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Abstract
In spite of their anatomical robustness, it has been difficult to establish the functional role of corticogeniculate circuits connecting
primary visual cortex with the lateral geniculate nucleus of the thalamus (LGN) in the feedback direction. Growing evidence
suggests that corticogeniculate feedback does not directly shape the spatial receptive field properties of LGN neurons, but rather
regulates the timing and precision of LGN responses and the information coding capacity of LGN neurons. We propose that
corticogeniculate feedback specifically stabilizes the response gain of LGN neurons, thereby increasing their information coding
capacity. Inspired by early work by McClurkin et al. (1994), we manipulated the activity of corticogeniculate neurons to test this
hypothesis. We used optogenetic methods to selectively and reversibly enhance the activity of corticogeniculate neurons in anes-
thetized ferrets while recording responses of LGN neurons to drifting gratings and white noise stimuli. We found that optogenetic
activation of corticogeniculate feedback systematically reduced LGN gain variability and increased information coding capacity
among LGN neurons. Optogenetic activation of corticogeniculate neurons generated similar increases in information encoded in
LGN responses to drifting gratings and white noise stimuli. Together, these findings suggest that the influence of corticogeniculate
feedback on LGN response precision and information coding capacity could be mediated through reductions in gain variability.
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1 Introduction

The first feedback step in the visual system is the
corticogeniculate (CG) pathway that links the primary visual
cortex (V1) with the dorsal lateral geniculate nucleus of the
thalamus (LGN; Sherman and Guillery 2006). Although CG
synapses onto LGN relay neurons far outnumber synapses
from retinal ganglion cells (Erisir et al. 1997a; Erisir et al.
1997b), LGN neurons derive their spatial receptive field

properties from their retinal rather than their cortical inputs
(Usrey et al. 1999). Accordingly, CG inputs “modulate” rather
than “drive” visual responses in LGN neurons (Sherman and
Guillery 1998), although the functional role of this modulation
has remained elusive. Consensus across studies from multiple
species utilizing different methods to manipulate feedback is
that CG feedback does not alter visual stimulus tuning or
spatial properties within the classical receptive field of LGN
neurons in a clear or consistent manner (Denman and
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Contreras 2015; Geisert et al. 1981; Gulyas et al. 1990; Hasse
and Briggs 2017; Marrocco et al. 1996). Often modulations of
CG feedback altered the gain of LGN neuronal responses, and
in some cases these gain modulations were specific to moving
stimuli or subclasses of LGN neurons (Gulyas et al. 1990;
Hasse and Briggs 2017; Li et al. 2011; Marrocco et al. 1996;
Przybyszewski et al. 2000; Tsumoto et al. 1978). The lack of
clear CG influence on the spatial properties of LGN classical
receptive fields is in fact consistent with the notion that LGN
spatial properties are inherited from the retina. In contrast,
compelling evidence supports alternative functional roles for
CG feedback, including increasing the precision and informa-
tion encoded in LGN responses to visual stimuli.

Results of studies employing non-selective methods to ma-
nipulate CG neurons suggest that CG feedback reduces re-
sponse variability in LGN neurons and increases information
encoded in LGN responses to visual stimuli (Andolina et al.
2007; Funke et al. 1996; McClurkin et al. 1994). McClurkin
and colleagues inactivated CG neurons by reversibly cooling
the occipital cortex in alert fixating monkeys. Their technical
achievement was significant as was their use of alert monkeys
because anesthesia may alter CG activity (Steriade 2003).
These authors designed and used an extensive set of visual
stimuli varying across multiple feature dimensions, and uti-
lized an information theoretic approach to analyze the infor-
mation contained in LGN spike trains in response to this rich
visual stimulus set. When CG feedback was suppressed via
cortical cooling, the authors observed complex effects on
LGN spiking responses, including increases and decreases in
spiking rates to various stimuli. Strikingly, they discovered
that cortical cooling decreased stimulus-specific information
in LGN neuronal spike trains and temporal distributions of
spikes compared to pre-cooling responses, independent of
changes in neuronal firing rates across pre-cooling and
cooling conditions. Additionally, cortical cooling decreased
LGN response specificity acrossmultiple stimulus dimensions
(e.g. spatial contrast, luminance, pattern). Together, the au-
thors’ findings suggested that CG feedback influenced infor-
mation processing in the LGN by enhancing the separation of
signals about unique stimulus features, thus improving the
coding capacity of LGN neurons. In support of the notion that
CG feedback enhances LGN responses to unique visual fea-
tures, a more recent study employing optogenetic methods to
selectively activate CG feedback demonstrated a marked in-
crease in the precision of LGN neuronal responses to visual
stimuli during CG activation (Hasse and Briggs 2017).

How might CG circuits increase response precision in the
LGN? Statistically, sensory neurons behave as if their re-
sponses originate from a doubly stochastic process. Spiking
activity in the LGN and in V1 is often well described as arising
from a Poisson process whose rate is the product of a deter-
ministic stimulus drive and a stochastic response gain,
expressed in the “modulated Poisson model” (Goris et al.

2014). The gain summarizes slowly fluctuating modulatory
influences on excitability (Goris et al. 2018). The Poisson
process accounts for a baseline level of response stochasticity,
which is further amplified by gain fluctuations – the larger the
gain variability, the larger the response variability. This frame-
work motivates the hypothesis that CG circuits act to stabilize
the gain of LGN neurons, thereby increasing their response
precision.

Guided by the work of McClurkin et al. (1994), we sought
to causally test the hypothesis that CG feedback quenches
response variability of LGN neurons by stabilizing their re-
sponse gain, thereby increasing information coding capacity
in the LGN. In the first set of experiments, we examined CG
influence on LGN response variability, and in the second set
of experiments, we examined CG influence on information
coding among LGN neurons. In both experiments, we used
virus-mediated gene delivery to optogenetically enhance the
activity of CG neurons in anesthetized ferrets while recording
the visual responses of LGN neurons. To assess CG influence
on response variability, we analyzed LGN responses to
drifting sinusoidal gratings varying in temporal frequency
using the aforementioned modulated Poisson model. As hy-
pothesized, this analysis revealed a substantial reduction in
gain variability in LGN neurons with CG feedback activation.
Analysis of Fano factor, a theory-agnostic measure of neuro-
nal response dispersion, confirmed that reduced gain variabil-
ity coincided with a significant reduction of overall neuronal
response variance. We reasoned that the CG-mediated reduc-
tion in response variance serves to improve the sensory coding
capacity of LGN neurons. In the second set of experiments,
we measured changes in Fisher Information (FI) for LGN
neuronal responses to gratings varying in temporal frequency
and entropy rates of LGN responses to white noise m-
sequence stimuli with and without activation of CG feedback.
As hypothesized, causal activation of CG feedback increased
FI and information rates among LGN neurons independent of
changes in neuronal firing rates. Together, these findings pro-
vide strong support for the notion that CG feedback sharpens
the precision of LGN responses to visual stimuli by reducing
gain variability, thereby increasing stimulus-specific informa-
tion coding among LGN neurons.

2 Materials and methods

This study involved new data collection and new analyses of
data collected as a part of a previous study of the functional
role of corticogeniculate (CG) circuits in vision (Hasse and
Briggs 2017). Data were collected from 14 adult female ferrets
(Mustela putorius furo) and all of the procedures performed
conformed to the guidelines set forth by the NIH and the
USDA and were approved by the Institutional Animal Care
and Use Committees at the University of Rochester and the
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Geisel School of Medicine at Dartmouth. All of the proce-
dures involving animals have been described in detail previ-
ously (Hasse and Briggs 2017).

2.1 Summary of methods for which details have been
published previously

All of the ferrets received an injection of a genetically modi-
fied rabies virus (SADΔG-ChR2-mCherry; titer range: 1.3 ×
108–4.1 × 109) targeting the lateral geniculate nucleus of the
thalamus (LGN) in order to express channelrhodopsin2
(ChR2) and mCherry selectively in CG neurons in the visual
cortex (Hasse et al. 2019; Hasse and Briggs 2017). Surgical
preparation and virus injection, neurophysiological recording
of LGN and V1 neurons, visual and optogenetic stimulation,
spike sorting and initial data analyses, and histological pro-
cessing of brain tissue have all been described in detail previ-
ously (Hasse and Briggs 2017). Briefly, in a sterile surgical
procedure and under full anesthesia, 5 μl of rabies virus was
injected, targeting the LGN. Ferrets recovered for 7 to 11 days
after which a terminal neurophysiological recording experi-
ment was conducted under anesthesia and with paralytic to
prevent eye movements. Multi-electrode arrays (7-channel
Eckhorn Matrix from Thomas Recording GMBH, Giessen,
Germany and 24-contact V-probe from Plexon Inc., Dallas,
TX) placed in the LGN and in area 17 recorded LGN and
V1 neurons in response to visual stimuli displayed on a CRT
monitor placed ~50 cm in front of ferrets’ eyes. Optogenetic
activation of ChR2 was achieved with a blue LED (465 nm;
Doric Lenses Inc., Quebec, CAN or Plexon, Inc., Dallas, TX)
coupled to a fiber optic cable (200 μm, NA:0.53 or 200 μm,
NA: 0.66) positioned just above the surface of area 17 near the
V-probe. Light intensity at the tip of the fiber measured be-
tween 20 and 90 mW/mm2; light intensity at layer 6 is esti-
mated to be 0.2 to 0.9 mW/mm2 (Acker et al. 2016). Visual
stimuli included drifting sinusoidal gratings and m-sequence
white noise stimuli. Gratings were presented for 2 s with 2 s of
mean gray luminance in between presentations; each grating
type was displayed 2–20 times per condition (no LED, with
LED). Half of the trials included visual stimulation alone (no
LED) and the other half were visual stimulation paired with
optogenetic activation (with LED) at the drift rate of displayed
gratings or continuously on for m-sequence stimuli.
Following the end of the neurophysiological recording ses-
sion, ferrets were euthanized via overdose and perfused and
then brain tissue was histologically processed to verify virus
expression at the injection site and in CG neurons. LGN single
units were spike sorted offline following standard clustering
procedures. LGN neuronal tuning in response to gratings
varying in contrast, temporal frequency, spatial frequency,
orientation, and size, was measured via curve fits to
stimulus-evoked firing rates. LGN neurons were classified
as X or Y cells based on their contrast to evoke a half-

maximal response (c50 > 40% for X and < 40% for Y) and
preferred temporal frequency (pref. TF < 12 Hz for X,
pref. TF > 12 Hz for Y), as done previously (Derrington
and Fuchs 1979; Sherman and Spear 1982). LGN neurons
were classified as “intermediate” if their c50 and TF
values were intermediate to those of X and Y neurons.
Spatiotemporal receptive field maps for LGN and V1 neu-
rons were generated by computing the spike-triggered av-
erage (STA) of reverse-correlated m-sequence frames.

2.2 Summary of animal and cell numbers

In 7 of 14 ferrets, virus was successfully injected into the LGN
revealing expression of ChR2 and mCherry in CG neurons
(example virus-infected and subsequently stained CG neurons
in V1 shown in Fig. 1a). LGN and V1 neurons recorded in
these animals are referred to as Experimental neurons
throughout. In the remaining 7 ferrets, there was no virus in
the LGN and no label in the visual cortex so LGN and V1
neurons recorded in these animals served as control for
optogenetic activation and are referred to as Control neurons
throughout. Variance and Fisher Information (FI) analyses
were run on 9 Experimental LGN neurons and 8 Control
LGN neurons. Entropy analyses were run on 16
Experimental LGN neurons, 14 Control LGN neurons, and
an additional 6 V1 neurons (from 3 ferrets), of which 5 were
Experimental and 1 was a Control neuron. Neuronal measures
were qualitatively and quantitatively similar across recording
sessions/animals (see Figs. 1, 2, 3 and 4) and were therefore
combined into their respective categories for all population-
level analyses.

2.3 Variability analyses

Variability analyses were performed on neuronal responses to
drifting grating stimuli modulating in temporal frequency
(TF). Each stimulus set consisted of 10 different temporal
frequencies ranging from 1 to 32 Hz. The entire set of 10
temporal frequencies was repeated 7–20 times per neuron
for each LED condition. Only LGN neurons with clear con-
trast tuning were used for the variability analyses to ensure
that stimuli were placed within neuronal receptive fields and
to confirm cell type classification. Following these criteria, 11
of 16 Experimental LGN neurons and 11 of 15 Control LGN
neurons were analyzed. All LGN neurons included in the
analysis also had TF tuning curves with clear preferred TFs.

For each neuron, we computed the mean and variance of
the spike count for each stimulus condition. Additionally, we
fit the modulated Poisson model proposed by Goris et al.
(2014) to the responses of each neuron. Briefly, under this
model, spikes arise from a Poisson process whose stimulus-
driven rate is subject to stimulus-independent modulatory in-
fluences (gain fluctuations). If we assume that gain on average
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equals 1 and fluctuates on a time-scale that is slow relative to
the duration of a stimulus presentation, then response variance
is given by: var N jS;Δt½ � ¼ f Sð ÞΔt þ σ2

G f Sð ÞΔtð Þ 2, where N
is spike count, S is the stimulus,Δt is the duration of the count
window, f(S) is firing rate, and σG the standard deviation of the
gain.We use σG as a measure of gain variability. The first term
of the right-hand side of the equation represents the Poisson
process contribution to the response variance, which is equal
to the mean spike count. The second term is the variance of the
expected spike count conditioned on the stimulus drive, and is
proportional to the square of the first term, with a proportion-
ality factor equal to the variance of the gain signal, σ2

G. To
verify that the model described the data well, we performed an
absolute goodness-of-fit test by comparing the log-probability
of the data with the expected distribution (Goris et al. 2014).
We hypothesized that activation of CG feedbackwould elicit a
decrease in gain variability. Everything else being equal,
changes in gain variability will result in changes in response
variability. However, if responsemean changes in conjunction
with gain variability, then it is possible that either raw spike
count variance or Fano factor (i.e., the ratio of the spike count
variance to the mean) remains constant (Henaff et al. 2020).
We therefore additionally analyzed the effects of our causal
manipulation on response variance and Fano factor.

For each neuron, we obtained one estimate of σ2
G for each

LED condition.We summarized response mean, variance, and
Fano factor per neuron by averaging the corresponding esti-
mates across all TFs. We used the Wilcoxon signed-rank test
to compare these summary statistics across LED conditions
within each group (Experimental or Control), and the
Wilcoxon rank-sum test to compare the differences between
LED conditions across groups. P values were corrected for
multiple comparison at p < 0.0125. All statistical analyses
are summarized in Table 1.

2.4 Fisher information analysis

We hypothesized that changes in gain variability brought
about by activation of CG neurons would elicit changes in
the coding capacity of LGN neurons. To test this hypothesis,
we first estimated the FI associated with each LED condition.
This statistic quantifies the amount of temporal frequency in-
formation that can be extracted from a neuronal response by
an optimal decoder. Specifically, its inverse provides a lower
bound on the variance of the maximum likelihood estimate.
To calculate the FI, we used the following formula:

I F ¼ E
R
0
xrefð Þ2

σ xrefð Þ2
� �

, where R’(xref) is the derivative of the neu-

ronal TF tuning curve computed at each TF using the “differ-
entiate” Matlab function, and σ(xref)

2 is the variance of the
spike count for that same TF (Gu et al. 2010; Nover et al.
2005; Pouget et al. 1998; Seung and Sompolinsky 1993). FI

per neuron per LED condition was quantified as the average of
the FI across all TF values per condition. We used the
Wilcoxon signed-rank test to compare FI across LED condi-
tions within each group, and the Wilcoxon rank-sum test to
compare the differences between LED conditions across
Experimental and Control groups.

2.5 Entropy and information analyses

To further test whether reductions in gain variability lead to
changes in visual information coding capacity of LGN neu-
rons during causal manipulation of CG neurons, we estimated
entropy and information rates from LGN and V1 responses to
m-sequence stimuli following the methods of Strong et al.
(1998). Procedures for computing entropy from m-sequence
responses were modeled after those described by Liu et al.
(2001). Only neurons with well-defined spatial receptive
fields with widths on the order of a single m-sequence grid
pixel (grid pixel range: 0.9375 to 2.5 degrees, average grid
pixel: 1.65 ± 0.1 degrees) were used for these analyses (ON
and OFF spatial receptive fields for two example neurons
illustrated in Fig. 1b). All analyses were performed for two
conditions per neuron: with and without LED applied to the
surface of V1. Both conditions were analyzed for
Experimental and Control neurons and differences in entropy
and information across LED conditions were then compared
between Experimental and Control LGN neurons.

Separate sets of neuronal spiking responses to m-sequence
stimulation were utilized to compute response and noise en-
tropy. For response entropy, neuronal spiking responses over
the entire m-sequence presentation were analyzed. For noise
entropy, responses to 6 consecutive frames (20 ms per frame)
of the preferred luminance increment or decrement (three
frames of white then three frames of black or vice versa) in
the pixel covering the classical receptive field were used
(similar to the approach by Liu et al. 2001). There were ~
500 repeats of this frame sequence per m-sequence presenta-
tion for which repeated neuronal responses were measured to
compute noise entropy.

Neuronal spike times, sampled at 40KHz, were
discretized into “letters” with bin width (Δτ) = 8 ms. If
at least 1 spike occurred in a bin, the letter was assigned a
value of 1, otherwise it was 0. Different bin widths (4, 6,
and 8 ms) were tested and response entropy scaled with
increasing bin width. Furthermore, no neurons had greater
than 5% of bins with more than 1 spike using a bin width
of 8 ms, so this bin width was used for all subsequent
steps. By altering the number of bins per word (W), the
word length (T) was varied according to: T = WΔτ.
Multiple sizes for T were tested between 16 and 96 ms
(i.e. W varying from 2 to 16) to provide consistent esti-
mates of true entropy after correction for finite data
(Strong et al. 1998), described below. Each naïve entropy
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rate, listed below, was computed using the same general
equation for naïve entropy rate = −Σi pi log2 pi / T, where
pi is the probability of occurrence of the ith word.
Response entropy rate was computed from the words gen-
erated from the neuronal spiking response to the ongoing
m-sequence. Noise entropy rate was computed from the
words generated in response to each 6-frame preferred
luminance modulation sequence and then averaged over
all repeats of this sequence (Liu et al. 2001). Maximum
entropy rate was computed from the probability distribu-
tion of all possible words given the mean firing rate
(Pryluk et al. 2019). To correct for finite data, the follow-
ing extrapolation procedure was performed for each fixed
size T. The m-sequence data were partitioned as the full
m-sequence presentation, two halves, three thirds, and
four quarters of the m-sequence presentation. Naïve max-
imum and response entropy rates were computed per par-
tition; for halves, thirds, and quarters of the data, values
from each segment were averaged. Naïve information rate
was also computed per partition as response entropy rate
minus the average of noise entropy rates over all preferred
luminance modulation sequences in the partition; values
for each segment were averaged as above. These naïve
entropy rates were then plotted against the inverse frac-
tion of data used and the true entropy rate was computed
by finding the y-intercept of a regression line fit to the
naïve entropy rate estimates. This procedure was repeated
for different sizes of T and true entropy rates were plotted
against inverse T to ensure that true entropy rates were
reliable for a range of T sizes, taking into account biases
associated with larger T and finite data size. Finally, true
information rate values per neuron were divided by the
average spike rate across the entire m-sequence presenta-
tion to obtain information in bits/spike. As mentioned
above, all of these steps were performed separately for
m-sequence presentations with and without LED activa-
tion of CG feedback for each neuron.

Maximum entropy rate, response entropy rate, information
rate, and information in bits/spike were displayed separately
for X, Y, and intermediate LGN cell types, however because
there were only a few classified neurons per Experimental and
Control group, statistical comparisons were made across all
LGN neurons.Within group comparisons of entropy rates and
information were made using Wilcoxon signed-rank tests.
Differences in entropy rates and information (with LED – no
LED values) across Experimental and Control LGN groups
were tested using Wilcoxon rank-sum tests with p value cor-
rection for multiple comparisons (p < 0.025). Only average
data are reported for V1 neurons because there was only 1
Control V1 neuron. All statistics from entropy and informa-
tion analyses are reported in Table 2. Although firing rates
were slightly higher among LGN and V1 Experimental neu-
rons with LED activation, firing rates were not significantly

different across LED conditions for any of the neuronal group-
ings (p > 0.2 for all; average ± SEM firing rate for:
Experimental LGN no LED = 6.7 ± 0.7, LED = 7.0 ± 0.8;
Control LGN no LED = 12.6 ± 3.4, LED = 12.9 ± 3.4;
Experimental V1 no LED = 9.7 ± 3.8, LED = 10.0 ± 2.9).

3 Results

Based on previous evidence that CG feedback modulates the
variability of LGN activity in response to visual stimuli
(Andolina et al. 2007; Funke et al. 1996), increases the spike
timing precision of LGN responses (Hasse and Briggs 2017),
and enhances the information coding capacity of LGN neu-
rons (McClurkin et al. 1994), we tested the hypothesis that CG
feedback enhances information coding among LGN neurons
by stabilizing the response gain of LGN neurons. We utilized
modern selective optogenetic methods to characterize the
causal influence of CG neurons on gain variability and infor-
mation coding capacity of LGN neurons.

To determine the effects of CG feedback on trial-to-trial
fluctuations in neuronal response gain, we analyzed LGN neu-
ronal responses across 7–20 repeats of a series of drifting
gratings varying in temporal frequency (TF), both with and
without optogenetic activation of CG feedback. We described
neuronal activity with a statistical model designed to identify
the contribution of gain fluctuations to overall response vari-
ability: the modulated Poisson model (Goris et al. 2014). We
performed this analysis on 9 Experimental LGN neurons from
2 ferrets in which virus-infected CG neurons expressed ChR2
(Fig. 1a) and on 8 Control LGN neurons from 1 ferret in which
ChR2 was not expressed in CG neurons. All LGN neurons
tested displayed tuning for contrast as well as TF (Fig. 1c, d),
which enabled classification of LGN neurons as X, Y, or in-
termediate based on their c50 and preferred TF. In the vast
majority of cases (31 out of 34), the modulated Poisson model
accurately captured the structure of the measured response
distributions, i.e. the model description could not be distin-
guished from the real data. For each LGN neuron, we used
this model to obtain an estimate of gain variability for both
LED conditions (examples illustrated in Fig. 1c, d).

There was a 4-fold reduction in gain variability across LED
conditions for Experimental LGN neurons (from 0.25 ± 0.085
to 0.049 ± 0.025; Fig. 2a). In contrast, there was no change in
gain variability for Control LGN neurons (0.19 ± 0.083 to
0.15 ± 0.064; Fig. 2a). Changes in gain variability can, but
need not, result in changes in overall response variance, as
variance also depends on changes in the mean response level.
We found that optogenetic activation of CG feedback did not
yield a systematic change in response strength: mean spike
counts did not differ across LED condit ions for
Experimental or Control LGN neurons (Fig. 2b; Table 1). As
a consequence, all but one Experimental LGN neuron
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displayed a decrease in spike count variance with LED acti-
vation of CG feedback (Fig. 2c). This effect was significant
within the Experimental LGN neuronal group (p = 0.0078;
Table 1). Additionally, the reduction in spike count variance
with LED activation of CG feedback was significantly greater
in Experimental compared to Control LGN neurons (p =
0.0108; Fig. 2c; Table 1). Neuronal response variability is

often quantified with Fano factor, a normalized measure of
response dispersion. Consistent with the trends described
above, LED activation of CG neurons significantly reduced
Fano factor for Experimental LGN neurons (p = 0.0078), but
not for Control LGN neurons (Fig. 2d; Table 1).

To determine whether a reduction in response variance
could serve to improve the sensory coding capacity of LGN

Fig. 1 Example virus-infected CG neurons, LGN neuronal spatial recep-
tive field maps, and temporal frequency responses. a. Coronal section
through V1 (area 17) stained against cytochrome oxidase activity with
virus-infected CG neurons visible following antibody and DAB-peroxide
staining. Layers are indicated with dashed gray lines and labeled at left.
Scale bar represents 100 μm. b. Representative spatial receptive field
maps for ON center (left) and OFF center (right) LGN neurons. Black
box width corresponds to 1 degree and applies to both spatial receptive

field maps. Note that the centers of each receptive field are mostly cap-
tured by single bright/dark pixels. c. Temporal frequency (TF) tuning
curves (left) and variance to mean comparisons without (black, middle)
and with (blue, right) LED illumination of V1 for a representative
Experimental LGN neuron (data illustrated with filled circles). Fit of the
modulated Poisson model (Goris et al. 2014) to the data is shown in red.
d. Same as c but showing a representative Control LGN neuron (data
illustrated with crosses)

Fig. 2 Variance in LGN responses with and without optogenetic
activation of CG neurons. Changes in gain variability (a), mean spike
count (b), variance in spike count (c), and Fano factor (d), across no
LED (nL) and LED (L) trials for Experimental (filled circles) and

Control (crosses) LGN neurons. LGN cell classifications are indicated
in the keys at the bottom. Asterisks indicate significant differences within
a group across LED conditions. Average values and statistics listed in
Table 1
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neurons, we first examined FI for each neuron with and with-
out of LED activation of CG feedback (Gu et al. 2010; Nover
et al. 2005). This statistic quantifies the amount of temporal
frequency information that can be extracted from a neuronal
response by an optimal decoder. In keeping with our hypoth-
esis, we observed a significant increase in FI among
Experimental LGN neurons with LED activation of CG feed-
back (p = 0.0078; Fig. 3, left; Table 1), but no change across
LED conditions for Control LGN neurons (p = 1; Fig. 3, right;
Table 1). Correspondingly, the difference across LED condi-
tions for Experimental LGN neurons was significantly greater
than the difference across LED conditions for Control LGN
neurons (p = 0.0045; Table 1).

To further test whether CG-mediated reductions in re-
sponse variance alter the visual information coding capacity
of LGN neurons, we examined entropy rates for LGN re-
sponses to white noise m-sequence stimuli during selective
causal manipulation of CG neurons. We also explored wheth-
er LED activation of CG neurons within V1 altered informa-
tion coding among V1 neurons. LGN and V1 neurons with
well-defined spatiotemporal receptive field maps generated
from m-sequence stimulation were utilized for this analysis
and the vast majority of LGN and V1 neurons tested had
classical receptive fields that were mostly encompassed by a
single pixel of the m-sequence grid (e.g. Figure 1b; average
grid pixel = 1.65 ± 0.1 degrees). LGN and V1 neurons tested
also were tuned for contrast and temporal frequency, which
enabled classification of LGN neurons as X, Y, or intermedi-
ate based on their c50 and preferred TF. A total of 16
Experimental LGN neurons, 14 Control LGN neurons, 5
Experimental V1 neurons, and 1 Control V1 neuron were
analyzed (Table 2).

We first assessed the extent to which LGN and V1 neuronal
responses to m-sequence stimulation approached maximum
entropy estimates (Pryluk et al. 2019). Comparison of

Table 1 Variance analysis statistics

σG Mean Spike Count Variance Fano Factor Fisher Information

Experimental LGN
n = 9 cells
n = 2 ferrets

Mean ± SEM No LED 0.25 ± 0.085 21.03 ± 5.27 61.95 ± 13.66 2.90 ± 0.40 2.18 + 2.01
Mean ± SEM LED 0.049 ± 0.025 18.88 ± 3.97 21.72 ± 4.070 1.18 ± 0.074 2.70 ± 2.17
P value in group 0.109 0.359 0.0078 0.0078 0.0078
Mean ± SEM difference (LED-No LED) −0.23 ± 0.10 −2.14 ± 1.77 −40.23 ± 10.83 −1.72 ± 0.43 0.37 ± 0.12

Control LGN
n = 8 cells
n = 1 ferret

Mean ± SEM No LED 0.19 ± 0.083 23.78 ± 5.06 43.01 ± 7.08 2.44 ± 0.52 0.18 ± 0.076
Mean ± SEM LED 0.15 ± 0.064 24.01 ± 5.31 42.03 ± 25.21 1.92 ± 0.31 0.20 ± 0.092
P value in group 0.0391 0.844 0.844 0.0547 1
Mean ± SEM difference (LED-No LED) −0.0431±

0.02
0.228 ± 1.10 −2.90 ± 7.03 −0.736 ± 0.36 0.022 ± 0.047

Experimental vs Control P value
differences

0.229 0.3619 0.0108 0.0386 0.0045

Average ± SEMgain variability (σG), mean spike count, spike count variance, and Fano factor for Experimental (top box) and Control (second box) LGN
neurons including statistical comparisons. Average ± SEM mean spike count, variance in spike count, and Fano factor are averaged for each neuron
across all grating presentations. Wilcoxon rank tests were used for within-group comparisons and for Experimental versus Control difference measures
with p values corrected for multiple comparisons (p < 0.0125; bold text)

Fig. 3 Fisher information in LGN responses with and without
optogenetic activation of CG neurons. Fisher information (FI) computed
from the same TF tuning data for Experimental LGN neurons (left, filled
circles) and Control LGN neurons (right, crosses) used in the variance
analyses. Average FI is shown for each neuron across no LED (nL) and
LED (L) conditions. LGN cell classifications are indicated in the key at
the bottom. Asterisk indicates a significant difference within the
Experimental LGN group across LED conditions

J Comput Neurosci (2021) 49:259–271 265



maximum entropy and response entropy revealed that LGN
neurons in both Experimental and Control groups had response
entropy measures that approached maximum entropy estimates
(Fig. 4a). Maximum and response entropy estimates were larg-
er with LED activation of CG feedback for Experimental LGN
neurons (Fig. 4a, left, compare blue versus black symbols, and
Fig. 4c, leftmost; Table 2), although these differences were not
statistically significant within the Experimental LGN neuronal
group. However, the differences in maximum and response
entropy estimates across LED conditions were significantly
larger for Experimental compared to Control LGN neurons
(p < =0.015 for both, Table 2; Fig. 4a, c). Interestingly, both
maximum and response entropy estimates also tended to be
larger with LED activation of CG neurons for Experimental
V1 neurons, although there were not enough Control V1 neu-
rons for a statistical comparison (Table 2). It is possible that
response entropy scaled with increases in neuronal firing rate,
which dictates the maximum entropy estimate. However, al-
though neuronal firing rates were slightly higher with LED
activation for Experimental LGN and V1 neurons, firing rates
were not significantly different across LED conditions for any
neuronal group (p > 0.2 for all).

To explore whether increases in entropy estimates with
LED activation of CG neurons were due to subtle increases

in neuronal firing rate or increases in information coding ca-
pacity, we measured information coding capacity without and
with LED activation of CG feedback. Because LED activation
of CG neurons caused an increase in response entropy among
Experimental neurons, an increase in information rate would
require no change or a decrease in response variability, quan-
tified as noise entropy. We hypothesized that LED activation
of CG feedback would reduce variability in responses to re-
peated stimulus presentations, as shown above, thus reducing
noise entropy and increasing information rates among LGN
Experimental neurons. For all but two Experimental LGN
neurons, LED activation of CG feedback led to an increase
in information rate (Fig. 4b, left and Fig. 4d; filled circles). In
contrast, information rates among Control LGN neurons were
similar across LED conditions (Fig. 4b, left and Fig. 4d;
crosses). Furthermore, the increase in information rate with
LED activation of CG feedback was significantly larger for
Experimental LGN neurons compared to Control LGN neu-
rons (p = 0.0210; Table 2). Importantly, the significant in-
crease in information rate with LED activation of CG feed-
back among Experimental LGN neurons was not simply due
to changes in neuronal firing rate because when information
rate was normalized by neuronal firing rate to generate infor-
mation in bits/spike, all but one Experiment LGN neuron

Table 2 Entropy analysis statistics

Max entropy Response entropy Info. (bits/s) Info. (bits/spike)

Experimental LGN
n = 16 cells
n = 5 ferrets

Mean ± SEM
No LED

35.5 ± 2.8 37.1 ± 2.6 23.9 ± 1.5 3.89 ± 0.3

Mean ± SEM LED 42.1 ± 3.6 43.4 ± 3.3 27.7 ± 2.0 4.32 ± 0.3

P value in group 0.0734 0.0523 0.0523 0.0676

Mean ± SEM difference
(LED-No LED)

6.7 ± 2.0 6.3 ± 1.9 3.9 ± 1.2 0.43 ± 0.1

Control LGN
n = 14 cells
n = 6 ferrets

Mean ± SEM
No LED

50.4 ± 7.2 50.5 ± 6.9 32.5 ± 5.2 3.2 ± 0.2

Mean ± SEM LED 49.6 ± 6.8 49.7 ± 6.3 31.7 ± 4.8 3.1 ± 0.3

P value in group 0.9999 0.9451 0.9999 0.4213

Mean ± SEM difference
(LED-No LED)

−0.87 ± 2.2 −0.85 ± 2.3 −0.83 ± 1.6 −0.09 ± 0.1

Experimental vs Control P value differences 0.0119 0.0150 0.0210 5.18 × 10−4

Experimental V1
n = 5 cells
n = 2 ferrets

Mean ± SEM
No LED

43.7 ± 12.4 43.5 ± 12.2 28.3 ± 8.7 3.4 ± 0.4

Mean ± SEM LED 49.5 ± 11.1 48.9 ± 10.6 32.5 ± 7.0 3.8 ± 0.5

Mean ± SEM difference
(LED-No LED)

5.8 ± 5.1 5.4 ± 5.6 4.2 ± 5.7 0.33 ± 0.2

Control V1
n = 1 cell
n = 1 ferrets

Mean ± SEM
No LED

23.8 25.8 23.9 5.5

Mean ± SEM LED 38.6 39.0 24.4 3.6

Mean ± SEM difference
(LED-No LED)

14.8 13.2 0.47 −1.88

Average ± SEM maximum entropy rate (bits/s), response entropy rate (bits/s), information rate (bits/s), and information (bits/spike) for Experimental
LGN (top box), Control LGN (second box), Experimental V1 (third box), and Control V1 (fourth box) neurons including statistical comparisons.
Wilcoxon rank tests were used for within-group comparisons and for Experimental versus Control difference measures with p values corrected for
multiple comparisons for entropy and information comparisons (p < 0.025; bold text)
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demonstrated an increase in information (bits/spike) with
LED activation of CG feedback (Fig. 4b, right and Fig. 4e;
filled circles). In contrast, information coding did not change
across LED conditions for Control LGN neurons (Fig. 4b,
right and Fig. 4e; crosses). Again, the increase in information
in bits/spike with LED activation of CG feedback was signif-
icantly larger for Experimental LGN neurons compared to
Control LGN neurons (p = 5.18 × 10−4; Table 2). Most
Experimental V1 neurons also demonstrated an increase in
information rate and information (bits/spike) with LED acti-
vation of CG neurons (Fig. 4b-e, cyan filled circles; Table 2),
although there were not enough samples for statistical com-
parisons within or across Experimental and Control V1 neu-
ronal groupings.

4 Discussion

Our objective in this study was to determine whether CG
circuits serve to stabilize the response gain of LGN neu-
rons, thereby enhancing their information coding capacity.
Optogenetic activation of CG feedback did not alter LGN

neuronal tuning for temporal frequency, nor did it modu-
late LGN neuronal firing rates in a systematic manner
(Figs. 1c, d and 2b), consistent with previous findings
(Denman and Contreras 2015; Hasse and Briggs 2017;
Marrocco et al. 1996). However, activation of CG feed-
back reduced gain variability (Fig. 2a), which in turn re-
duced response variability (Fig. 2c-d), and increased cod-
ing capacity for temporal frequency (Fig. 3). We further
explored whether selective and causal manipulation of
CG feedback altered information rates among LGN neu-
rons. Optogenetic activation of CG feedback increased in-
formation rates for the vast majority of Experimental LGN
neurons (Fig. 4b–e), an effect that was absent for Control
LGN neurons (Fig. 4). Together these results suggest that
the role of CG feedback is to increase the precision of
visual stimulus information encoding in the LGN through
reduction in the variability of LGN responses to relevant
visual stimulus features. This facilitating effect is reminis-
cent of facilitation attributed to top-down attention mech-
anisms in the visual cortex (Rabinowitz et al. 2015).

Prior studies of LGN neuronal response variability have
produced differing estimates of Fano factor. While some

Fig. 4 Entropy and information in LGN responses with and without
optogenetic activation of CG neurons. a. Relationships between
maximum entropy (ME; open circles & crosses) or response entropy
(RE; filled circles & asterisks) rate in bits/s and firing rate for
Experimental (left) and Control (right) LGN neurons. Black symbols
are responses on no LED (nL) trials and blue are responses on LED (L)
trials. b. Information rate (bits/s) at left and information in bits/spike at
right across LED conditions for LGN and V1 Experimental and Control
neurons. Color and symbol key below. Note that Experimental LGN

neurons (filled magenta, green, and orange circles) are mostly above the
diagonals representing unity. Changes in maximum entropy rate in bits/s
(c), information rate in bits/s (d), and information in bits/spike (e) across
no LED (nL) and LED (L) trials for individual Experimental LGN (left,
filled circles), Control LGN (middle, crosses), and V1 (right, cyan filled
circles = Experimental, gray crosses = Control) neurons. LGN cell classi-
fications are indicated in the key at far right; average data illustrated in
purple. Average values and statistics listed in Table 2

J Comput Neurosci (2021) 49:259–271 267



reported sub-Poisson variability in the range of ~0.3 (Kara
et al. 2000) to ~0.55 (Kumbhani et al. 2007), others reported
wider ranging sub- to super-Poisson variability dependent up-
on stimulus type, cell types, and size of the calculation win-
dow (Hartveit and Heggelund 1994; Levine et al. 1996;
Andolina et al. 2007; Liu et al. 2001). We observed Fano
factors that were consistently above Poisson, but were in a
similar range as those reported previously (Andolina et al.
2007; Goris et al. 2014). Importantly, Fano factors in our
dataset were similar across LGN neurons recorded from both
Experimental and Control animals (Table 1). There are two
possible explanations for why we observed larger Fano factors
compared to some prior studies. First, we computed Fano
factor from responses to drifting gratings varying in temporal
frequency while prior studies reporting lower Fano factors
used stationary gratings or gratings varying in contrast but
optimized for other parameters (Kara et al. 2000; Kumbhani
et al. 2007). Second, we averaged Fano factors across a range
of TFs including non-preferred TFs, for all neurons. Rather
than limiting our analysis to preferred TFs, inclusion of all
stimulus conditions may have produced higher Fano factors
compared to results obtained using more optimized stimulus
conditions. Inclusion of responses to all presented TFs was
purposeful to facilitate better estimation of gain variability
using the modulated Poisson model.

Our sample of LGN neurons from which we measured
response variability did not include sufficient Y cells to make
conclusions about differences in response variability across
cell classes. The majority of our Experimental LGN neurons
were X cells or LGN neurons with intermediate tuning. Our
single Experimental Y cell showed very low variance in the no
LED condition, making it challenging to assess further reduc-
tions in variability. Although some prior studies did not report
cell type or did not observe differences in variability across
LGN cell types (Andolina et al. 2007; Liu et al. 2001), evi-
dence from a handful of other studies suggest there may be
cell type specific differences in response variability. In these
reports, Y cells demonstrated higher response reliability and
precision and lower Fano factors compared to X cells
(Hartveit and Heggelund 1994; Levine et al. 1996;
Kumbhani et al. 2007). Interestingly, when we measured the
effects of optogenetic activation of CG feedback on LGN
response timing and precision, we observed similar reductions
in response latency and increases in response precision across
X and Y cells (Hasse and Briggs 2017). It is possible that
differences in X and Y neuronal response variability are due
to biases in responses to certain visual stimuli and that unique
stimuli optimized to each cell type generate similar response
variability. Alternatively, X and Y neurons could encode vi-
sual information differently, explored further below, leading to
differential variability estimates. It is noteworthy though that
optogenetic activation of CG feedback increases response pre-
cision in both X and Y LGN neurons, suggesting that

whatever the baseline rate of variability, CG feedback serves
to improve response precision.

Reassuringly, the information values in rate and bits/spike
we observed were within the range of those reported previ-
ously for LGN neurons recorded in anesthetized cats
(Kumbhani et al. 2007; Liu et al. 2001; Rathbun et al. 2010;
Reinagel and Reid 2000). Comparison to the values reported
by McClurkin and colleagues is not straightforward as they
reported transmitted information in bits. Instead of using spike
trains or spike histograms, McClurkin and colleagues used
spike density functions or temporal components of spiking
responses to stimuli and reported transmitted information as
the difference between responses to all stimuli and responses
to shuffled stimuli. They also normalized by information in
control conditions, causing transmitted information values to
be close to zero (McClurkin et al. 1991; McClurkin et al.
1994). It is also important to reiterate that McClurkin and
colleagues studied information coding in the LGN of alert
and fixating monkeys, so there could be differences in
information coding capacity across carnivores and primates
and/or due to arousal state. Interestingly, McClurkin et al.
(1994) did not observe robust changes in LGN response var-
iance across cortical cooling conditions, an effect they attrib-
uted to their use of alert fixating monkeys. Taking into con-
sideration important differences in method, species,
wakefulness, and information calculations, it is nonetheless
noteworthy that McClurkin et al. (1994) observed a roughly
25% reduction in transmitted information among LGN neu-
rons when the cortex was cooled while we observed a 12%
increase in information in bits/spike when CG feedback is
enhanced.

We observed similar increases in information rate and
information in bits/spike across X, Y, and intermediately
classified Experimental LGN neurons. We also observed
roughly similar increases in information coding for
Experimental V1 neurons, most of which were located
on deeper contacts and were presumably Simple cells in
layer 6 of V1 given their linear receptive fields. Most
prior studies of information coding in LGN neurons re-
ported small samples dominated by one LGN cell type, or
cell type was not reported (Liu et al. 2001; Rathbun et al.
2010; Reinagel and Reid 2000). However, one study with
a substantial dataset reported significant differences in
bits/spike for X and Y LGN neurons (Kumbhani et al.
2007). In the Kumbhani et al. (2007) study, these authors
observed greater information in bits/spike for Y cells
compared to X cells, which they attributed to the fact that
X cells encoded more information in temporal patterns
compared to Y cells. This latter notion is consistent with
the results reported by McClurkin et al. (1994) in which
they recorded predominantly from parvocellular LGN
neurons and noted significant reductions in transmitted
information assessed both with LGN neuronal spike
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density functions and temporal components. A likely ex-
planation for why we did not observe differences in infor-
mation coding across LGN cell types is that we used
white noise stimuli rather than gratings (Kumbhani et al.
2007) or patterns (McClurkin et al. 1994). While grating
and patterned stimuli are likely to drive X and Y (or
parvocellular and magnocellular) LGN neurons different-
ly, white noise stimuli may elicit more similar responses
due to the lack of correlation structure and rapid temporal
dynamics.

Although entropy-based estimates of information and
FI are entirely distinct measurements, at the core of each
are estimates of neuronal response variability. Here we
demonstrate that optogenetic activation of CG feedback
caused dramatic reductions in response variability and
corresponding increases in information assessed indepen-
dently using two distinct measurements. Critically, chang-
es in variability and information following activation of
CG feedback were independent of changes in neuronal
firing rate or tuning. Additionally, reductions in variability
and increases in information coding were only present in
Experimental LGN neurons recorded in animals in which
virus injected into the LGN drove expression of ChR2 in
CG neurons; LGN neurons recorded in Control animals
never showed changes across LED conditions. Although
all of these recordings were made in anesthetized animals,
it is remarkable that reductions in LGN response variabil-
ity caused by optogenetic activation of CG feedback re-
sembled attention-mediated reductions in response vari-
ab i l i t y obse rved in V4 of behav ing monkeys
(Rabinowitz et al. 2015). Attention focused upon a visual
stimulus increases observers’ ability to perceive small
changes in stimulus attributes (Carrasco et al. 2004).
This behavioral effect is associated with mild increases
in mean neuronal response rates among visual cortical
neurons (Maunsell and Cook 2002) and comparatively
stronger reductions in neuronal response variability
(Cohen and Maunsell 2009; Mitchell et al. 2009).
Attention specifically reduces the component of neuronal
response variability that stems from trial-to-trial fluctua-
tions of modulatory signals (Rabinowitz et al. 2015).
Interestingly, the effect of attention on response variability
is strikingly similar to the effect of optogenetic activation
of CG feedback on LGN response variability described
here. Accordingly, CG circuits may serve to stabilize the
response gain of LGN neurons in order to relay attention
signals and to enhance the encoding of task-relevant stim-
ulus feature information. fMRI and single-neuron neuro-
physiological experiments have demonstrated attentional
modulat ion of LGN act ivi ty (Ling et al . 2015;
McAlonan et al. 2008; O'Connor et al. 2002; Vanduffel
et al. 2000), and attention enhances communication be-
tween neurons in the deepest layers of V1 and the LGN

(Mock et al. 2018). Together these results suggest that CG
feedback could convey a combination of visual and cog-
nitive signals to the LGN via a unifying mechanism of
response variability quenching.

Although information coding among LGN neurons has
been studied extensively (Kumbhani et al. 2007; Liu et al.
2001; McClurkin et al. 1991; McClurkin et al. 1994;
Rathbun et al. 2010; Reinagel and Reid 2000), only recent-
ly have methods for selective and reversible manipulation
of CG neurons become available. Inspired by the findings
of McClurkin and colleagues, we used selective CG ma-
nipulation to causally test the precise contribution of CG
feedback to LGN information coding. Our guiding hypoth-
esis was that increased information coding capacity among
LGN neurons is generated through quenching of response
variability. Analyses of responses to a variety of visual
stimuli revealed systematic reductions in response variabil-
ity and increases in information coding capacity. Together
these findings paint a more detailed picture of the role of
CG feedback in enhancing the precision and reliability of
LGN responses through reduced variability. More broadly,
comparison of optogenetic data in anesthetized animals to
data obtained from alert and attending animals suggests
that top-down feedback circuits could utilize similar vari-
ability quenching mechanisms to enhance relevant visual
feature encoding.
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