a

trial overview.

Participants were presented on each trial with a standard

in the first interval and a probe in the second interval to avoid

sequential order effects thatmay have affected the estimation

of the slope parameters (Dyjas, Bausenhart, & Ulrich, 2012).

The interstimulus interval was 500 msec. Probe and standard

within a trial were of the same sensory modality, i.e., both

auditory ðAÞ, visual ðVÞ or audiovisual ðAVÞ. The standard was

always presented at 0� visual angle along the azimuth,

whereas the probe was presented at a location that is selected

with equal probability from thirteen possible locations that

were determined individually for each participant based on

his/her auditory just noticeable difference (JND; see Section

2.6.1.2), unless mentioned otherwise (see Sections

2.6.1.1e2.6.1.3). Critically, while the AV standard was always

spatially congruent, the AV probe was either spatially

congruent (i.e., AVD¼0� ) or spatially incongruent with a small,

so-called non-noticeable audiovisual spatial disparity DAV

(i.e., AVD¼þX� or AVD¼�X� , where the visual stimulus' location
was moved by þ1

2DAV and the auditory stimulus was moved

by � 1
2DAV; n.b. the size of DAV was adjusted individually, see

Section 2.6.1.2). 500 msec after probe offset two rectangles

were presented to prompt participants to report whether the

probe was left or right of the standard. Observers indicated

their response by pushing a button with their left or right

index finger (maximum response time ¼ 1 sec; the prompt

disappeared after a response was given). The trial onset

asynchrony was jittered between 750 and 1250 msec. Prior to

standard onset, participants fixated a central grey cross (1�

diameter) with luminance equal to the centre of the visual

stimuli.

The sensory modality of the trials was blocked (A, V or AV,

in pseudorandom order) and indicated to participants prior to

block begin. In AV blocks, the order of the congruent and

incongruent trials was randomized (main experiment only,

Section 2.6.2.2).

2.6. Experimental procedure

The study consisted of three 2.5 h sessions that were per-

formed on three separate days. In the following we will
5 Sound pressure level (SPL) was increased from 60 to 70 dB
after post-IPA pilot testing to ensure that more participants could
locate the auditory stimuli reliably.

http://www.gpower.hhu.de
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Fig. 1 e Trial structure for the audiovisual localization task (Panel A) and full experimental procedure (Panel B). A. A jittered

pre-stimulus time period, in which participants fixated a cross in the middle, was followed by two intervals, each of which

consisted of a stimulus and a subsequent blank period. The stimuli in the two intervals were either both auditory or visual

or audiovisual (the latter is shown here). The first stimulus, the ‘standard’, was always presented in the middle. The second

stimulus, the ‘probe’, was presented at one of thirteen locations along the azimuth. An audiovisual probe could be spatially

congruent, or incongruent (with a small spatial conflict between the auditory and visual signals; as shown here). After the

second interval, two rectangles appeared on the screen to prompt participants to indicate via a two choice key press

whether the location of the probe was left or right of the standard. B. The experiment included three sessions on three

separate days (vertically numbered in the figure). In session 1 we individually (for each participant) adjusted the probe

locations and AV spatial disparity (Section 2.6.1.2) and the spatial perceptual reliability of the visual signal to match the

spatial perceptual reliability of the auditory signal. The visual reliability was adjusted by changing the size of the visual

stimulus (i.e., sblob; see Section 2.6.1.3). At the end of session 1, we validated that auditory and visual reliabilities were

approximately equal (Section 2.6.1.4). In sessions 2 and 3, the probe locations, AV spatial disparity and visual stimulus size

were set to the levels defined in session 1 and they were not further adjusted during the main experiment (but see Section

2.6.2.2). All tasks, throughout all three sessions made use of the trial structure as described in Panel A.
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describe the series of experimental parts in the first, second

and third sessions; as shown in Fig. 1B.
6 The background story was changed after IPA to better match
the type of sounds that were presented. Originally we told par-
ticipants to think of a ball being thrown at the back of the screen.
2.6.1. First session
2.6.1.1. FAMILIARIZATION. Brief familiarization runs were intro-

duced at the beginning of each session to ensure that partic-

ipants understood and were familiar with the task. They also

mitigated learning effects and reduced variability of percep-

tual reliability across sessions. Participants were provided

with the background story that the AV stimulus was to be
considered the result of somebody hitting the back of the

screen with a metal stick6 (the visual blob representing the

stick's imprint during the hit) in order to enhance observer's
so-called ‘forced fusion’ assumptions that the AV’s auditory

and visual component signals come from a common source

(Alais & Burr, 2004). Participants then completed a short

https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


8 Exclusion of the estimate that was most distant from the
mean was added to the protocol after post-IPA pilot tests had
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familiarization series that included A, V and AVD¼0� trials (in

session one: 5 trials x 3 conditions x 12 locations: ±1�, ±4�, ±7�,
±10�, ±13�, ±15�; with highly reliable visual stimuli: sblob was

pseudorandomized between 2� and 8�). After every response

participants were given immediate corrective feedback, i.e., a

green/red circle was presented on the screen to indicate a

correct/incorrect response (200 msec duration).

2.6.1.2. AUDITORY RELIABILITY MEASUREMENT. This experimental

part consisted of two parts.7 Participants first completed a

series of A trials (20 trials x 13 locations: 0�, ±1�, ±2�, ±3�, ±5�,
±7�, ±10�). Participants that obtained an accuracy of less than

90% for those forty trials on which the probe was presented at

±10� azimuth were excluded at this stage (i.e., they did not

participate in the main experiment). For each participant we

fitted a psychometric function to the fractions of ‘perceived

right’ across the thirteen probe locations (see Section 2.8). The

auditory spatial uncertainty, expressed as the just noticeable

difference (JND), is given by the inverse of the fitted slope

parameter

�
JND ¼ 1

b

�
. These individual auditory JNDs were

used at three levels in the experiment: (i) probe locations, (ii)

visual reliability and (iii) spatial disparity.

i. Probe locations: We set the probe locations for all sub-

sequent parts of the study in a subject-specific fashion

according to

locations ¼ ð0;±0:5;±1;±1:5;±2;±2:5;±3Þ*JND (rounded

to .5� under the constraint that the 13 locations were

unique). This procedure ensures that the psychometric

functions of each participant were sampled at compa-

rable probabilities of ‘right’ responses thereby providing

more reliable estimates of slope, PSE and lapse rate

parameters (Wichmann & Hill, 2001a).

ii. Visual reliability: We adjusted the reliability, i.e., size of

the visual Gaussian blob individually for each partici-

pant to match the auditory perceptual reliability (see

Section 2.6.1.3).

iii. AVspatial disparity: Previous studieshavedemonstrated

that observers' sensitivity to detecting whether or not

sensory signals come froma common source and should

be integrated according to forced fusion assumptions

depends on sensory reliability (Rohe&Noppeney, 2015a).

Based on a power analysis simulation (see Appendix B),

we set AV disparity equal to one auditory JND individu-

ally for each participant (i.e., DAV ¼ ±JND; conform rec-

ommendations by Rohde, van Dam, & Ernst, 2016). The

power analysis simulation (Appendix B) suggested that a

spatial disparity of one auditory JND allows one to reveal

with high statistical power (1eb ¼ .95) that the empirical

weight deviates from the MLE-predicted weight by

approximately .06 or more. Yet, this limited spatial

disparity also maximized the probability that partici-

pants integrated sensory signals into one unified audio-

visual percept according to forced fusion strategies
7 This task was split into two parts after IPA and initial pilot
testing. Performing the auditory reliability measurement using
individualized probe locations (part 2) resulted in more precise
estimates (see main text).
rather than take into account the causal structure of the

sensory signals as accommodated by more complex

causal inference models (see K€ording et al., 2007; Shams

& Beierholm, 2010; Rohe&Noppeney, 2015a, 2015b, 2016;

and further discussions in Appendix B).

The second part of the ‘auditory reliability measurement’

is a refinement of the first part's measurement by using the

individualized JND-based locations (see point i above), thereby

ensuring an adequately measured auditory JND. Participants

completed a second series of A trials (20 trials x 13 individu-

alized locations). The new auditory JND that was obtained

from a second fitted psychometric function replaced the JND

from the first measurement. This second auditory JND was

used in all further tasks (see points i, ii, and iii above).

2.6.1.3. VISUAL RELIABILITY ADJUSTMENT. Using adaptive staircases

we adjusted the size of the Gaussian blobs (defined by sblob,

Section 2.4) such that the reliability of the V and A spatial

perceptual estimates were equated individually for each

subject. First, we obtained observer's auditory localization

performance for locations at ð±0:5;±0:85;±1:2Þ*JND from the

fitted psychometric function (Section 2.6.1.2). Using two uni-

sensory visual interleaved adaptive staircases for each of

these three location pairs we adjusted the size of the Gaussian

blob such that the fraction ‘perceived right’ in the visual trials

matched the target fractions estimated from the psychomet-

ric function of the auditory condition [sblob starting values: 2�

and 40�; sblob decreased after each incorrect response and

increased after U consecutive correct responses (U ¼ 1, 2, 4 for

the three location pairs, respectively) with up/down step sizes

ðDþ=D�Þ weighted according to: fraction correct ¼
�

D�
D�þDþ

�1
U

;

Kingdom & Prins, 2016]. The adaptive staircases were termi-

nated after 30 reversals. For each staircase sblob was computed

pooled over the last 20 reversals. For each participant we

identified which of the six staircases provided the estimate

that was most distant from the pooled sblob across all six

staircases. To attenuate effects of potential outliers, we dis-

carded this estimate8 and then computed the final pooled sblob

across the remaining five staircases (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n*
Pðsblob2Þ

q
, with

n ¼ 5 staircases * 20 reversals).

2.6.1.4. VISUAL RELIABILITY CONFIRMATION. To validate thatV andA

variances were successfully equated, participants completed

a series of 260 V trials (20 trials x 13 individualized locations)

with a constant visual stimulus size (sblob as determined in

Section 2.6.1.3) and 260 V trials (20 trials x 13 individualized

locations) with variable visual stimulus sizes (selected

pseudo-randomly between 1
2*sblob and 2*sblob)

9. The V trials

with constant stimulus size were presented interleaved with
shown that it was fairly common for one of the six sblob values to
be an outlier.

9 The number of trials for visual reliability confirmation was
reduced from 2x520 to 2x260 after IPA to reduce the overall
duration of the first session and ensure that observers were able
to maintain attention.

https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


10 The type of eye tracker was changed after IPA. The Tobii EyeX
gaming eye tracker (https://tobiigaming.com) that we had
initially planned to use was upgraded to the Eyelink 1000 to
provide more reliable eye movement recording data.
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the variably sized V trials. Importantly, the variably sized V

trials were not analysed (i.e., trials of ‘no interest’) and only

served to ensure similar conditions as in themain experiment

(see Section 2.6.2.2).

For each participant we fitted a psychometric function to

the fractions of ‘perceived right’ for the V trials with constant

stimulus size, across the thirteen probe locations, and the

variance was computed from the fitted psychometric function

(see Section 2.8). If (i) the difference between the variances

obtained from this V and the previous A (Section 2.6.1.2)

psychometric functions was too large [i.e., if it led to a MLE-

predicted multisensory variance reduction of less than one

third of the smallest unisensory variance: sAV;mle
2 > 2

3*minðsA2;

sV
2Þ according to Eq. (2), Section 2.1], or if for either of the two

psychometric functions (A or V) (ii) the lapse rate was larger

than .06 (Wichmann & Hill, 2001b) or (iii) the goodness-of-fit

was insufficient (see Section 2.10), then participants were

considered to be unreliable with respect to their localization

performance and therefore excluded (and replaced) from the

study at this stage.

2.6.2. Second and third session
2.6.2.1. FAMILIARIZATION REPETITION. At the beginning of sessions

2 and 3, participants were reminded of the background story

(as described in Section 2.6.1.1) and took part in a short

familiarization run (with feedback after every trial, see Section

2.6.1.1) to minimize variability in perceptual reliability and

task performance across sessions [5 trials x 3 conditions x 12

locations: ð±0:5;±1;±1:5;±2;±2:5;±3Þ*JND with visual reli-

ability similar to the main experiment (Section 2.6.2.2): sblob
was pseudorandomized between 1

2*sblob and 2*sblob].

2.6.2.2. MAIN EXPERIMENT. Participants completed 520 trials (40

trials x 13 individualized locations) for each of the 5 main

conditions (A, V, AVD¼0� , AVD¼þX� , AVD¼�X� ; where X� is the

individualized audiovisual disparity DAV, see Section 2.6.1.2;

i.e., 520 � 5 ¼ 2600 ‘trials of interest’) as well as an additional

520 V trials and 3 � 520 ¼ 1560 AVD¼0� trials (i.e., 2080 trials of

‘no interest’). Critically, in half of the V and AV trials (i.e.,

‘trials of interest’) the visual stimulus size ðsblobÞwas constant

and defined based on the results of session 1, such that visual

and auditory reliabilities were equated. In the other half of the

V and AV trials (i.e., ‘trials of no interest’) the visual stimulus

size was variable and selected pseudo-randomly between
1
2*sblob and 2*sblob. These latter ‘trials of no interest’ were not

analysed. They were included to ensure that observers could

not rely on a stored set of sensory weights, but needed to

compute the sensory weights on a trial-by-trial basis. The AV

trials of no interest were all spatially congruent.

The main experiment (4680 trials spread over two days)

was divided into 20 short A, V and AV blocks. A blocks

included 26 trials, V blocks 52 trials and AV blocks 156 trials.

The number of trials varied across sensorymodalities because

the A reliability level was fixed for auditory stimuli. By

contrast, for half of the V and AV trials (i.e., trials of interest)

the visual reliability was fixed, while it was variable for the

other half of the visual trials (i.e., trials of no interest). Further,

AV stimuli were presented three times as frequent as V

stimuli, because AV stimuli were presented without audiovi-

sual conflict (i.e., spatially congruent; AVD¼0� ), with a positive
audiovisual conflict ðAVD¼þX� Þ and with a negative audiovisual

conflict ðAVD¼�X� Þ. The blocks of the different sensory mo-

dalities (A, V, AV) were presented in pseudorandom order and

equally split across the second and third session (i.e., main

experiment part 1 and part 2, see Fig. 1B). Importantly, only

data from this main experiment was used to assess whether

participants integrated the AV signals as predicted by MLE.

Thus, A, V and AV conditions were controlled for stimulus

exposure and experimental duration (n.b. the unisensory

localization performances in session 1 or familiarization tasks

were not used in the final analysis).

2.6.2.3. POST-TESTING QUESTIONNAIRE. At the end of the third

session participants completed a short questionnaire.

Embedded in general questions about participants' subjective
performance [e.g., “Did you get tired during the experiment

and do you think this affected your accuracy?” and “Rate the

difficulty of the task (scale 1e10) for the three different stim-

uli: auditory only, visual only, and audiovisual”] the following

important question was asked: “For audiovisual stimuli, did

you ever have the impression that the auditory and visual

signals did not come from the same location?” Responses to

this question served as subjective reports on whether the

audiovisual spatial conflict was indeed non-noticeable (i.e.,

the forced-fusion assumption).

2.7. Experimental setup

Participants were seated behind a table in a dark room with

their chinona chinrestplacedat a distanceof 75 cmfromagrey

screen (opaquefinePVCfabric; 127.5 cmwidth�170cmheight).

The visual stimuli were back-projected onto the screen using a

60HzDLP projector (BenQMW529). The soundswere presented

by means of headphones (Sennheiser HD 280 Pro) with a play-

back frequency of 192 kHz. Auditory and visual stimulus pre-

sentation was controlled using Psychtoolbox 3.0.12 (Brainard,

1997; Kleiner, Brainard & Pelli, 2007; www.psychtoolbox.org)

running on MATLAB R2016a (www.mathworks.com) with

maximum audiovisual asynchronies < 2 msec (100 stimulus

presentations, .03 msec mean, .5 msec standard deviation).

Fixation was monitored using a desktop mount Eyelink

1000 eye tracker (www.sr-research.com) that was calibrated

before the start of each block of trials.10 Trials on which the

participant failed to fixate within a 3� radius during a 1 sec

period prior to probe onset, or in which blinks were recorded

during either of the stimuli presentations, were excluded from

further analysis.

2.8. Fitting psychometric functions

For each observer, we computed the fraction of ‘perceived

right’ for each of the thirteen probe locations (on the hori-

zontal axis x), separately for each condition. These thirteen

data points per condition can be described by the psycho-

metric function ðjÞ, a model with three parameters (a, b, l):

http://www.psychtoolbox.org
http://www.mathworks.com
http://www.sr-research.com
https://tobiigaming.com
https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


12 The betabinomial model (Eq. (5)) was adopted (instead of the
binomial model, Eq. (4)) after in-principle acceptance of this
registered report to improve model fits. The betabinomial model
is currently the recommended procedure to account for modest
overdispersion that we also observed in our data (h � .13 for all
participants). As a consequence, the betabinomial model sub-
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jðx;a; b; lÞ ¼ lþ ð1� 2lÞFðx;a; bÞ

with Fðx;a; bÞ ¼ bffiffiffiffiffiffi
2p

p
Zx
�∞

exp

 
� b2ðx� aÞ2

2

!
(3)

where Fðx;a;bÞ is the cumulative normal distribution, a is the

mean of the normal distribution (i.e., point of subjective

equality, PSE), the so-called slope parameter b is the reciprocal

of the participant's spatial uncertainty (i.e., just noticeable

difference, JND ¼ 1
b
), and l is the lapse rate (i.e., the probability

of an incorrect response independent of probe location x)

(Kingdom & Prins, 2016). N.b. The JND in this 2IFC localization

task is related to the sensory variance of the stimuli (s2) ac-

cording to: JND2 ¼ 2s2 (i.e., the sensory noise of standard and

probe both contribute to the JND).

A psychometric function is ‘fit’ to observers' fraction of

‘perceived right’ responses by adjusting its parameter values

(a, b, l) such that the likelihood of the data is maximized. For

this we used the Nelder-Mead optimization algorithm, as

implemented in Palamedes toolbox 1.8.2 (www.

palamedestoolbox.org). Likelihood ðLÞ is computed as the

following product:

L ¼
YN
i¼1

pki
i *
�
1� pi

�ðni�kiÞ (4)

where pi ¼ jðxi; a;b; lÞ is the expected probability of observing

a ‘right’ response given probe location xi and parameter values

for a, b and l (Eq. (3)); ki is the empirical number of ‘right’ re-

sponses out of ni trials, and N is the total number of probe

locations.11

For analysis of the main experiment, we simultaneously

fitted five psychometric functions to the five different condi-

tions: A, V, AVD¼0� , AVD¼þX� and AVD¼�X� (i.e., the product of

the five likelihoods is maximized), individually for each

observer. To avoid biases in the slope parameters (b) by inac-

curacies of the estimated lapse rate parameters (l) for the

individual conditions, we constrained the lapse rate parame-

ters to be equal across all five conditions (Kingdom & Prins,

2016; see specifically their Box 4.6 and Section 9.2.5). In other

words, we assumed that observers' miss-responses for non-

specific reasons such as blinking, inattention etc. would be

comparable across conditions. Furthermore, we assumed one

common slope parameter for the three (i.e., one congruent,

one positive and one negative spatial conflict) AV conditions

(N.b. the MLE model predicts equality of the slopes across the

AV conditions; it is therefore standard to compute a single AV

variance estimate by averaging the variances of the AV con-

ditions; e.g., see Alais & Burr, 2004). Given those parameter

constraints we obtained 5 Gaussian means (i.e., a ¼ PSE), 3

Gaussian variances [i.e., 0:5*

�
1
b

�2

¼ s2], and 1 lapse rate

parameter (l) for each observer.
11 The in-principle-accepted version of this manuscript con-
tained a different but equivalent equation for the likelihood as a
product across all trials (instead of the current product across all
locations). The change enables us to use identical parameters in
Eqs (4) and (5).
Critically, the results of these psychophysics experiments

rely on participants' maintaining attention and being willing

to perform this audiovisual location task in a reliable fashion.

However, it is unrealistic to expect fromparticipants that their

performance, vigilance and internal criteria remain absolutely

constant over the duration of five hours of psychophysical

testing (across sessions 2 and 3, see Section 2.6.2.2). To ac-

count for the non-stationarity in observers' behaviour and the

associated overdispersion we have therefore used the beta-

binomial model (Fründ, Haenel, & Wichmann, 2011; Schütt,

Harmeling, Macke, & Wichmann, 2016)12. The betabinomial

model assumes that the response probability (e.g., expected

probability ‘right’, p in Eq. (4)) is not fixed throughout the

entire experiment but a beta-distributed random variable. The

variance of the response probability is determined by the

scaling factor h (between 0 and 1). In order to fit the betabi-

nomial model, including h, we have used the following

equation for the likelihood (instead of Eq. (4); Schütt et al.,

2016):

L ¼
YN
i¼1

B
�
ki þ h0pi; ni � ki þ h0�1� pi

��
B
�
h0pi; h0�1� pi

��
with h0 ¼ 1

h2
� 1

(5)

where B denotes the beta function and the other parameters

are the same as in Eq. (4). To clarify, only one h parameter is

fitted per participant (similar to the shared lapse rate param-

eter l); i.e., i ¼ 1…N denotes a unique combination of probe

location and condition (N ¼ 65; 5 conditions � 13 probe

locations).

To ensure adequate performance and model fits, we

excluded (and replaced) participants if (i) the lapse rate was

greater than .06 (Wichmann &Hill, 2001b) or (ii) the goodness-

of-fit was insufficient (see Section 2.10).

2.9. Sensory weights and AV variances

The normal distributions' variances of the unisensory con-

ditions (A and V) were used to compute the MLE predictions

for the auditory weight (wA in Eq. (1), Section 2.1) and for the

variance of the AV percept (sAV
2 in Eq. (2), Section 2.1). The

empirical auditory weight was computed from the audiovi-

sual conditions with a small spatial cue conflict (i.e., AVD¼þX�

and AVD¼�X� , with X� equal to the auditory JND, see Section

2.6.1.2):
stantially improved the goodness-of-fits, thereby ensuring reli-
able parameter estimates (Section 2.10). Control analyses that
used the binomial model showed comparable results, i.e., de-
viations from MLE predictions were significant at the group-level
for the empirical sensory weights but not significant for the AV
variances in both analyses (see Sections 2.9 and 3.3). This in-
dicates that our results are robust to the specific model choice i.e.,
betabinomial versus binomial model.

http://www.palamedestoolbox.org
http://www.palamedestoolbox.org
https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026
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wA;emp ¼ PSEDAV¼þX� � PSEDAV¼�X�

2�jDAVj þ 1
2

(6)

where the PSEs serve as the means of the location estimates bS
(c.f. Eq. (1), Section 2.1).13 Please note that in consistency with

previous work Eq. (6) makes the additional assumption that

PSEDAV¼0� ¼ PSEA ¼ PSEV; i.e., that the spatial bias is equal for

AV congruent, A and V conditions (Fetsch, Pouget, DeAngelis,

& Angelaki, 2011).

The primary outcome measures of this study were the re-

sults of statistical comparisons that investigated whether the

i. empirical auditoryweight and ii. empirical AV variancewere

significantly different from the MLE predictions (i.e., wA;mle vs

wA;emp and s2AV;mle vs s
2
AV;emp). To allow for generalization to the

population level, empirical and MLE-predictions for each

participant were entered into one-sided paired t-tests (or one-

sided Wilcoxon signed-rank tests if KolmogoroveSmirnov

tests indicated non-normal distributions) at the random ef-

fects group level. The tests were one-sided because (in addi-

tion to the fact that Alais and Burr (2004) also reported one-

tailed tests) given our pilot data (Appendix A) and previously

published reports (Battaglia et al., 2003), we expected that any

differencewould have been in the following direction:wA;mle >
wA;emp and/or s2AV;emp >s2AV;mle. Further assessments were made

by computing one-sided Bayes factors using a Jeffreys prior on

variance and a Cauchy prior on positive effect sizes for the

alternative hypothesis (the prior is zero for negative effect

sizes, interval c ¼ ½0;∞�; scaling factor r ¼ √2=2) and a point

prior on zero effect size for the null hypotheses (Rouder,

Speckman, Sun, Morey, & Iverson, 2009; Morey & Rouder,

2011; BayesFactor Package .9.12 in R 3.4.1; http://

bayesfactorpcl.r-forge.r-project.org/). Bayes factor BF01 ex-

presses evidence in favour of the null-hypothesis (no differ-

ence). BF01 > 3 indicates a good fit of the MLE model, whereas

BF01 < 1
3 indicates a significant difference between the empir-

ical and MLE-predicted parameter values. Effect size index dz
was computed as: (G*Power 3.1; www.gpower.hhu.de):

dz ¼
��mx � my

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx

2 þ sy
2 � 2rxysxsy

q (7)

where mx, my and sx, sy are the population means and standard

deviations, and rxy denotes the correlation between the two

measures.

2.10. Goodness of fit

The validity of the analysis method described above (Section

2.8e9) relies on the assumption that the data for each condi-

tion can be accurately fitted by a cumulative Gaussian func-

tion. In order to validate this assumption we performed a

goodness of fit test. This test compares i. the likelihood of

participants' responses given themodel that is constrained by

the cumulative Gaussian function(s) to ii. the likelihood given

a so-called ‘saturated’ model that models observers'
13 The in-principle-accepted version of this manuscript con-
tained a minor error in the weights equation (Eq. (6)). The signs of
the PSEs of the incongruent conditions have been inverted to
correct this error.
responses with one parameter for each stimulus location in

each condition. The likelihood ratio for the original data set is

then compared with a null-distribution of likelihood ratios

that is generated by parametrically bootstrapping data (5000x)

from the model constrained by the cumulative Gaussian dis-

tribution (Kingdom & Prins, 2016; Wichmann & Hill, 2001b)

and where additionally the expected probabilities of ‘right’

responses ðpiÞ are drawn from beta distributions with mean

jðxi;a;b; lÞ and variance h2jðxi;a;b; lÞð1� jðxi;a;b; lÞÞ (Schütt

et al., 2016). If fewer than 5% of the parametrically boot-

strapped likelihood ratios were smaller than the likelihood

ratio for the original data set (i.e., p < .05), then insufficient

goodness of fit was inferred and the data set excluded (i.e., the

participant was replaced). This exclusion criterion is required

as parameters from psychometric functions that do not

adequately fit observers' responses cannot be interpreted.

2.11. Summary of participant exclusion criteria

To ensure that our results and conclusions were based only on

data sets from participants thatmaintain attention and provide

reliable responses we have excluded participants prior to the

final test session if i. their A localization performance was not

adequate (accuracy < 90% for ±10� azimuth; Section 2.6.1.2), ii.

the difference between unisensory auditory and visual vari-

ances was so large that the MLE predicted multisensory vari-

ance reduction was smaller than a third of the smallest

unisensory variance (Section 2.6.1.4), iii. the lapse rate was

greater than .06 or the goodness-of-fitwas insufficient for either

of the two unisensory psychometric functions obtained during

the first session: A (Section 2.6.1.2) or V (Section 2.6.1.4). It is

important to emphasize that participants were excluded from

the study because of the above criteria prior to the main

experiment which compared participants' audiovisual integra-
tion with the MLE predictions. In addition, we have excluded

participants after the main experiment in the third session, if

the lapse rate was greater than .06 or the goodness-of-fit was

insufficient for the psychometric functions obtained during the

main experiment (Sections 2.9e2.10).

Excluded participants were replaced such that the final

number of included participants was thirty-six (Section 2.3).

2.12. Summary of outcome-neutral conditions

The following criteria ensured that the data are of good

quality, so that they enabled us to test the null-hypothesis

that observers integrated audiovisual signals in line with

MLE prediction: i. We included only participants with

adequate auditory localization ability and performance

(accuracy � 90% for ±10� azimuth, Section 2.6.1.2) that were

more likely to rely on their auditory sense during localization

of AV stimuli. This will have excluded participants that may

overweight the visual sense because auditory localization

over an extended period of time is too demanding. ii. We have

only included participants where we adjusted V reliability

individually such that A and V perceptual reliability were

approximately equated (Section 2.6.1.4). This criterion

ensured that flooring/ceiling effects were avoided. It rendered

our experimental design powerful for revealing a robust

multisensory variance reduction if participants indeed

http://bayesfactorpcl.r-forge.r-project.org/
http://bayesfactorpcl.r-forge.r-project.org/
http://www.gpower.hhu.de
https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


c o r t e x 1 1 9 ( 2 0 1 9 ) 7 4e8 882
integrated audiovisual signals according to MLE predictions

(Eq (2), Section 2.1) and thus allowed us to dissociate whether

or not human performance is in line with MLE predictions. iii.

We have only included participants with lapse rates smaller

than .06 (Wichmann & Hill, 2001b) and adequate goodness of

fit (p > .05). This criterion ensured that data sets were included

only from participants that consistently maintained attention

and motivation throughout the entire experiment.

2.13. Post-hoc exploratory analyses

2.13.1. Within-subject parameter comparisons
The fitted parameters for empirical weights and variances (see

Section 2.9) are only estimates of observer's true weights and

variances, because any psychometric function fit is inevitably

affected by experimental noise (Kingdom & Prins, 2016). In

order to visualize the amount of uncertainty that is associated

with each estimate we made use of the parameter estimates

that were fit during the goodness-of-fit parametric bootstrap

procedure (N ¼ 5000, see Section 2.10). 95% confidence in-

tervals were computed as the distance between the 2.5 and

97.5 percentiles of the bootstrapped parameter distributions.

Furthermore, using the bootstrapped distributions we tested

whether observed differences between pairs of parameter

estimates within the same participant were significant [e.g.,

(1) sVssA, (2) sAV;emp <minðsA; sVÞ, (3) sAV;emp >sAV;mle, and

(4) wA;emp <wA;mle]: This was done by comparison of the

empirically determined parameter difference with a null dis-

tribution of differences (i.e., expected differences due to noise

when the two parameters are actually equal) which was

constructed by subtracting the empirical difference from all

bootstrapped parameter differences (thus ensuring that the

null distribution is approximately centred at zero). Signifi-

cance was inferred when the empirical difference exceeded

95% of the null-distribution (absolute values were used for

two-sided tests).

2.13.2. Control analysis for the effect of audiovisual spatial
disparity and unisensory biases
If the forced fusion assumption does not hold in the cue

conflict conditions, we may expect different variances for the

audiovisual percept depending on the particular AV condition.

To account for differences in AV variances, we performed a

second psychometric function fit to all datasets, using the

betabinomial model as described above. The only difference

was that in this case five (instead of three) slope parameters

were fitted, one for each condition (i.e., we fit sAV;emp sepa-

rately for each of the three audiovisual conditions). Moreover,

using the parameter estimates of this second fit, we computed

the auditory weights separately for the two incongruent

conditions while taking unisensory biases into account:

wA;ALVR ¼ PSEAV;ALVR �
�
PSEV � 1

2X
���

PSEA þ 1
2X

��� �PSEV � 1
2X

�� and

wA;VLAR ¼ PSEAV;VLAR �
�
PSEV þ 1

2X
���

PSEA � 1
2X

��� �PSEV þ 1
2X

��
(8)

where the abbreviation ALVR is used for the condition where

the audiovisual spatial conflict is imposed as Auditory Left,
Visual Right; i.e., DAV ¼ þ X�. Likewise VLAR is used for

DAV ¼ � X�.
3. Results

3.1. Participant exclusion and replacement

Five participants were excluded during/after the first session

for the following reasons: (i) Two participants did not pass the

unisensory auditory performance threshold (>90% at ±10�;
Section 2.6.1.2). (ii) One participant was excluded because the

difference between unisensory visual and auditory variances

was too large even after they were supposedly matched using

a staircase procedure [sAV;mle
2 > 2

3*minðs2A;s2VÞ; Section 2.6.1.4].

(iii) One participant was excluded because the unisensory vi-

sual lapse rate was too high (l ¼ 0:11, Section 2.6.1.4). (iv) One

participant was excluded in session 1 because the eye tracker

failed to calibrate. Furthermore, two participants decided to

withdraw from the study after successful completion of ses-

sion 1. All seven participants were replaced such that thirty-

six participants (26 women, 10 men; 21.8 mean age, ±2:6
years SD) completed all three sessions. All of these datasets

were included for analyses (i.e., no dataset had to be excluded

because the goodness of fit was inadequate or because the

lapse rate was too high in the main experiment; Section 2.11).

3.2. Trial exclusion

Trials were excluded from analyses of the main experiment if

the participant did not fixate within a 3� radius around the

fixation cross or the participant blinked during either standard

or probe stimulus presentation (Section 2.7). For six partici-

pants the collected eye tracker data were not reliable because

of sudden jumps in gaze location and time gaps in which no

data was collected. No trials were excluded for these six par-

ticipants. For the other thirty participants we excluded on

average 3% (maximally 12%) of the 2600 trials of interest of the

main experiment (Section 2.6.2.2).

3.3. Main outcomes at the group level

We jointly fitted (using the betabinomial model, Eq. (5); Sec-

tion 2.8) five psychometric functions individually to each

participant's dataset of the main experiment: Unisensory

auditory and visual, audiovisual spatially congruent and

spatially incongruent (A-left V-right, DAV ¼ þ X�, and V-left

A-right, DAV ¼ � X�). Based on the unisensory variances we

predicted (usingMLE) the audiovisual variance and the PSEs of

the incongruent audiovisual conditions (Eqs. (1) and (2)).

Fig. 2A,B summarizes the results at the group level. As ex-

pected under the MLE-model, the audiovisual slope (con-

strained to be equal for all three AV conditions) is steeper than

either unisensory slopes and nearly identical to the MLE-

predicted slope. Moreover, the PSEs (i.e., location at which

Pð"probe right"Þ ¼ 0:5) for unisensory and AV congruent con-

ditions are very similar (with a small bias for responding

“probe right”, i.e., PSEs < 0�, for all three conditions). Because

https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


Fig. 2 e Psychometric functions, sensory noise parameters and weights e group level results. A-B. Psychometric functions

were fit to responses for A, V and AV (congruent and incongruent) conditions of each participant. Panels A and B show the

group-average of those fitted psychometric functions (group mean ±SEM) obtained by computing the mean P(“probe right”)

across participants for every point on the x-axis (where the stimulus levels were expressed relative to the individual's DAV):

Auditory (green), visual (red) and audiovisual congruent AVD¼0� (blue), audiovisual conflict AVD¼�X� (magenta; i.e., ‘visual left,

auditory right’) and AVD¼þX� (cyan; i.e., ‘auditory left, visual right’) as solid lines. Using individuals' MLE-predicted

parameters (see Eqs. (1) and (2)) we also constructed MLE-predicted psychometric functions and subsequently computed

group-averages for AVD¼0� (panel A, black), AVD¼�X� (panel B, magenta) and AVD¼þX� (panel B, cyan) in dashed lines. The

empirical and MLE-predicted psychometric functions are nearly identical for the AV congruent condition. Furthermore, for

the AV incongruent conditions theMLE-predicted psychometric functions are nearly identical to the empirical AV congruent

psychometric function, because auditory and visual variances were approximately matched. By contrast, the empirical

psychometric functions for the audiovisual incongruent conditions are shifted sideways, indicating more (less) “right”

responses when the probe's visual signal was presented on the right (left) of the auditory signal. If participants completely

ignored one of the two sensory modalities then their incongruent PSEs are expected to be near ±1
2DAV (vertical dashed black

lines). C. Bar plots show the across participants' mean (±1.96 SEM) of the sensory noise parameter s for the auditory (green),

visual (red) and empirical (dark blue) and MLE-predicted (light blue, Eq. (2)) audiovisual conditions. The individual sensory

noise parameters s were normalized, i.e., divided by the participant-specific sAV;mle before averaging (hence sAV;mle ¼ 1). D.

Bar plots show the across participants' mean (±1.96 SEM) of empirical and MLE-predicted auditory weights (Eqs. (1) and (6)).
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the auditory and visual variances were approximately

matched (as intended, Section 2.6.1.3) the MLE-model predicts

that the PSEs of the spatially incongruent conditions coincide

with the AV congruent condition (Fig. 2B). By contrast, the

empirical PSEs of the incongruent conditions deviate from the

MLE-predicted PSEs. Both incongruent PSEs suggest that the

visual stimulus component was assigned a stronger weight

than expected based onMLE-predictions: e.g., when the visual

and auditory probe were displaced by þ1
2DAV and � 1

2DAV,

respectively, this resulted in more “probe right” responses

(thus a negative PSE shift; solid cyan line).

Fig. 2C,D shows the across participants' means (±SEM) for

the MLE-predicted and empirical sensory noise parameters

and auditory weights. In support of the MLE model we find no

evidence that sAV;emp >sAV;mle at the group level: t(35) ¼ .33,
p¼ .37, BF01 ¼ 4.24, dz ¼ .06. However, the auditory weights are

significantly smaller than predicted by the MLE model,

wA;emp <wA;mle: t(35) ¼ 6.25, p < .0001, BF10 > 10000, dz ¼ 1.04.

(We reported results from one-sided t-tests because none of

the KolmogoroveSmirnov tests indicated that a non-

parametric test was required.)

3.4. Post-hoc exploratory analyses

3.4.1. Within-subject parameter comparisons
The results reported so far clearly indicate that the MLEmodel

is not an adequate description of observers' spatial classifi-
cation responses. In the following we investigated individu-

ally for each participant whether his/her behavioural

responses are consistent with the MLE predictions. Using

https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


Fig. 3 e Scatter plots of individual sensory noise parameters and weights (with 95% bootstrapped confidence intervals for

each parameter). Black dashed lines along the diagonal indicate equality of the two parameters. A. Unisensory visual (y-

axis) versus auditory (x-axis) sensory noise parameters. Dark diamonds indicate twelve participants with a significant

difference between auditory and visual sensory noise (two-sided test). B. Empirical audiovisual sensory noise parameters

versus the minimum of the auditory or visual sensory noise parameters. The colour of the diamonds' outlines indicates the

least variable unisensory modality for each participant (A ¼ green, V ¼ red). Dark diamonds indicate twenty-four

participants with a significant multisensory variance reduction. C. Empirical versus MLE-predicted AV sensory noise

parameters. Dark diamonds indicate five participants for whom the empirical variance is significantly greater than

predicted by MLE. D. Empirical versus MLE-predicted auditory weights. Dark diamonds indicate twenty participants with

significant visual overweighting.
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parametric bootstrapping we obtained 95% confidence in-

tervals for the estimates and performed statistical tests at the

individuals level (Section 2.13.1). Fig. 3A shows that the visual

reliability approximately matched the auditory reliability (see

Section 2.6.1.3), though we acknowledge that they were

significantly different in twelve participants. However, de-

viances from equality were only moderate, so that our

experiment maintained its sensitivity for detecting differ-

ences with MLE-model predictions. Please note that the uni-

sensory data for this statistical analysis were collected during

the main experiment only (sessions 2e3).

Panel B shows that a significant multisensory variance

reduction is observed for twenty-four participants, i.e., the

majority of our participants [sAV <minðsA;sVÞ]. (Panel C) While

the one-sided bootstrap tests revealed an empirical audiovisual

variance that is greater than predicted by the MLE model

(sAV;emp >sAV;mle) for five participants, a smaller than predicted

audiovisual variancewas also found in a subset of participants.

The fact that so few participants deviate from the MLE-

predictions despite having optimized experimental conditions

for finding such differences suggests MLE near-optimal multi-

sensory integration. (D) However, we also observed that twenty

participants significantly overweighted the visual signal during
audiovisual integration (wA;emp <wA;mle), which clearly demon-

strates that the group-level result for visual overweighting is

not an accidental finding.

3.4.2. Control analysis for the effect of audiovisual spatial
disparity and unisensory biases
The analyses reported so far rest on two important assump-

tions: 1. The slope parameters of the three audiovisual con-

ditions (independent of spatial in-congruence) are

comparable and hence modelled jointly by one parameter

when estimating the psychometric functions. 2. Any left-right

bias detected in the unisensory auditory and/or visual condi-

tion is irrelevant when computing empirical auditory weights

because left-right biases for audiovisual trials are best

described by the PSE of the AV congruent condition. We

therefore performed two additional control analyses that

relaxed these assumptions:

1. We fitted psychometric functions using independent

slope parameters for each of the three audiovisual conditions

and investigated whether the audiovisual sensory noise pa-

rameters differed across the audiovisual congruent and the

two conflict conditions. A one-way (AV congruent, AV conflict

left, AV conflict right) repeatedmeasures analysis on the fitted
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audiovisual noise parameters sAV;emp revealed a significant

effect of ‘audiovisual condition’ [F(1.63,57.19) ¼ 5.97, p ¼ .007,

h2p ¼ .15, Greenhouse-Geisser corrected], with the order of the

group means sAV;VLAR <sAV;congruent <sAV;ALVR. We also directly

investigated whether the empirical audiovisual variances

differed from their MLE-predictions separately for each AV

condition. Indeed, one-sided paired t-tests revealed a signifi-

cant difference for sAV;ALVR >sAV;mle: t(35) ¼ 2.3, p ¼ .04 (Bon-

ferroni adjusted), BF10 ¼ 3.67, dz ¼ .39. (No such difference was

found for the other conditions: BF01 z 10 for both

sAV;VLAR >sAV;mle and sAV;congruent > sAV;mle). This suggests that

the forced-fusion assumption has been violated in the

spatially incongruent condition ALVR (DAV ¼ þ X�) leading to

greater AV variances than predicted by MLE.

2. Using the fitted psychometric functions from point 1

above (with three audiovisual noise parameters), we computed

the empirical auditory weights separately for the two incon-

gruent conditions while accounting for the unisensory left-

right bias (see Eq. (8), Section 2.13). This control analysis

corroborated the visual overweighting for both incongruent

conditions [wA;VLAR <wA;mle: t(35) ¼ 3.30, p ¼ .001, BF10 ¼ 31,

dz ¼ .55 and wA;ALVR <wA;mle: t(35) ¼ 2.12, p ¼ .02, BF10 ¼ 2.56,

dz ¼ .35].

3.4.3. Results from the post-testing questionnaire
A critical assumption of cue conflict paradigms as used in the

current study is that the cue conflict is non-noticeable for

subjects, so that the forced fusion assumption holds. To

assess whether this assumption holds in the current study we

asked participants in a post-testing questionnaire whether

they ever had the impression that the signals did not come

from the same location (Section 2.6.2.3).

Only thirteen out of the thirty-six participants reported

that they occasionally experienced the auditory and visual

signals as coming from two separate locations on audiovisual

trials (e.g., the auditory and visual component signals of the

AV probe were perceived on opposite sides of the AV stan-

dard). These responses indicate an intermittent breakdown of

the forced-fusion assumption in these thirteen participants

on some trials. To investigate whether these thirteen partici-

pants showed a different pattern of results (relative to MLE-

predictions) than the other twenty-three participants we

performed two independent two-sample t-tests on (i) relative

sensory noise differences sAV;emp=sAV;mle and (ii) weights dif-

ferences wA;mle �wA;emp (as obtained using the primary anal-

ysis pipeline; Sections 2.8e9). Both deviations from MLE-

predictions were numerically larger in the group of thirteen

participants who claimed to have experienced AV disparities,

though neither of the tests reached significance: t(34) ¼ 1.67,

p ¼ .052, Cohen's d ¼ .58 for sAV, and t(34) ¼ 1.49, p ¼ .073,

Cohen's d ¼ .52 for wA.

Furthermore, we investigated whether the visual over-

weighting was still present in the group that was not aware of

the audiovisual conflict. Indeed, we still observed significant

visual overweighting in the subgroup of twenty-three partici-

pants who did not report to have experienced any audiovisual

disparity: t(22)¼ 3.70, p¼ .0006, BF10 ¼ 58.5, dz ¼ .77. This finding

suggests that visual overweighting inAV spatial localization is a

general mechanism that does not critically depend on the

awareness of the experimentally induced audiovisual disparity.
4. Discussion

This study investigated whether audiovisual localization is

consistent with maximum likelihood estimation as previously

suggested by Alais and Burr’s (2004). However, utilizing care-

fully designedmethods thatwere peer-reviewed and registered

before data collection, our study shows that naı̈ve observers do

not integrate signals as predicted by the MLE model. While we

observed a significant variance reduction for audiovisual rela-

tive to unisensory conditions in agreement with MLE, partici-

pants weighted the visual signals significantly stronger than

predicted by the MLE model. In the following we will first

discuss differences between the current and the previous study

by Alais and Burr (2004), we will then provide three explana-

tions for the results observed in our study and finally elaborate

on the most likely interpretation.

The design of this study has been optimized to allow detec-

tion of deviations from theMLE predictionswith high statistical

power. (i) We have recruited considerably more participants

(N¼ 36) thanwere included inpreviousstudies (i.e., Alais&Burr,

2004; N ¼ 6; Battaglia et al., 2003, N ¼ 10). (ii) We successfully

matched the reliability of auditory and visual stimuli individu-

ally for each participant to sensitize our experimental design to

the detection of deviations from the MLE model. (iii) We opti-

mized audiovisual spatial disparity individually for each

participant to balance the risk of violating the forced fusion

assumption (small disparities are preferred) and high statistical

power for potential weights differences (large disparities are

preferred; Appendix B). (iv) We adjusted stimulus locations

individually for eachparticipant such that theparameters of the

psychometric functions could be estimated reliably based on a

high number of trials at relevant stimulus levels (i.e., spatial

locations). (v) We ensured high quality data by excluding par-

ticipants that showed signs of inadequate or inconsistent per-

formance and by using eye tracking to control eye gaze fixation

and remove missed trials due to blinks.

The beneficial effects of these optimized experimental

conditions are best illustrated by the exploratory analyses at

the level of the individuals (Fig. 3).Wewere able to demonstrate

a significant audiovisual variance reduction (i.e., multisensory

behavioural benefit) in two thirds of our participants, most

likely because of relatively small confidence intervals for our

parameter estimates (i.e., more reliable results). By contrast,

Alais and Burr (2004) were able to demonstrate a significant

variance reduction at the individual level in only one of their six

participants. The observation of variance reduction at the in-

dividual level is critical to show that participants integrated

audiovisual signals at the single trial level rather than proba-

bilistically responding to either of the unisensory signals (i.e.,

they were not ‘cue-switching’; Ernst & Bülthoff, 2004). Yet, we

also observed significant visual overweighting at the

individuals-level in the majority of participants.

Moreover, post-hoc control analyses revealed visual over-

weighting independently in both audiovisual conflict condi-

tions, so that this finding cannot be explained by unisensory

biases. Finally, visual overweighting was significant at the

group-level even when we constrained the analysis to the

subset of participants who did not report the sensation of the

audiovisual disparity (in a post-testing questionnaire).

https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


c o r t e x 1 1 9 ( 2 0 1 9 ) 7 4e8 886
Collectively these results suggest that observers do not

integrate audiovisual signals into spatial representations

consistent with the MLE model predictions. The dissociation

between optimal variance reduction, yet suboptimal sensory

weights may be surprising. However, we show in Appendix C

that this dissociation is likely to emerge for small deviations

from MLE optimality, because deviations from MLE prediction

can be far more reliably estimated for sensory weights than for

audiovisual variances. Thus, even though a reduction in au-

diovisual variance is critical to exclude probabilistic weighting

as a potential strategy for observers, the confirmation of

optimal sensory weights is equally important, because it will

detect MLE sub-optimalities with a greater sensitivity.

In the following, we will present three explanatory

frameworks that can accommodate our findings.

First, it is well-known that MLE-type integration of multi-

sensory signals breaks down as a function of inter-sensory

conflict, such as their spatial disparity (Gepshtein, Burge,

Ernst, & Banks, 2005). More recent developments of Bayesian

causal inference can accommodate this behavioural pattern

by explicitly modelling the two causal structures that could

have generated the two signals, i.e., common or independent

sources (K€ording et al., 2007; Rohe & Noppeney, 2015a, 2015b,

2016). A final perceptual (e.g., spatial) estimate is then ob-

tained by combining the perceptual estimates obtained under

the assumption of common and independent sources ac-

cording to various decision functions. One particular decision

function of the Bayesian causal inferencemodel, the so-called

‘model-averaging’, combines the audiovisual common source

estimate with the task-relevant (i.e., either auditory or visual)

estimateweighted by the posterior probabilities of common or

independent sources (Wozny, Beierholm & Shams, 2010; Rohe

& Noppeney, 2015a). Crucially, observers may implicitly

consider vision, that is usually the modality of choice for

spatial localization, as the task-relevant modality, even

though theywere explicitly instructed to report the location of

the audiovisual stimulus. Indeed, seven participants reported

spontaneously in the post-testing questionnaire that they

reported the visual location when they had the sensation that

the A and V signals did not come from a common source. As a

consequence of such a strategy, we would observe visual

overweighting when comparing observers against the ‘inap-

propriate’ MLE model. However, because this question was

not explicitly asked, the strategy of the other observers cannot

be assessed.

Second, as previously suggested by Battaglia et al. (2003)

observers may have assumed a prior over the visual signal's
reliability based on their lifelong experience that vision is

usually themore reliable sensorymodality for spatial location.

As a consequence their visual reliability estimates would be

biased and observers would overweight visual signals when

applying reliability-weighted audiovisual integration.

Both of the explanations discussed above, i.e., Bayesian

causal inference and biased visual reliability estimates, pre-

dict not only visual overweighting, but also MLE violations for

audiovisual variance. Yet, these violations may not have been

observed in the current study, because the methodological

approaches employed in cue conflict studies are far more

sensitive for detecting violations in sensory weights than in

sensory variances (see Appendix C).
Third, visual overweighting may emerge if the true visual

reliability during visual-only trials is lower than the true visual

reliability during audiovisual trials. For example, visual reli-

ability might be higher in an audiovisual context because of

low-level cross-modal boosting of stimulus salience (Aller,

Giani, Conrad, Watanabe, & Noppeney, 2015) or because of

sound-induced increased attention or vigilance (Talsma,

Senkowski, Soto-Faraco, & Woldorff, 2010). Such an increase

in the visual reliability during audiovisual presentation rela-

tive to the unisensory visual condition would increase the

weight assigned to visual signals during multisensory inte-

gration. Because the MLE predictions assume that the visual

variance during unisensory and audiovisual conditions are

equal, observers' sensory weights and variances would

deviate from the MLE predictions (that we based on the uni-

sensory conditions). Specifically, visual weights would be

greater and audiovisual variances smaller than predicted by

MLE. Again, the variance deviations may not have been

observed in our experiment because of lack of sensitivity.

In summary, our results demonstrate that observers inte-

grate audiovisual signals approximately as predicted by MLE.

However, the sensoryweights deviated significantly fromMLE

predictionswith a greater weight assigned to the visual signal.

These findings converge with accumulating research

revealing sensory overweighting not only for audiovisual

spatial localization (Battaglia et al., 2003), but a range of

different sensory modalities and tasks (Bentvelzen, Leung, &

Alais, 2009; Burr, Banks, & Morrone, 2009; Butler, Smith,

Campos, & Bulthoff, 2010; Fetsch, Turner, DeAngelis, &

Angelaki, 2009; Prsa, Gale, & Blanke, 2012; Rosas, Wagemans,

Ernst, & Wichmann, 2005). We have proposed three possible

accounts that can explain these modest deviations in sensory

weights fromMLE predictions. Below, wewill elaborate on the

most likely interpretation.

The fact that one third of the participants' did not al-

ways perceive audiovisual signals as coming from one

source points to their causal uncertainty as key to under-

standing the sensory overweighting in our study. In

everyday life observers are always confronted with uncer-

tainty about the world's causal structure. Because of sen-

sory noise even signals that come from a common source

can be perceived as arising from different sources. Further,

in our and previous perturbation studies a small intersen-

sory conflict is required for the estimation of sensory

weights, which may have further enhanced observers' un-
certainty about the causal structure of the sensory signals.

This produces a dilemma for experimentalists: Sensory

weights are more sensitive to small deviations from MLE

predictions than sensory variances. Yet, their estimation

requires the introduction of intersensory conflicts that in-

crease observer's causal uncertainty. By contrast, MLE pre-

dictions for sensory variances can be assessed based on

congruent trials alone, but they are unreliably estimated

making them an insensitive indicator for assessing whether

observers' behaviour is consistent with MLE predictions.

Thus, future studies may need to explore ways to increase

observers' prior causal expectations, i.e., whether signals

come from common or independent sources. Only if ob-

servers assume that sensory signals necessarily come from

one source and hence adopt a causal prior of one, will the
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causal inference model reduce to the MLE model under

forced fusion assumptions. For instance, future studies

may include prior extensive training, increase the per-

centage of congruent stimuli and the persuasiveness of the

stimuli (e.g., naturalistic voice and face pairings) to

enhance observers' prior tendency to bind audiovisual sig-

nals according to forced fusion and hence MLE predictions.

In conclusion, naive observers do not integrate audiovisual

spatial signals in away that is consistent with the principles of

maximum likelihood estimation. These results may be

explained by observers' uncertainty about whether the sen-

sory signals share a common origin, as accounted for by

models of Bayesian causal inference.
Open Practices

The study in this article earned Open Materials, Open Data

and Preregistered badges for transparent practices. Materials

and data for the study are available at https://osf.io/k3fj6/ (DOI

10.17605/OSF.IO/K3FJ6).
CRediT authorship contribution statement

David Meijer: Conceptualization, Methodology, Data curation,

Software, Formal analysis, Visualization, Writing - original

draft. Sebastijan Veseli�c: Validation, Investigation, Data cura-

tion, Writing - review & editing. Carmelo Calafiore: Valida-

tion, Investigation, Data curation, Writing - review &

editing. Uta Noppeney: Funding acquisition, Resources,

Conceptualization, Methodology, Project administration, Su-

pervision, Writing - original draft, Writing - review & editing,

Formal analysis.

Acknowledgments

We thank Maddison Roberts for her help with acquisition of

the pilot data. This study was funded by the European

Research Council (ERC-2012-StG_20111109 multsens).
Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.cortex.2019.03.026.
r e f e r e n c e s

Alais, D., & Burr, D. (2004). The ventriloquist effect results from
near-optimal bimodal integration. Current Biology, 14(3),
257e262. https://doi.org/10.1016/j.cub.2004.01.029.

Aller, M., Giani, A., Conrad, V., Watanabe, M., & Noppeney, U.
(2015). A spatially collocated sound thrusts a flash into
awareness. Front Integr Neurosci, 9, 16.

Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian
integration of visual and auditory signals for spatial
localization. JOSA A, 20(7), 1391e1397.
Bentvelzen, A., Leung, J., & Alais, D. (2009). Discriminating
audiovisual speed: Optimal integration of speed defaults to
probability summation when component reliabilities diverge.
Perception, 38(7), 966e987.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision,
10, 433e436.

Burr, D., Banks, M. S., & Morrone, M. C. (2009). Auditory
dominance over vision in the perception of interval duration.
Experimental Brain Research, 198(1), 49e57.

Butler, J. S., Smith, S. T., Campos, J. L., & Bulthoff, H. H. (2010).
Bayesian integration of visual and vestibular signals for
heading. Journal of Vision, 10(11), 23.

Dyjas, O., Bausenhart, K. M., & Ulrich, R. (2012). Trial-by-trial
updating of an internal reference in discrimination tasks:
Evidence from effects of stimulus order and trial sequence.
Attention, Perception, & Psychophysics, 74(8), 1819e1841. https://
doi.org/10.3758/s13414-012-0362-4.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and
haptic information in a statistically optimal fashion. Nature,
415(6870), 429e433. https://doi.org/10.1038/415429a.

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a
robust percept. Trends in Cognitive Sciences, 8(4), 162e169.
https://doi.org/10.1016/j.tics.2004.02.002.

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009).
Statistical power analyses using G*Power 3.1: Tests for
correlation and regression analyses. Behavior Research
Methods, 41(4), 1149e1160. https://doi.org/10.3758/BRM.41.4.
1149.

Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2011).
Neural correlates of reliability-based cue weighting during
multisensory integration. Nature Neuroscience, 15(1), 146e154.
https://doi.org/10.1038/nn.2983.

Fetsch, C. R., Turner, A. H., DeAngelis, G. C., & Angelaki, D. E.
(2009). Dynamic reweighting of visual and vestibular cues
during self-motion perception. Journal of Neuroscience, 29(49),
15601e15612.

Fründ, I., Haenel, N. V., & Wichmann, F. A. (2011). Inference for
psychometric functions in the presence of nonstationary
behavior. Journal of Vision, 11(6).

Gardner, W. G., & Martin, K. D. (1995). HRTF measurements of a
KEMAR. The Journal of the Acoustical Society of America, 97(6),
3907e3908. https://doi.org/10.1121/1.412407.

Gepshtein, S., Burge, J., Ernst, M. O., & Banks, M. S. (2005). The
combination of vision and touch depends on spatial
proximity. Journal of Vision, 5(11), 1013e1023.

Kingdom, F. A. A., & Prins, N. (2016). Psychophysics: A practical
introduction (2nd ed.). Amsterdam: Elsevier. ISBN: 978-0-12-
407156-8 Available online: http://www.sciencedirect.com/
science/book/9780124071568.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R.,
Broussard, C., et al. (2007). What's new in Psychtoolbox-3.
Perception, 36(14), 1.

K€ording, K. P., Beierholm, U., Ma, W. J., Quartz, S.,
Tenenbaum, J. B., & Shams, L. (2007). Causal inference in
multisensory perception. Plos One, 2(9), e943. https://doi.org/
10.1371/journal.pone.0000943.

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for
testing interval null hypotheses. Psychological Methods, 16(4),
406e419. https://doi.org/10.1037/a0024377.

Prsa, M., Gale, S., & Blanke, O. (2012). Self-motion leads to
mandatory cue fusion across sensory modalities. Journal of
Neurophysiology, 108(8), 2282e2291.

Rahnev, D., & Denison, R. N. (2018). Suboptimality in perceptual
decision making. The Behavioral and Brain Sciences, 2018, 1e107.

Rohde, M., van Dam, L. C. J., & Ernst, M. O. (2016). Statistically
optimal multisensory cue integration: A practical tutorial.
Multisensory Research, 29(4e5), 279e317. https://doi.org/10.
1163/22134808-00002510.

https://osf.io/k3fj6/
https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cub.2004.01.029
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref2
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref2
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref2
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref3
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref3
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref3
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref3
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref4
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref4
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref4
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref4
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref4
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref5
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref5
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref5
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref6
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref6
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref6
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref6
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref7
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref7
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref7
https://doi.org/10.3758/s13414-012-0362-4
https://doi.org/10.3758/s13414-012-0362-4
https://doi.org/10.1038/415429a
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.1038/nn.2983
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref13
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref13
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref13
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref13
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref13
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref14
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref14
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref14
https://doi.org/10.1121/1.412407
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref16
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref16
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref16
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref16
http://www.sciencedirect.com/science/book/9780124071568
http://www.sciencedirect.com/science/book/9780124071568
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref18
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref18
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref18
https://doi.org/10.1371/journal.pone.0000943
https://doi.org/10.1371/journal.pone.0000943
https://doi.org/10.1037/a0024377
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref21
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref21
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref21
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref21
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref22
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref22
http://refhub.elsevier.com/S0010-9452(19)30158-3/sref22
https://doi.org/10.1163/22134808-00002510
https://doi.org/10.1163/22134808-00002510
https://doi.org/10.1016/j.cortex.2019.03.026
https://doi.org/10.1016/j.cortex.2019.03.026


c o r t e x 1 1 9 ( 2 0 1 9 ) 7 4e8 888
Rohe, T., & Noppeney, U. (2015a). Sensory reliability shapes
perceptual inference via two mechanisms. Journal of Vision,
15(5), 22. https://doi.org/10.1167/15.5.22.

Rohe, T., & Noppeney, U. (2015b). Cortical hierarchies perform
bayesian causal inference in multisensory perception. PLoS
Biology, 13(2), e1002073. https://doi.org/10.1371/journal.pbio.
1002073.

Rohe, T., & Noppeney, U. (2016). Distinct computational principles
govern multisensory integration in primary sensory and
association cortices. Current Biology, 26(4), 509e514. https://doi.
org/10.1016/j.cub.2015.12.056.

Rosas, P., Wagemans, J., Ernst, M. O., & Wichmann, F. A. (2005).
Texture and haptic cues in slant discrimination: Reliability-
based cue weighting without statistically optimal cue
combination. Journal of the Optical Society of America. A, Optics,
Image Science, and Vision, 22(5), 801e809.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.
(2009). Bayesian t tests for accepting and rejecting the null
hypothesis. Psychonomic Bulletin & Review, 16(2), 225e237.
https://doi.org/10.3758/PBR.16.2.225.
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