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Abstract

Adaptive behavior in a complex, dynamic, and multisensory world poses
some of the most fundamental computational challenges for the brain, no-
tably inference, decision-making, learning, binding, and attention. We first
discuss how the brain integrates sensory signals from the same source to sup-
port perceptual inference and decision-making by weighting them accord-
ing to their momentary sensory uncertainties.We then show how observers
solve the binding or causal inference problem—deciding whether signals
come from common causes and should hence be integrated or else be treated
independently. Next, we describe the multifarious interplay between multi-
sensory processing and attention.We argue that attentional mechanisms are
crucial to compute approximate solutions to the binding problem in natu-
ralistic environments when complex time-varying signals arise from myriad
causes. Finally, we review how the brain dynamically adapts multisensory
processing to a changing world across multiple timescales.
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INTRODUCTION

In busy traffic, our senses are inundated with myriad signals: the noise of a truck passing by at
high speed, the smell of fumes, and the sight of flashing traffic lights and other pedestrians.When
deciding whether to cross the street, we should estimate the truck’s speed by integrating motion
information from audition and vision and yet avoid misperceiving the truck as talking and flash-
ing. The effortless ease with which we constantly transform subsets of these signals into seamless
percepts masks the complexities of the computations and neural mechanisms involved.

While all of our senses constantly furnish uncertain information about the current state of the
world, they are specialized for gathering different types of information. Foveal vision impresses
with its spatial precision at daytime but deteriorates in darkness and is blind to sources behind us.
Audition informs us about sources outside our field of view or occluded by visual clutter; more-
over, it exceeds vision in its temporal precision. These considerations illustrate the extraordinary
benefits that we gain from integrating information across the senses, combining their complemen-
tary strengths and overcoming their individual frailties. Multisensory integration is a key strategy
for the brain to resolve perceptual ambiguities and reduce uncertainties about the world (Ernst &
Bülthoff 2004, Fetsch et al. 2013, Noppeney 2020).

Perceptual inference and accurate decision-making require integrating information in a way
that is suitably sensitive to the constraints of the physical world, observers’ uncertainties, and the
brain’s limited computational resources. Most notably, multisensory perception relies on solving
the binding or causal inference problem: deciding which signals come from a common cause and
integrating just those accordingly (Körding et al. 2007a, Sato et al. 2007, Shams & Beierholm
2010). Given a common cause, integration involves weighting noisy signals along with prior
knowledge according to their relative precisions (i.e., inverse of uncertainty or variance) (Ernst
& Banks 2002, Fetsch et al. 2013). The key to multisensory perception is thus the estimation and
representation of different types of ignorance, including prior, sensory, and causal uncertainty.
Priors that are hardwired in brain structure, fine-tuned during neurodevelopment, or dynamically
learned at multiple timescales based on everyday experiences further inform the interpretation
of the noisy sensory inputs. They can pertain to environmental properties (e.g., spatial priors), to
the world’s causal structure (i.e., causal priors), or, as hyperpriors, to the precision of the sensory
signals.

Multisensory integration is closely intertwined with attentional mechanisms. Binding can in-
crease stimulus salience and thereby attract attentional resources. Conversely, attention influences
how and the extent to which we combine signals for perceptual inference and decisions (Talsma
et al. 2010). In sum, multisensory perception raises some of the most fundamental questions for
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neural processing, notably probabilistic computations (Ma & Jazayeri 2014, Pouget et al. 2013),
inference, binding, learning, and attention.

In this review, we first discuss how the brain integrates sensory signals that emanate from the
same source into more precise estimates. We then consider situations that entail causal uncer-
tainty, because signals can come from common or independent sources. In these situations, the
brain needs to arbitrate between sensory integration and segregation. Formally, this goes beyond
estimating a simple environmental property and involves inferring a causal model of the world (i.e.,
structure inference).Next, we describe the complex interactions between multisensory perception
and attention.We argue that attentional mechanisms are particularly important in naturalistic en-
vironments in which complex time-varying signals can arise from numerous sources. Finally, we
review how the brain dynamically adapts multisensory processing to changes in the environment
and its sensorium across multiple timescales. We review behavioral, computational, and neural
research focusing mainly on humans, though we also refer to the most relevant research involving
other species.

Our review is guided by models of normative Bayesian inference. Following von Helmholtz’s
(1867) notion of unconscious inference, thesemodels posit that observers form a probabilistic gen-
erativemodel of possible sensory signals that is inverted during perceptual inference (Kersten et al.
2004). Bayesian probability theory sets a benchmark of optimal behavior against which observers’
performances are compared. Crucially, exact Bayesian inference is computationally intractable for
the brain, with its limited computational resources, in all but the simplest laboratory scenarios. In
this review, we use Bayesian observer models as departure points to assess the extent to which ob-
servers perform statistically optimal computations in simple experimental settings and how they
approximate these optimal solutions when facing resource constraints in progressively more com-
plex scenarios (Ma 2012, Shen & Ma 2016). In particular, we explore the idea that attentional
mechanisms are recruited in the service of these approximations.

INTEGRATING SENSORY INFORMATION FOR PERCEPTUAL
INFERENCE AND DECISION-MAKING

Our senses provide complementary and redundant information about the environment. For in-
stance, color and pitch are complementary, being experienced solely by either vision or audition.
By contrast, information about an object’s location can be gathered jointly from audition and
vision and may in this sense be considered redundant. Critically, because sensory signals are in-
evitably degraded by various sources of internal and external noise (Faisal et al. 2008), integrating
redundant information across the senses is an important way for the brain to reduce perceptual
uncertainty.

Within a normative Bayesian framework, this second scenario can be accounted for by a gener-
ative model in which a single source emits several sensory signals, each corrupted by independent
Gaussian noise. During inference, as formalized in the recognition model, a Bayesian observer
should therefore integrate sensory inputs mandatorily into a more reliable (i.e., less variable) per-
cept by weighting them in accordance with their precisions, giving greater emphasis to more reli-
able signals (Ernst & Bülthoff 2004, Hillis et al. 2002). Under statistical optimality, the reliability
of the multisensory estimates should be equal to the sum of the unisensory reliabilities. Hence, a
maximal gain in reliability (or reduction in uncertainty) by a factor of two is obtained when the
two unisensory signals are equally reliable. In the following, we refer to this recognition model as
the forced fusion model because it does not allow sensory signals to be processed independently.
Under uninformative priors, it is equivalent to maximum likelihood estimation.

A key question is whether human observers statistically optimally integrate sensory signals
from a common source, that is, whether they weight signals in proportion to their relative

www.annualreviews.org • Perceptual Inference, Learning, and Attention 451

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
21

.4
4:

44
9-

47
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
2a

02
:a

44
d:

a6
2a

:1
:d

56
3:

c6
8e

:8
e0

a:
c6

fb
 o

n 
07

/0
9/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



reliabilities and obtain a multisensory variance reduction as predicted by the forced fusion
model. Suboptimalities arise if the brain cannot access or estimate its own sensory uncertainties.
Experimentally, statistical optimality is assessed by comparing observers’ sensory weights and
multisensory variances to the predictions of the forced fusion model that are made solely based
on observers’ unisensory variances.

Over the past two decades, a wealth of studies have explored these questions across a variety of
sensory combinations and tasks.Overall, their results turnedmultisensory integration into a poster
child for human statistical optimality. Statistical near-optimality was shown for visuohaptic shape
(Ernst & Banks 2002), audiovisual rate (Raposo et al. 2012), and audiovisual spatial discrimination
(Alais & Burr 2004). The observation of near-optimal integration even in experiments in which
sensory uncertainties varied randomly across trials suggests that the brain can access sensory un-
certainty near-instantaneously. Likewise, observers integrated audiovisual signals near-optimally
in object or phoneme categorization tasks that require the brain to combine signals with weights
that adequately reflect the sensory noise and the distributional properties of the task-relevant cat-
egories (Bankieris et al. 2017, Bejjanki et al. 2011). Further, many multisensory illusions such as
spatial ventriloquism andMcGurk or sound-induced flash illusions can be explained by normative
integration of signals that are brought into small conflicts (Alais & Burr 2004, Bejjanki et al. 2011,
McGurk & MacDonald 1976, Shams et al. 2005). While we focus in this review on integration
across the senses, it should be noted that the normative principles of the forced fusion model also
apply to cue combination within a single sense [e.g., combining stereo and texture cues for slant
judgments (Knill & Saunders 2003)].

Critically, evidence for statistical optimality has never been unequivocal. Most notably, two
early influential studies of audiovisual spatial classification disagreed on whether observers inte-
grate signals optimally or overweight visual signals (Alais & Burr 2004, Battaglia et al. 2003). In
a large-scale preregistered study, we replicated observers’ visual overweighting but observed op-
timal audiovisual variance reduction consistent with the forced fusion model (Meijer et al. 2019).
In additional simulations, this surprising dissociation was explained by the greater sensitivity with
which experimental procedures and analysis approaches detect deviations from optimality for sen-
sory weights than they do for multisensory variances. In line with this conjecture, more studies
have indicated a tendency for observers to overweight signals from the sensory modality that is
usually more informative for the particular task (Burr et al. 2009, Butler et al. 2010, Ernst & Banks
2002, Fetsch et al. 2009, Gepshtein & Banks 2003, Rosas et al. 2005). Deviations from optimal
weights may even be more prominent in naïve observers that have not been exposed to the ex-
tensive training and stimulus familiarization that are characteristic for this type of psychophysics
research (for discussion, see Alais & Burr 2004). One idea is that modest suboptimalities arise be-
cause the brain estimates sensory reliability by combining noisy information from current signals
with a reliability prior that incorporates observers’ prior assumptions about a modality’s reliability
based on lifelong experience (Battaglia et al. 2003) and/or previous stimuli (see the section titled
Adapting Multisensory Processing to a Dynamic World). Putative deviations from statistical op-
timality may also arise when model assumptions about observers’ priors, cost functions, or the
structure and sources of noise are not met (for reviews, see Meijer & Noppeney 2020, Rahnev &
Denison 2018). For instance, sensory noise may be non-Gaussian or correlated across the senses.
Further, decisional noise may corrupt perceptual estimates after sensory integration.

Most importantly, the structure of the standard forced fusion model is limited in that it does
not incorporate observers’ decisional dynamics. Accounting for observers’ decisional dynam-
ics is important, because many decisions in everyday life, such as deciding whether to cross a
street, are made under time pressure. If observers maximize not only their response accuracy but
also their speed, this will introduce complex speed-accuracy trade-offs, thereby altering what is
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considered optimal. Traditionally, computational modelling in multisensory integration did not
account for these speed-accuracy trade-offs, instead being dominated by the dichotomy of non-
dynamic forced fusion and race models. While forced fusion models made predictions for only
response choices and not response times, race models ignored response choices and the signals’
time-varying reliabilities. Instead, race models compared multisensory and unisensory response
time distributions to assess whether observers accumulate information independently or interac-
tively across the senses (Miller 1982, Otto &Mamassian 2012). Only recently have drift-diffusion
models (Forstmann et al. 2016, Gold & Shadlen 2007) been adapted to multisensory decision-
making. For multisensory decisions, they integrate sensory evidence at each time point weighted
by their momentary reliabilities and accumulate this integrated evidence over time until a deci-
sional threshold. Consistent with the model’s predictions, observers were shown to discriminate
heading direction by combining visual motion and vestibular acceleration information (i.e., differ-
ent physical quantities) weighted by their momentary reliabilities that evolved with different time
courses (Drugowitsch et al. 2014, 2015).Moreover, observers’ putatively suboptimal visuovestibu-
lar integration for heading discrimination based on a standard forced fusion model turned out to
be optimal when observers’ speed-accuracy trade-offs and the varying signal reliabilities were ac-
counted for (Drugowitsch et al. 2014, 2015). Conversely, differences in speed-accuracy trade-offs
between unisensory and multisensory conditions may also explain the perhaps surprising finding
of multisensory integration benefits that appear to be supraoptimal when compared to standard
forced fusion models (Nikbakht et al. 2018, Raposo et al. 2012).

At the neural level, multisensory interactions are known to be pervasive in neocortex, starting
at the primary cortical level and increasing progressively along the cortical hierarchy (Atilgan et al.
2018; Bizley et al. 2007; Fiebelkorn et al. 2010; Gau et al. 2020; Ghazanfar & Schroeder 2006;
Kayser et al. 2007, 2008; Lakatos et al. 2007; Martuzzi et al. 2007; Metzger et al. 2020; Noesselt
et al. 2007; Schroeder & Foxe 2002;Werner &Noppeney 2010a,b). This ubiquity of multisensory
interactions raises the question of which of those interactions reflect the reliability weighting
evident in observers’ behavior. Noninvasive whole-brain imaging has suggested that reliability-
weighted integration arises in a variety of mid-level sensory and association cortices depending
on the information to be integrated. For instance, human functional magnetic resonance imaging
(fMRI) revealed reliability-weighted integration of visuohaptic shape information in parietal and
fusiform cortices (Helbig et al. 2012) and of audiovisual spatial information in parietal cortices
(Rohe & Noppeney 2018). For audiovisual speech comprehension, visual reliability modulated
the functional connectivity between the superior temporal sulcus with visual and auditory areas
(Nath & Beauchamp 2011).

Focusing on the dorsal medial superior temporal area (MSTd), a series of elegant neurophysio-
logical studies in nonhuman primates investigated how neural populations and single neurons in-
tegrate visual and vestibular motion for heading discrimination. Behaviorally,macaques integrated
visual and vestibular motion signals near-optimally with a modest vestibular overweighting, as ob-
served in humans (Fetsch et al. 2012). Likewise, in MSTd, neural populations and single neurons
with congruent visuotactile heading preferences integrated visual and vestibular signals weighted
by their relative reliabilities (Fetsch et al. 2012), leading to a greater sensitivity (Gu et al. 2008).
Further, electrical microstimulation and chemical inactivation confirmed the causal relevance of
the neural computations in MSTd for heading discrimination (Gu et al. 2012).

A more recent study compared the roles of MSTd and lateral intraparietal area (LIP) in vi-
suovestibular heading discrimination (Hou et al. 2019). Intriguingly, MSTd integrated visual and
vestibular motion information within brief time windows, while LIP accumulated the momentary
evidence proportional to the visual speed and the absolute value of vestibular acceleration over
time. Thus, the choice-related activity in LIP ramped up with different time courses for visual,
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vestibular, and visuovestibular heading discrimination. Additional computational analyses showed
that LIP activity was consistent with the activity of a neural network, more specifically its inte-
gration layer, which implements near-optimal multisensory decision-making via linear invariant
probabilistic population coding.

Within this theoretical framework, neural population activity is thought to encode probability
distributions over inputs, with the amplitude of the neuronal responses being proportional to
the reliability of its inputs (Beck et al. 2008, Ma et al. 2006). As a result, neurons can implement
reliability-weighted integration by linearly combining their inputs across sensory modalities and
time with fixed neural weights. In other words, the synaptic weights do not depend on the sensory
reliability for implementing reliability-weighted integration. Probabilistic population coding thus
provides an elegant and simple solution not only for the static forced fusion case but also for
dynamic integration processes as observed in LIP, in which sensory evidence is integrated across
the senses and time until a decisional threshold (Hou et al. 2019).

Alternatively, reliability-weighted integration may be mediated by mechanisms of divisive nor-
malization (Ohshiro et al. 2011), a canonical neural computation previously implicated in nonlin-
ear stimulus interactions in primary visual cortex, motion integration, and attentional modulation
(Carandini & Heeger 2011). Within models of divisive normalization, multisensory neurons ini-
tially combine their unisensory inputs linearly. Reliability weighting arises because, after a non-
linear transformation, the output of each multisensory neuron is normalized by the net activity
of a pool of neurons.While divisive normalization does not guarantee statistical optimality, it can
explain not only reliability weighting but also a whole basket of neural response profiles that are
frequently observed in multisensory processing such as inverse effectiveness (Stanford et al. 2005)
and multisensory response suppression (Ohshiro et al. 2017).

SOLVING THE BINDING PROBLEM: CAUSAL INFERENCE

In complex environments, observers need to solve the binding or causal inference problem—
determining whether signals come from common sources and should hence be integrated or
else be treated independently. Ample evidence has shown that perceptual illusions, metamers,
and, more generally, crossmodal biases break down at large intersensory conflicts when common
sources are unlikely (Bertelson & Radeau 1981,Hillis et al. 2002, Lewald &Guski 2003,Magnotti
& Beauchamp 2017, Magnotti et al. 2013, Rohe & Noppeney 2015b, Wallace et al. 2004). Like-
wise, multisensory benefits such as gains in precision are smaller than predicted by the forced
fusion model when auditory and visual signals are temporally uncorrelated (Locke & Landy 2017,
Parise et al. 2012).

Bayesian causal inference accounts for this binding problem by explicitly modelling the poten-
tial causal structures (here, common versus independent sources) that could have generated the
sensory signals (Körding et al. 2007a, Sato et al. 2007, Shams & Beierholm 2010) (Figure 1). Dur-
ing inference, signals from common sources are integrated weighted by their relative reliabilities
(i.e., forced fusion). Signals from independent sources are processed independently (i.e., segrega-
tion).Critically, observers do not know and need to infer the signals’ causal structure by combining
evidence from temporal, spatial, or higher statistical (e.g., phonetic, semantic) correspondences
with a causal prior that quantifies observers’ prior tendency to bind signals. To account for ob-
servers’ causal uncertainty, a final perceptual estimate is computed by averaging the estimates of
the environmental property (e.g., spatial location) under the potential causal structures weighted
by their respective posterior probabilities [i.e., model averaging; for other decision functions, see
Wozny et al. (2010)].

To study Bayesian causal inference, observers are typically presented with, for example, audio-
visual signals that vary randomly in their conflict sizes across trials. In explicit causal inference
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tasks, they report whether signals come from common or independent sources. In implicit causal
inference tasks, they report their auditory and/or visual percept rather than their audiovisual per-
cept as in the forced fusion experiments discussed in the previous section. In these tasks, observers’
causal inference implicitly influences their perceptual estimates. Hierarchical Bayesian causal in-
ference provides a principled explanation for the inverted U-shaped function that describes how
observers’ explicit common-cause judgments decline with positive (e.g., auditory leading) and neg-
ative (e.g., visual leading) temporal, spatial, or other conflicts (Bertelson & Radeau 1981, Lewald
& Guski 2003, Magnotti & Beauchamp 2017, Magnotti et al. 2013, Rohe & Noppeney 2015b,
van Wassenhove et al. 2007, Wallace et al. 2004). Likewise, the influence of causal inference on
observers’ perceptual estimates can explain that crossmodal biases (e.g., spatial, rate, numerosity,
heading direction) depend nonlinearly on conflict size (Acerbi et al. 2018, de Winkel et al. 2018,
Mohl et al. 2020, Rohe & Noppeney 2015b). Further, a difference in causal prior or binding ten-
dency has been shown to provide a computational explanation for the finding that integration
between senses is less tolerant to cue conflicts than integration within a sense (Hillis et al. 2002,
Hospedales & Vijayakumar 2009).

Most intriguingly, Bayesian causal inference makes qualitatively characteristic predictions for
the trial-to-trial relationship between observers’ implicit (e.g., spatial localization) and explicit
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Figure 1 (Figure appears on preceding page)

(a) The generative model of Bayesian causal inference explicitly models the potential causal structures that could have generated the
sensory signals. For the audiovisual localization example, it models whether the sight of the truck and the truck’s looming motor noise
are generated by common (C = 1) or independent (C = 2) sources (Körding et al. 2007a). In the case of a common source, the
audiovisual location (SAV) is drawn from the prior spatial distribution. In the case of independent sources, the auditory (SA) and visual
(SV) locations are drawn independently from this prior spatial distribution. Auditory (xA) and visual (xV) inputs are generated by adding
independent sensory noise. Hierarchical Bayesian causal inference makes predictions for two related inference tasks: observers’ explicit
causal inferences, i.e., decisions about whether signals come from common or independent causes, and their perceptual estimates that
are implicitly informed by their causal inference. Panel a adapted with permission from Noppeney (2020). (b) Bayesian causal inference
is performed by encoding several spatial estimates along the cortical hierarchy. The regions of interest are shown on the surface of an
inflated brain. For illustrational purposes, the regions are colored in correspondence with the estimates with which they are most
closely associated from the BCI (panel a) based on the neuroimaging results shown in panels c and d. (c) In an auditory/visual spatial
localization task, observers were presented with brief audiovisual signals at variable levels of spatial disparity; fMRI (top row) and EEG
(bottom row) decoding reveal the spatiotemporal evolution of Bayesian causal inference in spatial perception. Early activity (<100 ms) in
auditory and visual areas is associated with segregation [i.e., separate auditory (green) or visual (red) estimates], later activity
(100–250 ms) in posterior parietal areas with forced fusion, and finally, activity in anterior parietal areas (350–450 ms) with Bayesian
causal inference. Anterior parietal activity forms spatial estimates that arbitrate between sensory integration and segregation depending
on the signals’ causal structure. The exceedance probabilities for the different spatial estimates (fMRI) or models (EEG) are indexed by
the length of the colored areas of each bar (note that the y axis indicates the cumulative exceedance probabilities). Panel c adapted from
Rohe & Noppeney (2015a) for fMRI and Aller & Noppeney (2019) for EEG. (d) Explicit causal inference in spatial perception: In a
common source judgment task, observers were presented with audiovisual signals that were spatially congruent or incongruent. We
adjusted the spatial disparity individually for each participant to threshold performance, allowing us to dissociate their causal decisions
from the signals’ physical spatial disparity. Further, we counterbalanced the mapping from observers’ causal decisions to their motor
choices over multiple runs. The line plots show the fMRI decoding accuracy for visual location, auditory location, audiovisual spatial
disparity, causal decisions, and motor output for DLPFC, IPS0–2, and IPS3–4 (∗ = p < 0.05, ∗∗ = p < 0.005). DLPFC was the only
region that selectively encoded observers’ causal decisions. By contrast, the parietal cortices jointly encoded visual location, auditory
location, audiovisual spatial disparity (i.e., congruent versus incongruent), causal decisions, and motor output. Panel d adapted from
Mihalik & Noppeney (2020). Abbreviations: A1, primary auditory cortices; BCI, Bayesian causal inference model; DLPFC, dorsolateral
prefrontal cortex; EEG, electroencephalogram; fMRI, functional magnetic resonance imaging; Fusion, forced fusion model; hA, higher
auditory cortices; IPS, intraparietal sulcus; SegA, full segregation auditory model; SegV, full segregation visual model; SegV,A, full
segregation model, in which the full segregation auditory or visual estimates are reported depending on whether the auditory or visual
modality is task relevant; V, primary and higher order visual cortices.

causal inference. Because the two inferences are affected by the same sensory noise on each trial,
observers’ perceptual estimates from one sensorymodality should be biased toward those from the
other sensory modality when common sources are perceived and repulsed for independent-source
judgments (Körding et al. 2007a). Indeed, one previous behavioral study corroborated this charac-
teristic relationship between attractive/repulsive perceptual biases and observers’ causal judgments
in a dual task paradigm (Wallace et al. 2004). However, a more recent study failed to replicate this
qualitative behavioral profile (Rohe & Noppeney 2015b).

Further, when the Bayesian causal inference model was fitted jointly across multiple sensory
reliability levels, observers’ crossmodal biases and response variability differed markedly from the
model’s predictions (Rohe & Noppeney 2015b). To elucidate potential sources of suboptimalities
more formally, a recent study of visuovestibular heading discrimination compared Bayesian causal
inference with a variety of other approximate strategies (Acerbi et al. 2018). The study showed
that observers arbitrate between sensory integration and segregation based on a fixed conflict size
without taking into account their sensory uncertainty. This is the first model-based indication that
even in these simple scenarios observers do not perform consistent with normative Bayesian causal
inference but resort to approximate, that is, suboptimal, strategies.

Within experiments studying Bayesian causal inference, we can also ask whether the forced
fusion principles hold on the subset of trials that were congruent or included a small conflict.
Results showed that observers’ integration performance deviated substantially from the forced
fusion principles. For instance, on audiovisual trials with a small conflict, observers reported
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different auditory and visual percepts giving a stronger weight to the task-relevant sensory
modality. Even for collocated audiovisual signals, observers’ auditory and visual percepts were
associated with different variances (Rohe & Noppeney 2018). This failure to fuse synchronous
and collocated audiovisual signals into one unified percept may reflect observers’ remaining
causal uncertainty, because collocated signals occurred randomly interspersed with spatially
disparate signals. Moreover, observers may have lowered their causal prior or binding tendency
because they were instructed to attend to and selectively report their percept in one sensory
modality (see the next section for further discussion of the role of attention in multisensory
processing).

At the neural level, cross-sensory correspondences and conflicts have been widely recognized
as key determinants of multisensory interactions since the seminal neurophysiological work by
Stein and colleagues (for a review, see Stein & Stanford 2008). In the superior colliculus, multi-
sensory response enhancement for spatiotemporally coincident signals turns into suppression for
spatiotemporally disparate signals (Meredith & Stein 1983, Meredith et al. 1987). Within neo-
cortex, the computation of multisensory correspondences appears to rely on a widespread system
of regions. Temporal synchrony and correlations have been associated with primary sensory and
superior temporal sulci based on a wealth of neuroimaging and neurophysiology research (Lee
& Noppeney 2011a, 2014; Lewis & Noppeney 2010; Miller & D’Esposito 2005; Noesselt et al.
2007; Powers et al. 2012). Notably, time-varying visual signals enhanced the encoding of tempo-
rally correlated auditory signals in primary auditory cortices, even when anesthesia largely obliter-
ated top-down influences. Initial causal inference based on temporal correlations and coincidence
alone may thus occur in sensory cortices during anesthesia (Atilgan et al. 2018). Relatively simple
processing units similar to the Hassenstein-Reichard motion detector (Parise & Ernst 2016) or
mechanisms of phase resetting (Kayser et al. 2008, Lakatos et al. 2007,Mercier et al. 2013, Zumer
et al. 2021) may potentially support the computation of multisensory coincidence, correlations,
and response enhancement for nearly synchronous stimuli in early sensory areas.

By contrast, the computation of audiovisual spatial disparity that involves transformations
across different reference frames (i.e., eye versus head centered) and representational formats (i.e.,
topographic versus hemifield code) (Maier & Groh 2009) relies predominantly on planum tem-
poral and parietal cortices (Mihalik & Noppeney 2020), key players in auditory and visual spatial
processing (Ortiz-Rios et al. 2017,Rauschecker&Tian 2000,Schlack et al. 2005).Finally, phonetic
correspondences have been associated with superior temporal cortices and semantic correspon-
dences with temporal/fusiform cortices (Calvert et al. 2000, Hein et al. 2007, Lee & Noppeney
2011b, Noppeney et al. 2008). Given that cross-sensory correspondences are computed within a
widely distributed neural system at variable poststimulus times, a key challenge is to understand
how the brain dynamically combines them via bottom-up, top-down, and lateral connections for
causal and perceptual inference. In particular, dorsolateral prefrontal cortex may be important for
accumulating evidence from diverse correspondences about the world’s causal structure and in
turn controlling sensory information flow and integration via recurrent loops across the cortical
hierarchy (Gau & Noppeney 2016, Noppeney et al. 2010).

To characterize how the brain uses cross-sensory correspondences for spatial perception con-
sistent with Bayesian causal inference,we presented observers with brief, simple audiovisual signals
in synchrony but at variable spatial disparities (Aller &Noppeney 2019; Rohe&Noppeney 2015a,
2016). Consistent with Bayesian causal inference, observers perceived the sound location shifted
toward the visual location (and vice versa) at small spatial disparities, but these crossmodal spatial
biases were attenuated at large spatial disparities.Multivariate fMRI/electroencephalogram (EEG)
analyses showed that the brain accomplishes Bayesian causal inference by dynamically encoding
multiple spatial estimates across the cortical hierarchy (Figure 1). Early activity (50–100 ms) in
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primary sensory cortices encoded the unisensory spatial estimates (i.e., segregation). Later activity
(100–200 ms) in posterior parietal cortices merged signals into audiovisual spatial estimates (i.e.,
fusion). Even later activity (350–450 ms) in anterior parietal cortices integrated signals at small
spatial disparities but segregated them at large spatial disparities. They thus formed spatial esti-
mates that took into account the signal’s causal structure as predicted by Bayesian causal inference.

Next, we asked where and how the brain infers the signal’s causal structure based on audiovi-
sual synchrony and varying spatial correspondences. In an explicit causal inference task, observers
decided in each trial whether signals came from common or independent sources (Mihalik &
Noppeney 2020). To dissociate observers’ causal decisions from the signals’ physical spatial
disparity, we adjusted audiovisual spatial disparity individually for each participant to threshold
performance. Our results showed that the dorsolateral prefrontal cortex encoded mainly ob-
servers’ causal decisions irrespective of physical spatial disparity or observers’ motor responses.
By contrast, a circuitry encompassing the frontal eye fields and the parietal cortices encoded
auditory/visual locations, physical spatial disparity, observers’ causal decisions, and their motor re-
sponses. Collectively, these results suggest that parietal cortices may form spatial representations
informed by causal decisions encoded in dorsolateral prefrontal cortices.

Recent human magnetoencephalography (MEG)/EEG studies moved beyond spatial percep-
tion to investigate how the brain performs Bayesian causal inference for estimating the number
of events (Rohe et al. 2019) or the temporal rate (Cao et al. 2019) of auditory/visual pulse trains.
These studies replicated the dynamic encoding of segregation, fusion, and Bayesian causal infer-
ence estimates across the cortical hierarchy. Yet, not surprisingly, the timing and regions differed
from those observed for spatial tasks. For instance, a recent MEG study associated auditory and
visual rate estimates informed by Bayesian causal inference with late activity in anterior frontal ar-
eas at about 600–660 ms after stimulus onset and 200–0 ms before the observer’s motor response.
This late timing and anterior frontal dominance most likely arose because observers needed to
estimate the auditory/visual rate over 550-ms pulse trains and map those estimates onto arbitrary
categories and motor choices (Cao et al. 2019).

Likewise, an EEG study of the sound-induced flash illusion associated Bayesian causal in-
ference estimates of the number of flashes/beeps with neural activity at about 550–650 ms after
stimulus onset (Rohe et al. 2019), which corresponds to 350–450 ms after stimulus offset, as
reported above for spatial tasks. This study also investigated the relationship between prestimulus
alpha oscillations, previously implicated in inhibitory and attentional mechanisms, and observers’
trial-specific causal prior (i.e., binding tendency). The study showed that lower prestimulus alpha
power and specific alpha phases were associated with stronger audiovisual binding. However,
while observers’ causal prior dynamically adapted to the sensory input statistics as expected
for a Bayesian learner (see the section titled Adapting Multisensory Processing to a Dynamic
World), this was not the case for prestimulus alpha power (Rohe et al. 2019). Thus, spontaneous
fluctuations in prestimulus alpha power dynamically set the functional neural system into states
that facilitate or inhibit interactions between sensory modalities independent of the sensory input
statistics.

In sum, accumulating evidence has shown that the brain dynamically computes Bayesian causal
inference across the cortical hierarchy. Only late neural activity in association cortices encoded
perceptual estimates that were susceptible to influences from other sensory modalities depending
on the signals’ causal structure. However, because these studies directed observers’ attention to
either the auditory or visual modalities prior to stimulus onset, they conflated Bayesian causal
inference with modality-specific attention. Cast in attentional terms, Bayesian causal inference
has enabled the brain to filter out signals from the unattended modality when these signals were
likely to arise from independent sources, a perspective explored further in the next section.
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THE MULTIFARIOUS INTERPLAY BETWEEN MULTISENSORY
INTEGRATION AND ATTENTION

The interplay between multisensory interactions and attention is complex and multifaceted
(Talsma et al. 2010). Both can express similar neural and behavioral signatures such as increases in
neural responses, precision of sensory representations, and perceptual sensitivity (Ernst&Bülthoff
2004, Maunsell 2015). In this section, we first focus on how top-down attention can influence
multisensory processing. We then turn to how multisensory interactions may increase stimulus
salience and thereby attract attentional resources (i.e., bottom-up attention).

Ample evidence has shown that the brain can eliminate, suppress, or amplify the influence of
sensory information on perceptual inference and decisions—a phenomenon commonly ascribed
to various forms of attention, acting on sensory modalities, features, or space. Yet, this descriptive
formulation is agnostic as to why and how these attentional influences come about.Moving beyond
the use of attention as a descriptive term, we distinguish between attention as normative statistical
inference and attention as a process to implement approximate inference in response to resource
constraints (Dayan et al. 2000, Dayan & Solomon 2010). In the former, task or context informs
the brain that some signals are more relevant than others, making it computationally sensible to
suppress or even discard the less relevant signals by adjusting priors or cost functions. Changes
in priors alter observers’ posterior distribution and thereby their perceptual estimates and uncer-
tainties. By contrast, cost functions influence solely the readout of the perceptual estimate from
the posterior distribution, leaving observers’ uncertainties unchanged. However, when observers
recurrently sample from the environment, cost functions can also alter their uncertainties by in-
fluencing the sampling of information from the environment. Critically, adjusting priors or cost
functions to incorporate information from the task or context may eliminate the influence of less
relevant information, consistent with normative principles. By contrast, in other situations such as
in the face of myriad signals, discarding information may be required because of the brain’s lim-
ited computational resources, but it is not optimal for task performance. Selective attention then
forms an algorithmic realization of approximate, that is, suboptimal, inference. Taking Bayesian
causal inference as a departure point, we next discuss how attention as normative inference and as
a process to compute approximate solutions in response to resource constraints shapes multisen-
sory processing at the behavioral and neural levels, although we note that it is impossible to cover
the wide spectrum of neural mechanisms previously implicated in attention (e.g., for a review, see
Maunsell 2015).We illustrate these two distinct aspects of attention focusing on attention to sen-
sory modalities, types of information (e.g., spatial versus phonetic), and spatial locations (e.g., left
versus right hemifield).

Almost all research to date has studied Bayesian causal inference closely intertwined with
modality-specific attention by making observers report their percept solely in one sensory modal-
ity throughout an entire run. This seems a natural experimental choice, because in everyday life,
observers also optimize sensory processing during stimulus presentation for the particular infor-
mation they need to make an inference about. Yet, this experimental choice introduces intimate
links between Bayesian causal inference and modality-specific attention, because the relevance of
signals in the unreported sensory modality depends on the causal structure of the two signals. Sig-
nals in the unreported modality are informative when they happen to come from the same source
as those in the reported modality, but they are otherwise uninformative and interfering. With
increasing certainty that signals come from independent sources, a normative observer should
therefore progressively discard information from the unreported modality, which results in com-
plex nonlinearities in the decision processes (Dayan & Solomon 2010, Yu et al. 2009). Consistent
with this conjecture, observers’ categorization of a sound source was influenced more strongly by
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incongruent visual information at shorter response times than at longer response times, when
more evidence had been accumulated about the signals’ causal structure ( Jones et al. 2019,
Noppeney et al. 2010). These results indicate that modality-specific attention arises from dy-
namic interactions with causal inference leading to a progressive elimination of signals from the
unreported sensory modality in separate-source situations.

Paradigms in which observers attend (prior/during stimulus presentation) and report (post-
stimulus) their percept in the same sensory modality are also condemned to assess the joint in-
fluence of modality-specific attention that occurs prior to, during, and after stimulus process-
ing. Only recently have studies started to dissociate these aspects in pre/post-cueing paradigms.
They demonstrated that modality-specific attention influences observers’ causal priors, reliability
weighting, and task-relevant readout. For instance, pre-cueing observers to attend to one rather
than both sensory modalities attenuated overall sensory noise and decreased observers’ causal
prior, that is, their prior binding tendency, thereby enabling a faster elimination of influences from
the irrelevant sensory modality (Badde et al. 2020). In EEG, this may be reflected in altered early
multisensory interactions at about 50 ms poststimulus (Talsma et al. 2006). Other psychophysics
and fMRI studies pre-cued human observers to attend to the visual (or auditory) modality and
post-cued them 400 ms after stimulus presentation to report the location of either the attended
or unattended signal (A. Ferrari & U.Noppeney, unpublished manuscript). Prestimulus attention
influenced multisensory processing by enhancing the precision and hence the influence of spatial
representations of the attended sensory modality in the integration processes in mid-level visual
and posterior parietal cortices. By contrast, poststimulus report controlled the readout of the task-
relevant estimates possibly from heterogeneous neural populations in anterior parietal cortices
(Hou et al. 2019). Because the pre-cues in this study were 50% valid (i.e., uninformative), this study
also shows that human observers can optimize statistical inference voluntarily according to task
instructions even when knowing that following instructions does not improve their performance.
However, anecdotal comparison across studies suggests that the impact of modality-specific atten-
tion depends also on cue validity (i.e., 50% versus 100%), as expected under normative inference
(Rohe & Noppeney 2015a; A. Ferrari & U. Noppeney, unpublished manuscript).

Tasks that direct observers’ attention to various (e.g., spatial, phonetic) types of information are
another way to mold causal and perceptual inference. The most decisive evidence comes from a
dual task design in which observers reported both the sound location and the perceived phoneme
for audiovisual viseme/phoneme stimuli that varied in their spatial disparity and phonetic corre-
spondences. The study revealed a double dissociation with the McGurk illusion (i.e., phoneme
task), dependent on phonetic but not spatial correspondences, and the ventriloquist illusion (i.e.,
spatial task), sensitive to spatial disparity but not to the availability of phonetic correspondences
(Bertelson et al. 1994, Bishop & Miller 2011). While recent work has unraveled small influences
of phonetic or semantic correspondences on spatial ventriloquism (Delong & Noppeney 2021,
Kanaya & Yokosawa 2011), the task-dependent susceptibilities to various cross-sensory conflicts
remain uncontested (for reviews, see Chen & Spence 2017, Chen & Vroomen 2013). Put sim-
ply, causal inference or binding relies more strongly on the congruency of the information that
is relevant for the particular perceptual task (i.e., spatial congruency for localization and phonetic
congruency for phoneme categorization). As discussed above, these task dependencies may re-
sult from changes in observers’ priors or cost functions. For instance, observers may accumulate
more information about the task-relevant correspondences so that those are more precisely esti-
mated and hence receive greater weights in causal inference (Rohe&Noppeney 2015b).However,
from a normative perspective one may argue that observers should combine spatial and phonetic
correspondences to arbitrate between sensory integration and segregation in speaker localization
tasks. The discarding of precious correspondence information may thus reflect the brain’s limited
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computational resources that make the concurrent computation of reliable phonetic and spatial
correspondences impossible. Consistent with this conjecture, the McGurk illusion falters under
concurrent demanding auditory or visual detection tasks (Alsius et al. 2005, 2014), again suggest-
ing that the extraction of fine-grained phonetic information breaks down in the face of resource
constraints.

Spatial attention is arguably the most important form of attention for multisensory processing,
starting from simple lab experiments with only two sensory signals to complex naturalistic situa-
tions with myriad signals. Even in simple lab experiments with only two signals, spatial attention
may mold perceptual inference via multiple mechanisms. Consistent with normative principles,
prior knowledge about where something happens may, for instance, increase observers’ precision
about their estimates inside the spatial spotlight by eliminating noise from elsewhere, which in
turn impacts causal inference and the relative weighting of signals inside and outside the atten-
tional focus (Rohe &Noppeney 2015b). Alternatively, observers may pursue heuristics and simply
integrate signals that co-occur within an attentional spotlight.

The multiplicity of mechanisms by which spatial attention can influence multisensory process-
ing with even opposite effects on observers’ perceptual outcome may explain why early influential
studies did not reveal any effects of spatial attention on audiovisual integration in spatial ventril-
oquist paradigms (Bertelson et al. 2000). Since then, however, psychophysics and neuroimaging
have indicated a profound impact of spatial attention on multisensory processing. Most notably,
EEG and fMRI have shown effects of spatial attention on interactions of spatially disparate, yet
synchronous, brief audiovisual inputs in planum temporale from 220 ms onward, that is, at la-
tencies associated with integrating audiovisual signals into spatial representations (Bonath et al.
2007, Busse et al. 2005, Donohue et al. 2011). Likewise, the McGurk illusion that is considered to
be relatively immune to spatial correspondences occurs more frequently when spatially focused
attention is directed to the location of the sound (Tiippana et al. 2011), suggesting that spatial
attention may enhance the integration of spatially disparate phoneme/viseme signals.

Solving the binding or causal inference problem consistent with normative principles becomes
progressively more challenging with an increasing number of signals. Even for relatively simple
lab experiments with only two auditory and two visual signals, a normative observer needs to com-
pute the posterior probability over more than ten possible source combinations ranging from one
common source to four independent sources. Further, in these situations, temporal, spatial, and
other correspondences play dual roles—they guide binding within and between sensory modali-
ties. A recent study assessed the influence of spatial attention onmultisensory processing in a more
complex sound-induced flash illusion paradigm; in this study, observers were presented with two
flash-beep sequences bilaterally and reported the number of flashes they perceived, for example,
in their left hemifield (Kumpik et al. 2014). While the sound-induced flash illusion is typically
insensitive to spatial disparity, under spatial attention the reported number of flashes in the at-
tended hemifield depended more strongly on the number of flashes/beeps in the attended rather
than the unattended hemifield (Bizley et al. 2012). These results suggest that spatial attention sup-
presses the influence of signals in the unattended hemifield and possibly enhances the integration
of collocated signals within an attentional spotlight.Likewise,when observers were presented with
two speaker videos bilaterally and the two corresponding auditory speech streams in the center,
the auditory speech stream of the attended video was associated with greater intertrial coherence
and neural encoding/decoding of the acoustic envelope in auditory cortices (for MEG, see Park
et al. 2018; for EEG, see Crosse et al. 2015, O’Sullivan et al. 2015; for electrocorticography, see
Zion Golumbic et al. 2013; and for fMRI, see Fairhall & Macaluso 2009). These attentional ben-
efits exceeded even those observed for pure auditory stimulation, highlighting the importance of
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synergistic interactions between multisensory integration and spatial attention in these so-called
cocktail party scenarios.

Scenarios in our natural environment are even richer, including myriad sources that may emit
signals in one or more sensory modalities. In these complex multisensory scenes, solving the bind-
ing problem exactly is almost certainly intractable for the brain with its limited computational re-
sources. The brain cannot compute the posterior probability distribution over all possible source
combinations. Further, in many situations, such as when searching for a friend in a busy restau-
rant, observers do not even know the source location a priori in order to allocate spatial attention
accordingly.How does the brain solve the causal inference problem in these complex,multisource
environments to form a seemingly coherent percept? One idea is that the brain computes approx-
imate solutions to the binding problem via attentional mechanisms that sequentially select and as-
sess subsets of sensory signals within an attentional spotlight for causal inference and binding (see
Treisman &Gelade 1980). By recurrently shifting the attentional spotlight, the brain then gathers
progressively more information about the multisource environment, thereby forming an approx-
imate posterior distribution. Consistent with such a serial strategy, observers’ response times to
visual targets in audiovisual search scenarios have been shown to increase linearly with the number
of visual distractors (Alsius & Soto-Faraco 2011, Fujisaki et al. 2006).

Yet, the slope of this linear increase is shallower and almost flat when the spatially uninforma-
tive auditory signals (e.g., pulse trains, speech) that evolve in synchrony with the visual target fea-
tures (e.g., luminance, articulatory facial movements) are salient by virtue of their signal strength
and temporal structure (Stacey et al. 2014, Van der Burg et al. 2010). Most notably, brief, salient,
spatially uninformative beeps can make a temporally correlated visual target pop out among dis-
tractors (pip and pop), which was associated in EEG with early (50 ms poststimulus) audiovisual
interactions and later changes in the N2pc component, reflecting spatial bottom-up attraction of
attentional resources (Van der Burg et al. 2008, 2011). Because the audiovisual benefit was greatest
when the auditory signal was synchronous or slightly lagging behind the visual target, it is unlikely
to reflect simple alertness effects. Instead, the brain appears to compute temporal correspondences
between a salient beep and multiple concurrent visual signals at least partly via preattentive par-
allel processes. Likewise, viewing facial articulatory movements enables observers to search for
and detect corresponding speech signals among auditory distractor signals rather independently
of the number of auditory distractor signals (Alsius & Soto-Faraco 2011). These results dovetail
nicely with other studies showing that a single visual signal amplifies the encoding of a temporally
correlated auditory signal in primary auditory cortices even under anesthesia (Atilgan et al. 2018).
Collectively, they raise the intriguing possibility that the brain may compute audiovisual saliency
maps that not only benefit from the complementary spatial precision of vision (Itti & Koch 2001,
Li 2002) and temporal precision of audition (Kayser et al. 2005) but also incorporate an initial
tentative solution to the binding or causal inference problem based on temporal correspondences.
These spatiotemporal salience maps go beyond linear combinations of auditory and visual salience
maps to attract observers’ attention to audiovisual events in a complex, dynamic world.

ADAPTING MULTISENSORY PROCESSING TO A DYNAMIC WORLD

Adapting dynamically to changes in the environment and the sensorium is a fundamental challenge
facing the brain throughout the life span. Changes in sensory statistics evolve across multiple
timescales ranging from milliseconds to years. The brain should adapt faster in a volatile world,
when signals in the distant past are no longer relevant for the future, than in a stable world, when
variations over time are more likely to reflect random fluctuations. While the previous section
described how priors incorporate information from a task or context, this section reviews how
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priors dynamically adapt to changes in the statistical structure of the environment across multiple
timescales, focusing on changes in the signals’ reliabilities and in the world’s causal structure and
its properties (e.g., objects’ locations). Finally, we turn to how the brain calibrates the senses to
keep sensory estimates internally consistent and accurate with respect to the outside world.

In our natural environment, sensory reliabilities typically evolve slowly. For instance, observers
receive progressively more reliable spatial information from the looming noise of an approaching
truck. A normative Bayesian learner should capitalize on this slow temporal dynamic and estimate
the reliabilities of the sensory signals by combining information from present and past sensory
inputs—the latter being formally incorporated in hyperpriors about sensory reliability. Consistent
with these predictions, a recent study showed that observers integrate audiovisual signals weighted
by reliabilities estimated from sensory inputs from up to four seconds in the past (Beierholm et al.
2020).Computational modelling showed that an optimal Bayesian as well as an exponential learner
could capture this behavior equally well. Critically, while both learners rely more strongly on re-
cent inputs, only the Bayesian learner adapts its learning rate dynamically based on its uncertainty
about its reliability estimates. Collectively, these results extend current models (e.g., forced fusion,
Bayesian causal inference) in which sensory reliabilities are estimated instantaneously and inde-
pendently for each stimulus. They also raise the possibility that the brain resorts to approximate
strategies of exponential discounting to adapt to the changing reliabilities of the sensory inputs.

To guidemultisensory inference, the brain needs to learn not only about signals’ reliabilities but
also about the statistical structure over signals from various sensory modalities. Cross-sensory pri-
ors influence the integration of sensory signals and enable the prediction of unobserved cue values
in one modality (e.g., predator’s size) from observed cue values in another modality (e.g., acoustic
scale of its vocalization). Importantly, observers’ prior binding tendency (i.e., causal prior) needs
to adapt dynamically to changes in the world’s causal structure. For instance, observers should
progressively reduce their causal prior when they listen to one person’s speech and view another
person’s facial movements. Indeed, observers are less likely to integrate signals into McGurk or
sound-induced flash illusions after a series of incongruent and/or asynchronous signals (Gau &
Noppeney 2016; Nahorna et al. 2012, 2015; Rohe et al. 2019). At the neural level, fMRI research
has shown that the dorsolateral prefrontal cortex combines prior causal expectations (based on pre-
vious stimuli) with sensory correspondence cues (from current stimuli) to flexibly control whether
signals are integrated or segregated (Gau&Noppeney 2016).The brain thus controls information
flow in multisensory inference—as in classical Stroop paradigms (Kerns et al. 2004)—via control
mechanisms that dynamically adapt to the changing causal structure of the environment (Van
Wanrooij et al. 2010). At a longer timescale, learning prior cross-sensory distributions enables
observers to integrate previously unrelated features such as visuospatial and novel echolocation
cues (Negen et al. 2018), luminance and stiffness (Ernst 2007), or visual and vestibular self-motion
cues for yaw and roll axes (Kaliuzhna et al. 2015). Yet, the brain’s ability to integrate novel cues
in a statistically optimal manner may be limited to closely related features such as rotational self-
motion cues from yaw and roll axes (Kaliuzhna et al. 2015). The integration of visuospatial and
echolocation cues has already fallen short of the normative predictions (Negen et al. 2018), and
the integration of genuinely novel pairs of cues (e.g., pitch, color) may be even more challenging
or impossible.

Observers’ dynamic beliefs about the world’s causal structure should influence not only per-
ceptual inference but also learning. Observers should learn and update (e.g., spatial) priors jointly
across sensory modalities when common sources are likely but separately otherwise. Surprisingly,
when visual and tactile signals occurred solely as unisensory events and with different probabilities
over left and right hemifields (Mengotti et al. 2018), observers’ reaction times and event-related
potentials for these unisensory events depended jointly on the spatial probabilities of both sensory
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modalities, with a stronger influence given to the sensory modality of the stimulus (Eimer et al.
2004, Spence & Driver 1996). These crossmodal influences arose even when cues informed ob-
servers about the sensory modality of the upcoming stimulus with 100% validity prior to stimulus
presentation (Mengotti et al. 2018). Thus, contrary to normative principles, observers were not
able to learn independent spatial priors for each sensory modality and allocate their attentional
resources accordingly (for a review of crossmodal attention, see Spence 2014). Neuroimaging re-
search has only started to disentangle this complex interplay between (spatial) expectation and
attention in the human brain (for a review, see Summerfield & Egner 2009). For instance, a recent
fMRI study manipulated spatial attention and expectations selectively in audition and assessed
their effects on neural responses to auditory and visual stimuli. The study showed that atten-
tional resources were controlled interactively across the senses via frontoparietal cortices, while
spatial expectations were encoded in auditory and parietal cortices independently for each sense
(Zuanazzi & Noppeney 2019).

So far, we have assumed that causal inference needs to dissociate solely whether sensory es-
timates differ because of noise or because signals come from independent sources. Yet, sensory
estimates can also disagree because of modality-specific biases. Notably, physical growth, ageing,
or entering a room with reverberant acoustics can introduce biases by profoundly altering the
sensory cues that guide the brain’s construction of spatial representations. To maintain internal
consistency between the senses (unsupervised calibration) and external accuracy with respect to
the outside world (supervised calibration), the brain constantly needs to recalibrate the senses. Ex-
perimentally, cross-sensory recalibration can be invoked by introducing a sensory conflict along
one dimension (e.g., spatial) while enforcing audiovisual binding via correspondence cues along
another dimension (e.g., time). For instance, exposure to synchronous, yet spatially misaligned,
audiovisual signals induces a bias in observers’ perceived sound location toward the previously
presented visual stimulus even when presented alone, a phenomenon termed the ventriloquist af-
tereffect (Bertelson et al. 2006,Woods &Recanzone 2004).Thus,multisensory recalibration leads
to attractive biases in contrast to the repulsive effects typically observed in unisensory adaptation
(e.g., for contrast, see Bao & Engel 2012; for tilt, see Schwartz et al. 2007).

Despite extensive experimental evidence for recalibration, the computational principles of un-
supervised recalibration remain controversial and may also differ across tasks and contexts. Most
notably, unlike the repulsive effects in unisensory adaptation (Stocker & Simoncelli 2005), the at-
tractive biases in cross-sensory recalibration can in principle result from changes in priors and/or
likelihoods. For instance, a recent study suggested that exposure to McGurk stimuli (e.g., an audi-
tory “pa” paired with a visual “ga”) changes observers’ priors over sensory features of a particular
phoneme category (Olasagasti & Giraud 2020). By contrast, cross-sensory recalibration of space
or heading motion has been attributed to changes in observers’ likelihoods (Wozny & Shams
2011a). Here, the idea is that shifts in the means of the likelihood functions (i.e., as incorporated
by bias terms) enable the brain to keep sensory representations in coregistration. Yet, how exactly
the brain updates sensory likelihoods is a matter of debate. Some theoretical accounts intimately
link the computations of recalibration with multisensory perceptual inference and suggest that
likelihoods are updated by the difference between sensory inputs and observers’ forced fusion
(Burge et al. 2010, Gharamani et al. 1997) or Bayesian causal inference estimate (Sato et al. 2007).
Sensory modalities would then recalibrate according to their reliabilities, adapting more when
they are less reliable and, when Bayesian causal inference is put into the equation, when con-
flicting signals are perceived as coming from one source. Other accounts argue that perceptual
inference and recalibration pursue distinct goals—the former reducing sensory uncertainty, the
latter increasing perceptual accuracy by attenuating modality-specific biases. Sensory modalities
should therefore recalibrate irrespective of their sensory reliabilities with fixed weights that reflect
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observers’ beliefs about modality-specific biases (Ernst & di Luca 2011; Zaidel et al. 2011, 2013).
Further, because the updates are computed based on the difference between individual sensory
estimates, recalibration should be greater when conflicting signals are perceived as coming from
different sources. Results to date are too limited and inconsistent to arbitrate between these ac-
counts.While recalibration depended on sensory reliabilities (Burge et al. 2010) and/or observers’
inferred causal structures (Wozny & Shams 2011a,b) in some studies, it was largely independent
from them in others (Di Luca et al. 2009; Zaidel et al. 2011, 2013).

Possibly, cross-sensory recalibration may also rely on different computational principles, neu-
ral mechanisms, or even circuitries depending on stimulus statistics (e.g., spatial versus phonetic),
adaptation duration, and task context (for unisensory adaptation, see Bao & Engel 2012, Schwartz
et al. 2007). In support of multiple mechanisms, recalibration arises across several timescales from
milliseconds (Bosen et al. 2017, 2018; Wozny & Shams 2011b) to minutes (Bertelson et al. 2006,
Woods & Recanzone 2004) and even days (Zwiers et al. 2003), with the length of spatial recal-
ibration influencing its frequency selectivity (Bruns & Röder 2015, Woods & Recanzone 2004)
and the reference frames of the underlying spatial representations (Kopčo et al. 2009). Intrigu-
ingly, a recent elegant psychophysics study has shown that the effects of long-term audiovisual
spatial recalibration are cancelled transiently by short-term recalibration into the opposite direc-
tion, yet they then reappear (Watson et al. 2019). This recalibration rebound has previously been
observed in unisensory adaptation (Bao & Engel 2012) and sensorimotor learning (Smith et al.
2006). It suggests that spatial recalibration can evolve independently at two distinct timescales so
that long-term recalibration effects reappear when short-term recalibration effects taper off more
rapidly. Recalibration across multiple timescales enables the brain to adapt flexibly to brief (e.g.,
reverberant acoustics) and more prolonged (e.g., physical growth) changes in sensory statistics
(Bosen et al. 2017, 2018; Watson et al. 2019).

An open question is how observers infer whether intersensory discrepancies result from noise,
signals coming from independent sources, or a variety of perturbations that arise at multiple
timescales. While an optimal Bayesian learner should solve this credit assignment problem by
constantly updating their estimates about the signals’ causes, properties, and various perturba-
tions as well as their uncertainties about those estimates over time [e.g., Kalman filter (Kording
et al. 2007b)], it is likely that observers need to compute approximate solutions. Consistent with
this conjecture, a double exponential model can capture human (spatial) recalibration at two dis-
tinct timescales (Bosen et al. 2018, Watson et al. 2019). At the neural level, audiovisual spatial
recalibration has been shown to affect neural processing throughout the dorsal auditory process-
ing stream from primary auditory to dorsolateral prefrontal cortices (Park & Kayser 2019), with
early auditory and parietal activity involved in adaptive coding of continuous auditory space and
later frontoparietal activity reflecting observers’ decisional uncertainty involved in mapping those
recalibrated spatial estimates onto decisional choices (Aller et al. 2021, Zierul et al. 2017). It is un-
known whether recalibration across different timescales relies on common, partially overlapping,
or different neural systems.

Recalibration can also arise to resolve temporal or high-order statistical (e.g., phonetic) cross-
sensory conflicts. Temporal recalibration is particularly important to compensate for stimulus-
dependent variability in cross-sensory timings (Fujisaki et al. 2004).Most prominently, audiovisual
timings may vary because light and sound differ in their traveling speed, sensory transduction, or
transmission processes. Similar to spatial recalibration, temporal recalibration can arise concur-
rently at fast and long timescales (Van der Burg et al. 2015). Observers can even simultaneously
recalibrate audiovisual timing in opposite directions for different stimuli, which may enable the
brain to account for differences in audiovisual timing for multiple simultaneous stimuli that dif-
fer in luminance or distance from the observer (Roseboom & Arnold 2011). Initial EEG and
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drift-diffusion modelling have shown that evidence accumulation in synchrony judgements
changes in accordance with observers’ recalibrated timing (Simon et al. 2018). Likewise, audio-
visual phonetic conflicts recalibrate observers’ auditory phoneme percept (Bertelson et al. 2003,
Olasagasti &Giraud 2020) and corresponding neural representations in temporal cortices (Kilian-
Hütten et al. 2011). In comparison to the sustained effects of long-term spatial recalibration, the
effects of phonetic recalibration taper off more quickly, possibly because phonetic recalibration
serves different computational goals and deals with faster temporal statistics. For instance, pho-
netic recalibration is thought to enable observers to adapt rapidly to various speakers.

Collectively, this body of research documents the brain’s ability to adapt effectively to changes
in the environment and its sensorium across multiple timescales by adjusting priors, hyperpriors,
and likelihoods. However, we are still lacking data and computational models to help us under-
stand how the brain computes approximate solutions to the causal inference and credit assignment
problem in complex environments in which intersensory discrepancies arise dynamically because
of sensory biases or signals coming from different sources.

SUMMARY

We have used multisensory processing as a microcosm to review how the brain tackles some of
the most fundamental challenges for neural processing, namely, inference- and decision-making,
binding, attention, and learning. Over the past two decades, mounting evidence has shown that
the brain integrates signals near-optimally weighted according to their momentary uncertainties
for perceptual inference and decisions. In situations that entail causal uncertainty, the brain arbi-
trates between sensory integration and segregation approximately consistent with the principles
of Bayesian causal inference. At the neural level, the brain accomplishes this feat by dynamically
encoding multiple perceptual estimates that segregate, integrate, and flexibly combine informa-
tion depending on the world’s causal structure and observers’ perceptual goals along the cortical
hierarchy. Crucially, solving the causal inference problem exactly is intractable for the brain, with
its limited resources, in all but the simplest laboratory scenarios.We have discussed how the brain
computes approximate solutions in progressively complex multisource environments and argued
that attentional mechanisms may be recruited in the service of these approximations. Finally, we
have described how the brain adapts dynamically to changes in the sensory statistics arising from
changes in the environment and sensorium across multiple timescales.
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