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Pasupathy, Anitha and Charles E. Connor.Shape representation
in area V4: position-specific tuning for boundary conformation.J
Neurophysiol86: 2505–2519, 2001. Visual shape recognition in
primates depends on a multi-stage pathway running from primary
visual cortex (V1) to inferotemporal cortex (IT). The mechanisms
by which local shape signals from V1 are transformed into selec-
tivity for abstract object categories in IT are unknown. One ap-
proach to this issue is to investigate shape representation at inter-
mediate stages in the pathway, such as area V4. We studied 109 V4
cells that appeared sensitive to complex shape in preliminary tests.
To achieve a more complete picture of shape representation in V4,
we tested each cell with a set of 366 stimuli, constructed by
systematically combining convex and concave boundary elements
into closed shapes. Using this large, diverse stimulus set, we found
that all the cells in our sample responded to a wide variety of
shapes and did not appear to encode any single type of global
shape. However, for most cells the shapes evoking strongest re-
sponses were characterized by a consistent type of boundary con-
formation at a specific position within the stimulus. For example,
a given cell might be tuned for shapes containing concave curva-
ture at the right, with other parts of the shape having little or no
effect on responses. Many cells were tuned for more complex
boundary configurations (e.g., a convex angle adjacent to a con-
cave curve). We quantified this kind of shape tuning with Gaussian
functions on a curvature3 position domain. These tuning func-
tions fit the neural responses much better than tuning functions
based on edge or axis orientation. Thus individual V4 cells appear
to encode moderately complex boundary information at specific
locations within larger shapes. This finding suggests that, at inter-
mediate stages in the V1-IT transformation, complex objects are
represented at least partly in terms of the configurations and
positions of their contour components.

I N T R O D U C T I O N

The ventral pathway in primate visual cortex is thought to be
responsible for shape recognition (Felleman and Van Essen
1991; Ungerleider and Mishkin 1982). At early stages in this
pathway, such as V1, shape is encoded by cells with small
receptive fields (RFs) sensitive to simple features like edge
orientation (Hubel and Wiesel 1968). Cells at the end of the
pathway in inferotemporal cortex (IT) have large RFs and often
appear selective for abstract object categories like faces and
hands. The mechanisms by which local orientation signals in
V1 are transformed into complex object selectivity in IT are

not yet understood. One approach to this issue is to elucidate
the nature of shape representation at intermediate stages in the
ventral pathway such as area V4.

Prior research has shown that, as in areas V1 and V2, cells
in area V4 can be selective for orientation, length, and width of
bar stimuli, as well as orientation and spatial frequency of
gratings (Desimone and Schein 1987). In addition, many V4
cells are responsive to more complex shapes (Kobatake and
Tanaka 1994), and many are sensitive to curvature, as shown
by their selective responses to curvilinear gratings (Gallant et
al. 1993, 1996). We sought to study these more complex V4
cells, and specifically to provide a more complete picture of
how they function in representing a wide range of shapes.

To do so, we created a large set of moderately complex
shapes, by systematically combining convex and concave
boundary elements. Our stimulus set design was partly moti-
vated by prior results showing tuning for individual curves and
angles in area V4 (Pasupathy and Connor 1999). Our scheme
for combining individual boundary elements into complex
closed shapes yielded a total of 366 stimuli. These stimuli
varied widely in overall shape but also shared common bound-
ary components.

We used these stimuli to study 109 V4 cells that appeared to
have complex shape response properties based on preliminary
tests. Each cell in this sample responded to a variety of very
different shapes. No cell displayed a response pattern that
could be characterized in terms of a single type of global shape.
However, for most cells the effective stimuli showed some
degree of shape consistency at one position (relative to the
center of the object). In other words, these cells were tuned for
boundary conformation in one part of the shape. This kind of
position-specific tuning for boundary conformation was quan-
tified with Gaussian functions on a curvature3 position do-
main. Many cells were tuned for sequences of two or three
curvature values. The curvature-based tuning functions fit the
neural responses much better than functions based on linear
edge or axial orientation (where axial denotes the axis of
greatest elongation; seeMETHODS). The results suggest a parts-
based representation of complex shape in V4, where the parts
are boundary patterns defined by curvature and position rela-
tive to the rest of the object.
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M E T H O D S

Single-cell recording

We recorded single-cell activity in two female rhesus monkeys
(Macaca mulatta), weighing 7.5 and 5.6 kg, respectively. During
training and recording sessions the animal was seated in front of a
computer monitor at a distance of 50 cm, with the head immobilized
by means of a custom-built titanium postsurgically attached to the
skull with orthopedic screws. The animal was trained to fixate a 0.1°
white spot within 0.5° of visual angle for a period of 3.75 s to receive
a juice reward. Eye position was monitored using the scleral search
coil method (Robinson 1963). A wire coil was surgically implanted
beneath the conjunctiva of one eye (Judge et al. 1980) and connected
to a signal converter (Riverbend, Birmingham, AL). The analog signal
from the converter was digitized and sampled at 100 Hz through an
A/D interface (BG Systems, Palo Alto, CA) connected to a serial port
of an Indy workstation (Silicon Graphics, Mountain View, CA). The
workstation was also used for generating visual stimuli.

We studied V4 neurons in the lower parafoveal representation on the
prelunate gyrus and adjoining banks of the lunate and superior temporal
sulci. Recording locations were based on skull landmarks, response
characteristics, retinotopy, and inferred positions of the sulci. Neural
activity was recorded with 125-mm-diam epoxy-coated tungsten elec-
trodes (A-M Systems, Carlsborg, WA) with impedances of 1–5 MV.
Electrodes were inserted transdurally through a 5-mm-diam craniotomy
by means of a custom guide tube system. Electrode position was con-
trolled with a stepping motor microdrive (National Aperture, Salem, NH).
Electrical waveforms were amplified and filtered, and single units were
discriminated on the basis of 2 (occasionally 1) independently adjustable
time/amplitude windows. The digital output of the window discriminator
was collected through the audio input channel of the workstation at a
sample rate of 8 kHz. All animal procedures conformed to National
Institutes of Health and USDA guidelines and were carried out under an
institutionally approved animal protocol.

Each cell was initially characterized with flashing and drifting bars,
ellipses, and star-shaped stimuli under the experimenter’s control.
These stimuli were used to find the cell’s RF center and to determine
an effective stimulus color (used in all subsequent tests). We pre-
sented eight colors: red, green, blue, yellow, cyan, magenta, white,
and black. Each color was adjusted to an approximate luminance of 20
cd/m2, except for blue (15 cd/m2) and black, and displayed against a
background gray of 2.5 cd/m2. We also assessed tuning for curves and
angles (Pasupathy and Connor 1999) and bar orientation. Since we
specifically sought to study complex shape representation, and our
complete testing procedure was extremely time-consuming, we fre-
quently bypassed cells that appeared sensitive only to bar orientation.
We isolated 409 neurons during the course of our experiments. Of
these, we chose 222 for further study based on their responsiveness to
curves, angles, ellipses or star-shapes during preliminary tests. In this
paper we present results for 109 cells for which we completed at least
3 repetitions (usually 5) of the entire stimulus set (seeStimuli).

Stimuli

The stimulus set is shown in Fig. 1. Each stimulus is represented by
a white icon positioned within a black disk that represents the cell’s
RF. The stimuli were constructed by systematically combining convex
and concave boundary elements to form closed shapes. These bound-
ary elements included sharp convex angles, medium and broad convex
curves, and medium and broad concave curves. (Our description here
assumes that the stimulus is perceived as figure and the rest of the
display screen as ground, so that contour elements projecting outward
from the center of the stimulus are convex and indentations toward the
center are concave.) We did not include sharp concave angles because

this would have further increased the size of an already large stimulus
set, and our previous results had shown a strong bias in V4 toward
convex contour features (Pasupathy and Connor 1999). The shapes in
Fig. 1 constitute a complete combinatorial sampling based on a
limited set of boundary elements and certain geometrical constraints
(see legend). Obviously, a greater variety of stimuli could be con-
structed by allowing more variation in the curvatures and lengths of
the boundary elements. The stimuli are arbitrarily arranged into blocks
according to number and configuration of convex projections. Stim-
ulus orientation varies along the rows.

Stimulus size was based on estimated RF size, which in turn was
based on RF eccentricity. The average RF diameter at a given eccen-
tricity was estimated as 1°1 0.625 3 RF eccentricity, based on a
study by Gattass et al. (1988). Stimulus size was scaled with eccen-
tricity such that the outermost stimulus edges were offset from the RF
center by 0.753 estimated RF radius. Thus as a group, the stimuli
covered the central three-quarters of the average V4 RF diameter. We
based stimulus size on eccentricity rather than individually measured
RF diameter so that the stimulus set would be consistent from cell to
cell. In some cases stimulus size would have been nonoptimum for the
cell being studied. Scaling with eccentricity also compensates for
acuity changes and thus maintains the visibility of the stimuli. Stim-
ulus shape remained clearly perceptible at all eccentricities, based on
our subjective observations. We did not test stimulus size as a variable
in any of our experiments, since smaller stimuli would have been
difficult to see, and larger stimuli would have exceeded the RF borders
of many V4 cells. Additional tests in which we varied stimulus
position (see below) verified that response functions did not depend
on the position of specific features with respect to the RF. Hereinafter,
“RF diameter” and “RF radius” will be used to denote RF diameter
and radius estimated on the basis of eccentricity.

During each trial, following initiation of fixation and a 250-ms
prestimulus interval, five randomly selected stimuli were flashed one
at a time for 500 ms each, with interstimulus intervals of 250 ms.
Total trial length was thus 3.75 s. The entire set of 366 stimuli was
sampled without replacement 5 times for most cells (91/109). There
were 9 cases in which only 4 repetitions were completed and 9 others
in which only 3 repetitions were completed.

To verify that responses did not depend on some specific placement of
stimuli, or parts of stimuli, relative to the RF, we performed post hoc
control tests in which selected stimuli, including at least one effective and
one ineffective stimulus, were presented at multiple positions. In some
cases these stimuli were presented in five positions: at the RF center and
offset to the left, right, above and below by 0.353 RF radius. In other
cases stimuli were presented at 25 positions in a 53 5 square grid
centered on the RF, with a spacing of 0.53 RF radius.

Data analysis

Response rates were calculated by counting spike occurrences
within the 500-ms stimulus presentation period. Background response
rates were derived in the same way from null stimulus periods
interspersed randomly among stimulus presentations in all tests. Back-
ground rates were low (average, 1.6 spikes/s), and analyses with and
without background subtraction yielded similar results. The results
presented here are based on subtraction of average background rate
from the response rate for each repetition of each stimulus.

We characterized each shape in our stimulus set in terms of its
component boundary elements (angles and curves). For each bound-
ary element we determined average curvature, orientation (of the
perpendicular bisector, a perpendicular line intersecting the boundary
segment’s midpoint; i.e., the direction in which the angle or curve
seems to point), and position. Curvature was defined as rate of change
in tangent angle (in radians) with respect to contour length (in units of
estimated RF radius). For angles, curvature is infinitely high, so we
used a squashing function (see below) to map raw curvature values
into a continuum that would encompass angles. Divisions between
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contour elements were defined as regions in which the rate of change
in curvature exceeded 40 rad/radius2. This threshold yielded four to
eight elements per stimulus. The stimulus shapes were designed to
have four to eight contour segments of relatively constant curvature,
and the arbitrary cutoff value of 40 rad/radius2 just serves to distin-
guish these segments. The results accord with subjective impressions
of how many segments each shape has. For example, the star-shaped
stimulus (3 in Fig. 1) consisted of four convex angles (regions of
extremely high curvature) and four intervening concavities (8 bound-
ary elements altogether). Large continuous regions of constant convex
curvature (as in the disk stimuli) were divided into 45° sections, since
45° was the sampling interval for contour segment orientation, and the
angular extent of other contour segments was on the order of 45°.
Dividing the shapes into fewer segments would confound multiple
curvature values and thus reduce the power of the analysis. Dividing
into more segments would not affect results, since the same approx-

imate curvature values would just be represented redundantly. Posi-
tion was defined as polar angle and radial eccentricity with respect to
the center of mass of the shape.

Thus each boundary element was characterized by four numbers
(curvature, orientation, angular position, and radial position) and could be
considered a point in a multidimensional space. Each shape could be
considered a collection of such points. This provided a metric stimulus
domain in which we could characterize shape tuning. In practice, we
found that two dimensions, curvature and polar angle, were sufficient to
describe shape tuning in this experiment (seeRESULTS).

For each cell, we characterized tuning in shape space by deriving
multi-dimensional Gaussian functions based on neural responses.
Assume that each stimulus is represented byP points in an n-
dimensional shape space.Xip represents the value of theith stimulus
dimension for thepth point. The response function along each dimen-
sion i was fit with a one-dimensional Gaussian with its peak atmi and

FIG. 1. Stimulus set. Each stimulus is represented by a white icon drawn within a black circle representing the receptive field
(RF). The stimuli were created by systematically combining convex and concave boundary elements. We defined each shape by
the number and configuration of convex projections it contained. The angular separations between convex projections were
multiples of 45°, with a minimum separation of 90°. The convex projections ended in either sharp angles (as instimulus 1, labeled
with a superscript number) or medium curves with a radius equal to 0.23 RF radius (as instimulus 2). They were connected by
concave and convex circular arcs. Stimuli with 2 convex projections are shown in theleft block.The angular separation between
these projections was either 90° (top), 135° (middle), or 180° (bottom). Each row corresponds to a particular combination of
boundary elements, presented at either 2, 4 or 8 orientations, depending on rotational symmetry. The orientations shown here were
standard, but in some cases the entire set was rotated to match the cell’s tuning for curvature orientation. Stimuli with 3 convex
projections are shown in themiddle block.The angular separations between these projections were either 90°/90°/180° (top) or
90°/135°/135° (bottom). Stimuli with 4 convex projections, separated by 90°, are shown in theright block. We also tested 2
disk-shaped stimuli (far right) with radii equal to 0.1875 and 0.753 RF radius, respectively.
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a standard deviation ofsi. The overall response function was fit by the
product of then Gaussians. Thus the predicted responser is given by

r 5 max
p Fk z P

i51

n

e2~Xip2mi!2/2zsi
2G

wherek represents the amplitude of then-dimensional Gaussian. The
predicted response to a stimulus withP points was the maximum of

theP responses associated with its component points (cf. Riesenhuber
and Poggio 1999). Thus if a cell were strongly driven by a particular
boundary element, the tuning function would predict high responses to
all shapes containing that element, independent of other stimulus
characteristics. Tuning function estimates were similar when pre-
dicted responses were based on the sum of all component responses
~¥

p
instead of max

p
).

The parameters of the Gaussian tuning function were estimated by
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minimizing the sum of squared errors between observed and predicted
values (across all stimuli) using the Gauss-Newton algorithm in
MATLAB (MathWorks, Natick, MA). Since nonlinear regression
solutions can be highly dependent on starting points, we derived
solutions from multiple starting points uniformly spaced across a grid
in the stimulus domain. The functions that provided the best fits are
presented here. (For each neuron, the majority of starting points
yielded similar tuning functions.) Goodness-of-fit was assessed by
computing the coefficient of correlation between observed and pre-
dicted responses (r).

Since curvature has an inverse relationship to radius, absolute
curvature values become extremely high for small radius curves.
Moreover, perceived curvature has to asymptote at radii well below
the acuity threshold, which will be perceived as angles. Therefore in
our analyses, we replaced absolute curvature,c, with squashed cur-
vature,c9, based on the following formula

c9 5
2.0

1 1 e2azc
2 1.0

Squashed curvature values range from21.0 (sharp concave angles) to
0.0 (straight edge) to 1.0 (sharp convex angles). The valuea dictates
the slope of the sigmoidal squashing function. In the analyses pre-
sented here,a was 0.125 and the curvatures sampled in our stimulus
set ranged from20.31 to 1.0. As an example, instimulus 1(Fig. 1),
the curvature of the two sharp convexities was 1.0, the concavity was
20.31, and the broad convexity was 0.2. Instimulus 2,the curvature
of the two medium convexities was 0.75. Analytical results were
similar with a 5 0.075.

We also investigated tuning based on edge orientation, hypothesiz-
ing that cells might respond to shapes with relatively flat contour
segments at a preferred orientation. For this purpose, we decomposed
the stimuli into component boundary segments with absolute curva-
ture,6.0 rad/RF radius. This threshold yielded straight edge approx-
imations for all boundary segments except the sharp and medium
convexities. Edge orientation tuning was described with one-dimen-
sional (1-D) Gaussian functions. As in the boundary curvature mod-
els, the predicted response to a stimulus was the maximum of the
responses associated with its component boundary segments.

We also investigated tuning for axial orientation, i.e., orientation of
the axis of greatest elongation (as in tuning for oriented bars). For this
purpose, we used a standard analogy to mass, finding the axis of
lowest rotational inertia and determining its orientationw and elon-
gatione (Jahne 1993)

w 5
1

2
z arctan

2 z mxy

mxx 2 myy

e 5 Smx9x9 2 my9y9

mx9x9 1 my9y9
D2

wheremxx, myy, andmxy are the second-order central moments along
the Cartesianx andy axes, andmx9x9 andmy9y9 are second-order central

moments alongw andw 1 90°, respectively. The elongatione ranges
from 0.0 (for a circular object) to 1.0 (for a line). We described axial
orientation tuning with 2-D Gaussian functions on thew 3 e (orien-
tation3 elongation) domain. We also determined total extent in thew
and w 1 90° directions (equivalent to length and width) and fit
three-dimensional (3-D) Gaussian functions on the orientation3
length3 width domain.

R E S U L T S

Position-specific tuning for boundary conformation

We used the stimulus set shown in Fig. 1 to study 109 area
V4 neurons that appeared sensitive to complex shape in pre-
liminary tests. RF eccentricities ranged from 0.0 to 6.62°. Each
neuron responded to a diverse set of shapes. An example is
shown in Fig. 2A. For each stimulus icon in this figure, the
background gray level indicates response rate averaged across
five repetitions. Response rates ranged from26.3 6 0.0 (SE)
spikes/s (light gray; below spontaneous rate) to 38.16 7.0
spikes/s (black; see scale bar). Stimuli that evoked strong
responses varied widely in overall structure and included cres-
cents, triangles, teardrops, and four-pronged shapes. A com-
mon feature of these shapes, however, was the presence of a
convex projection near the bottom left (relative to the object
center). Stimuli with a sharp convex angle at this position were
particularly effective (e.g.,stimuli 1 and2 in the middle col-
umn, bottom block;these stimuli are labeled with superscript
numbers). Stimuli with a medium convex curve evoked mod-
erate responses (e.g.,stimuli 3and4). Thus this cell appears to
encode information about the bottom left boundary region,
responding well to sharp convexity at this location and poorly
to broad convexity or concavity.

These response characteristics were quantified with the
Gaussian tuning function shown in Fig. 2B. The domain in this
plot has two dimensions: angular position and curvature. In the
angular position dimension, 0° corresponds to boundary ele-
ments on the right-hand side of the shape, 90° corresponds to
the top of the shape, 180° to the left, etc. In the curvature
dimension, positive values denote convex curvature, with
larger numbers representing higher (sharper, smaller radius)
curvature, and 1.0 corresponding to convex angles (the limit of
sharp curvature). Negative values represent concave curvature,
and 0.0 corresponds to straight lines. The predicted response
for each combination of position and curvature is indicated by
the height and color of the surface plot. For this cell, the
best-fitting Gaussian had a peak at 229.6° in the angular
position dimension (bottom left relative to the object center)

FIG. 2. V4 neuron tuned for acute convex curvature at the bottom left.A: response pattern. The gray level surrounding each
stimulus icon denotes average response (across 5 repetitions) as indicated on the scale bar at right.B: 2-dimensional (2-D) Gaussian
tuning function. Horizontal axes represent angular position and curvature of boundary elements. Vertical axis and surface color
represent normalized response predicted by the tuning function. To determine the best-fitting function, we first decomposed each
shape into its component boundary elements (curves and angles; seeMETHODS). The stimulus inA labeled with a red1, for example,
was decomposed into 3 sharp convexities and 3 concavities. We characterized each boundary element with 2 numbers, representing
curvature and position. Curvature runs from21.0 (for sharp concavities) through 0.0 (for straight edges) to 1.0 (for sharp
convexities). The curvature values forstimulus 1were 1.0 for the 3 sharp convex angles,20.3 for the concavity on the left, and
20.1 for the 2 broader concavities. We characterized position in terms of polar angle with respect to the object center. The 3 sharp
convexities instimulus 1had polar angle values of 0° (right), 135° (top left) and 225° (bottom left). In this manner, each stimulus
could be represented by a set of points (1 point for each boundary element) on the 2-D domain (curvature3 position). We based
the predicted response for each stimulus on whichever of these points corresponded to the highest value in the function. In other
words, we predicted that the response would be determined by the part of the shape closest to the cell’s tuning peak. We used
nonlinear regression (with multiple starting points) to find the best-fitting Gaussian function (i.e., the function that minimized the
sum of squared errors between predicted and observed responses).
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and 1.0 in the curvature dimension (sharp convex). The stan-
dard deviation in the angular position dimension was 26.7°,
implying that the cell was sensitive to convexity within a
relatively narrow range of positions. The standard deviation in
the curvature dimension was 0.42, indicating responsiveness to
a range of convex curvatures. Thus the tuning function indi-
cates that this cell represents convex curvature in the bottom
left boundary region.

Figure 2A shows that the most effective stimuli contained
not just a convexity at the bottom left but also a concavity at
the bottom; i.e., adjacent in the counterclockwise (CCW) di-
rection (e.g.,stimuli 1and2). Stimuli that instead contained a
CCW-adjacent convexity evoked much weaker responses (e.g.,
stimuli 5-8 in the middle column, top block). In other words,
this cell was tuned for boundary configurations comprising
more than one curvature element.

This slightly more complex tuning pattern is represented in
Fig. 3A. Here, the stimulus domain has four dimensions, as
follows. Each individual surface plot represents the same two
dimensions as in Fig. 2A: angular position and curvature. The

peak in these two dimensions still corresponds to sharp con-
vexity (1.0) near the bottom left (230.0°). The rows and col-
umns of plots represent the other two dimensions. The rows
correspond to different values for CW-adjacent curvature, and
the columns correspond to different values of CCW-adjacent
curvature. This cell exhibited strong tuning for concave CCW
curvature, with a peak at20.15 (2nd column; SD in this
dimension was 0.21). There was no strong tuning for CW
curvature, as shown by the similarity of tuning surfaces across
rows. Thus the 4-D tuning function indicates that this cell was
responsive to shapes containing sharp convex curvature at the
bottom left flanked by concave curvature at the bottom.

Goodness-of-fit for these tuning functions is represented by
the scatter plots in Fig. 3B. For each stimulus, the average
neural response is plotted against the response predicted by the
2-D (left) or 4-D (right) Gaussian function. The vertical band-
ing in these plots is due to the fact that groups of stimuli shared
similar boundary patterns and thus similar predicted response
values. The correlation between neural responses and predicted
responses appears stronger in the 4-D plot, and this difference

FIG. 3. A: 4-D Gaussian tuning function.
The 4-D domain represents curvatures and po-
lar angle position for sequences of 3 boundary
elements. Each surface plot represents a 2-D
slice through the 4-D stimulus domain. Within
each surface plot, horizontal axes represent an-
gular position and curvature of the central
boundary element. Rows of surface plots rep-
resent different clockwise (CW)-adjacent cur-
vatures and columns represent counterclock-
wise (CCW)-adjacent curvatures. The specific
slice positions on the CW-adjacent and CCW-
adjacent curvature dimensions were chosen to
highlight the tuning range in those dimensions.
Vertical axes and surface color represent nor-
malized predicted response. Each stimulus has
the same number of points as in the 2-D do-
main, one for each boundary element, but the
extra dimensions add information about adja-
cent elements.Stimulus 1from Fig. 2, for ex-
ample, is represented by 6 points: 3 concave/
convex/concave sequences and 3 convex/
concave/convex sequences.B: scatter plots
showing goodness-of-fit for the 2-D (left) and
4-D (right) tuning functions. The vertical axis
represents observed normalized neural re-
sponse, and the horizontal axis represents pre-
dicted normalized response.
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is reflected by the correlation coefficients: 0.70 for the 2-D
function and 0.82 for the 4-D function. (The correlation be-
tween predicted responses based on this cell’s edge orientation
tuning function and observed neural responses was 0.25; see
Tuning for linear orientation.) A partial F test showed that
CCW curvature had a significant effect on responses (P ,
0.01). Thus the 4-D tuning function, which represents complex
local boundary configurations, provides a better description of
the responses.

Even the 4-D scatter plot, however, still shows substantial
variation not explained by the Gaussian tuning function. This
variation may represent some combination of1) more complex
boundary conformation tuning not captured by a simple Gauss-
ian function, 2) sensitivity to other shape factors besides
boundary conformation, and3) noise, due to our limited sam-
ple of five repetitions of each stimulus. These issues are further
addressed below. In any case, the boundary conformation in a
specific region of the object (bottom left and bottom) is clearly
a major determinant of this cell’s responses to complex shapes.

Another example is shown in Fig. 4. This cell was sensitive
to boundary conformation on the right side of the object,
responding best to concave curvature at that position. This is
exemplified bystimuli 1 and2 in the middle column, bottom
block of Fig. 4A. Stimulus 1,with a concavity at the right,
evoked a stronger response.Stimulus 2is almost identical, but
with a convexity at the right, and it evoked no response. The
4-D curvature tuning function for this cell is shown in Fig. 4B.
The Gaussian peak for the center boundary element is at20.29
(concave) and 6.3° (to the right of the object center; the peak
is artifactually split along the angular position dimension). The
cell also appears to be tuned for sharper convexities at the
CCW-adjacent position (peak curvature5 1.0, SD5 0.33) and
medium convexities at the CW-adjacent position (peak curva-
ture 5 0.70, SD5 0.66). This combination is exemplified by
stimulus 3in Fig. 4A, which evoked a stronger response. The
opposite combination (sharp CW and medium CCW) is exem-
plified by stimulus 4, which evoked a weaker response. (Com-
pare alsoshapes 5and 6, and similar pairs throughout the
stimulus set.) However, stimuli with two sharp adjacent cur-
vatures or two medium adjacent curvatures also produced
stronger responses (e.g.,stimuli 7 and 8). The correlation
coefficient for the 4-D Gaussian tuning function was 0.81. The
correlation coefficient based on edge orientation tuning was
0.38.

A third example is shown in Fig. 5. This cell was sensitive
to boundary conformation at the top right, responding best to
sharp convexity, especially when flanked by a concavity on
one side or the other. The tuning function in Fig. 5B reflects
this response pattern, with a center curvature peak at 1.0 (sharp
convex) and 44° (top right). Tuning for adjacent concavities
was strong, with a CW-adjacent peak at20.13 (SD5 0.19)
and a CCW-adjacent peak at20.21 (SD5 0.31). The corre-
lation coefficient for the 4-D Gaussian was 0.85. The correla-
tion coefficient based on edge orientation tuning was 0.31.

To ensure that these response patterns did not result from
differential stimulation of a RF hotspot (or some other mech-
anism related to absolute position), we tested shape tuning at
multiple positions. The position test for the Fig. 5 cell is shown
in Fig. 6A. We selected two stimuli based on the original test,
one containing the boundary pattern that drove the cell (the
star-shaped stimulus, Fig. 6A, top) and another without this

boundary pattern but otherwise equivalent in shape (bottom).
We presented each stimulus at 25 positions arranged in a 53
5 grid centered on the RF, with a spacing of 0.53 RF radius.
The star-shaped stimulus evoked strong responses at multiple
positions, while the other stimulus never evoked a strong
response. We performed similar tests on 33 cells in our sample.
As expected, given the limited size of V4 RFs, responses were
not invariant with position. In all cases, however, the stimulus
containing the critical boundary pattern evoked the strongest
response across positions.

We performed other post hoc tests in which we varied the
position of the critical boundary pattern relative to the rest of
the object. The results of this test for the Fig. 5 cell are shown
in Fig. 6B. We tested teardrop-shaped stimuli in which we
varied1) the orientation of the convex projection (left, middle,
and right blocks in Fig. 6B), 2) the length of the convex
projection in the direction parallel to its orientation (rows
within eachblock), and3) the offset of the convex projection
in the direction orthogonal to its orientation (columnswithin
eachblock). Figure 6B shows that the cell responded best to
shapes that contained a sharp convexity near the top right
(relative to the object center). As a result, somewhat surpris-
ingly, the optimum orthogonal offset changed with the orien-
tation of the convex projection. As orientation rotated CCW
(blocks, left to right), optimum orthogonal offset shifted in the
opposite direction.

We performed equivalent tests on 29 cells tuned for sharp
convexity (adjusting for optimum convex projection orienta-
tion of the individual cell). The majority of these cells showed
a similar interaction between orientation and orthogonal offset.
Two-factor ANOVA (orientation3 offset) indicated a signif-
icant (P , 0.05) interaction effect for 26/29 cells. For these 26
cells, we measured direction of shift in optimum offset by
regressing optimum offset on orientation. In 23 cases, the
regression line sloped in the same direction as for the cell in
Fig. 6B. In other words, for these 23 cells, the optimum offset
shifted opposite to orientation, so that the position of the
convex extremity remained similar. This analysis suggests that
the position of contour elements relative to the object center is
an important tuning dimension for these cells.

In addition, we fit the observed responses with 1-D Gaussian
functions on the angular position domain and on the orthogonal
offset domain. This analysis was limited to stimuli with the
longest convex projections (in thebottom rowof Fig. 6B),
since these produced the strongest responses. The effects of
orientation were partitioned out by normalizing responses to an
average value of 1.0 within each orientation block. For the cell
in Fig. 6B, observed responses were more highly correlated
with predicted responses based on angular position of the
convex extremity (r 5 0.72) than with predicted responses
based on orthogonal offset (r 5 0.08). Correlation was higher
for angular position in 20/29 cells. Median correlation was 0.61
for angular position and 0.23 for orthogonal offset. These
results further support the significance of relative position as a
tuning dimension for V4 cells.

Distribution of tuning parameters

Each cell in our sample responded to a variety of shapes, as
in Figs. 2, 4, and 5, with strong activity distributed across the
3 major stimulus categories in Fig. 1, i.e., stimuli with 2, 3, and
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4 convex projections. There were only 2 cases in which
responses greater than half-maximum were restricted to just
one category, and only 17 cases in which responses.75%
of maximum were restricted to one category. Thus most
cells responded to a diverse set of stimuli, including el-
lipses, crescents, teardrops, stars, etc. They were not selec-
tive for a single type of global shape. We therefore charac-

terized their responses in terms of tuning for local boundary
conformation.

We fit Gaussian tuning functions on the 2-D and 4-D bound-
ary curvature3 position domains for all 109 cells in our
sample. We also fit tuning functions on domains that included
other dimensions (in addition to curvature and position), spe-
cifically boundary element orientation (the direction in which

FIG. 4. V4 neuron tuned for concave curva-
ture at the right.A: response pattern.B: 4-D
tuning function. See Figs. 2 and 3 for further
details.
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the angle or curve seems to point) and radial position (with
respect to the object center). These dimensions would be
important for complete descriptions of some shapes, but in our
stimulus set they were superfluous. Boundary element orien-
tation was usually equivalent to angular position (i.e., most
curves were pointed outward from the center) and hence re-
dundant. As a result, we could not completely distinguish the

relative importance of angular position and boundary element
orientation. However, post hoc tests (see Fig. 6B) demonstrated
that tuning for angular position generalized across boundary
element orientation. Radial position, for any given curvature
type, was fairly standard across stimuli, and partialF-tests
indicated that including radial position as a stimulus dimension
did not substantially improve goodness-of-fit in most cases.

FIG. 5. V4 neuron tuned for acute convex
curvature at the top right.A: response pattern.
B: 4-D tuning function.
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For these reasons, we have focused our discussion on the
curvature3 position domain.

Figure 7A shows the distribution of tuning peaks and SDs in
the angular position dimension (for the 4-D Gaussian fits). The
distribution of tuning peaks is represented on the vertical axis
and summarized by the histogram at theleft of the scatter plot.
This distribution was not significantly different from a uniform
distribution (P 5 0.79) according to a Monte Carlo version of
Kuiper’s test (a circular Kolmogorov-type analysis) (Mardia
1972; Pasupathy and Connor 1999). Thus the full range of
angular positions seems to be represented by our sample of V4
cells. SDs are shown on the horizontal axis. In most cases
(86/109) SDs were,90°, indicating that V4 cells are sensitive
to boundary conformation at fairly restricted locations.

Figure 7B shows the distribution of tuning peaks and SDs in

the curvature dimension for the 2-D fits. The 2-D fitting pro-
cedure provides a better estimate of which single curvature
type had the greatest effect on responses. Curvature tuning
peaks are represented on the vertical axis and summarized in
the histogram at theleft. The distribution covers the entire
range of concave and convex curvatures, but there is a stronger
representation of sharper convexities, in the 0.5 to 1.0 range,
which includes cells like those in Figs. 2 and 5. A smaller
number of cells was tuned for concavities, in the negative
curvature range, like the example cell in Fig. 4. (Peak positions
below the range of curvatures actually tested, i.e., less than
20.31, signify that neural responses were best fit by the flank
of an off-center Gaussian.) Other cells were tuned for broad
convexity, in the 0.0 to 0.25 range. The example cell in Fig. 8
fell within this range, responding to broad convex curvature at
angular positions near 90°. SDs were large in some cases but
covered less than one-half the sampled curvature range (i.e.,
,0.65) for the majority of cells (87/109). The distribution of
curvature tuning peaks may be influenced by the fact that sharp
concavities were not represented in our stimulus set. However,
previous results with a stimulus set that included sharp con-
cavities also showed a strong bias toward convexity (Pasupathy

FIG. 6. A: position test. Surrounding gray levels denote average re-
sponses to an optimum (top) and nonoptimum (bottom) stimulus, both
shown in black atleft, presented at 25 positions on a 53 5 grid centered
on the RF center. Stimulus size was the same as in the primary test (Fig.
5A). In this plot, the background circles are larger than the estimated RF.
B: boundary element position test. The basic stimulus was the teardrop
shape from the main stimulus set. The orientation and relative position of
the effective boundary element (the convex angle) were systematically
varied, as shown by the stimulus icons. Response rates are indicated by
surrounding gray levels.

FIG. 7. Distribution of tuning parameters.A: angular position in 4-D tuning
functions. In the scatter plot, thex-axis represents SD, and they-axis represents
angular position tuning peak. Tuning peaks are summed across SD into the
histogram at theleft. B: curvature in 2-D tuning functions. One cell with a SD
.2.62 is not shown.C: curvature in 4-D tuning functions. Red, green, and blue
represent center, CCW-adjacent, and CW-adjacent curvature segments, respec-
tively. Eleven curvature peaks with SDs.2.62 are not shown.
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and Connor 1999). Also, the definitions of convexity and
concavity depend on the assumption that the stimulus is per-
ceived as figure and the rest of the display screen as ground.

Figure 7C shows the distribution of curvature tuning param-
eters in the 4-D domain, which represents sequences of curva-
ture elements. For each cell, center curvature tuning is repre-
sented by a red dot, CCW curvature tuning by a green dot, and

CW curvature tuning by a blue dot. Tuning peaks for all three
curvature values are summed into the stacked histogram at the
left. The center curvature peaks (red) were again biased toward
sharper convexities. The adjacent curvature peaks included
more broad convex and concave points. SDs for adjacent
curvature (green and blue) were often larger than the sampled
range, indicating weak, shallow tuning. If 0.65 (1⁄2 the sampled

FIG. 8. V4 neuron tuned for broad convex
curvature at the top.A: response pattern.B:
4-D tuning function, with a peak at 100°
(angular position), 0.24 (central curvature),
20.65 (CCW-adjacent curvature), and 0.7
(CW-adjacent curvature). Some anomalously
strong responses inA fall near the edges of
this tuning function (e.g., the crescent-shaped
stimulus in thetop right cornerof the 2 pro-
jection/135° separation block). The correla-
tion coefficient for this tuning function was
0.71. The correlation coefficient based on
edge orientation tuning was 0.13.
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curvature range) is considered as a threshold, there were 97
cells tuned in at least 1 curvature dimension, 49 cells tuned in
at least 2 curvature dimensions, and 16 cells tuned in 3 curva-
ture dimensions. Thus the influence of adjacent boundary ele-
ments varied across cells, but many cells appeared to represent
complex boundary configurations comprising multiple curva-
ture segments. This could be important for encoding relative
positions of adjacent boundary features.

Goodness-of-fit

Goodness-of-fit was assessed by calculating the coefficient
of correlation (r) between neural responses and responses
predicted by the tuning functions (see Fig. 3). The distribution
of r for Gaussian tuning functions on the 2-D curvature3
position domain is shown in Fig. 9A. The fit was significant (F
test,P , 0.01) for 101/109 cells; these cells are plotted with
filled bars. The medianr value was 0.46. The distribution ofr
values for Gaussian functions on the 4-D domain (which rep-
resents sequences of contour elements) is shown in Fig. 9B.
The inclusion of the adjacent curvature dimensions signifi-
cantly improved goodness-of-fit (partialF test,P , 0.01) in
94/109 cases. The medianr value was 0.57. The fit was
significant (F test,P , 0.01) for all but one of the cells. Thus
many cells appear to encode information about more complex
boundary configurations.

We further verified significance of the 4-D Gaussian tuning
functions by randomly dividing the stimuli into two groups,
fitting a 4-D Gaussian function to the training group (compris-

ing 2/3 of the original stimulus set) and using this function to
predict responses to the testing group (the remaining 1/3 of the
stimuli). The median correlation (across cells) between pre-
dicted and observed responses for the testing group was 0.48.
This was similar to the median correlation for the training
group (0.61). Thus the 4-D tuning functions generalize to
stimuli not used in the original fitting procedure.

The example cells in Figs. 2–5 fell in the high end of the Fig.
9B distribution, withr values of 0.82, 0.81, and 0.85, respec-
tively. The Fig. 8 example had anr value of 0.71. Figure 9B
shows that many cells exhibited a significant amount of re-
sponse variance not explained by the Gaussian curvature tun-
ing functions. Three possible sources of variance are consid-
ered below.

Complex tuning functions

One possibility is that responses depend on boundary con-
formation in a more complex way that cannot be captured by
a simple Gaussian surface. In particular, there might be some
interaction, either facilitatory or inhibitory, between different
boundary regions within the object. To assess this possibility
we constructed models based on two Gaussian peaks in the 4-D
curvature3 position space. The amplitude of each Gaussian
could be either positive or negative. The predicted response
was the sum of the responses predicted by each Gaussian
alone. The parameters of both Gaussians were simultaneously
adjusted by nonlinear regression to minimize squared error
between observed and predicted responses.

The addition of the second Gaussian tuning function in-
creased the correlation between neural responses and predicted
responses significantly (partialF test,P , 0.01) for the ma-
jority of cells (80/109). The amplitude of the second Gaussian
was negative in 29/80 cases, suggesting an inhibitory interac-
tion. The average increase inr was moderate (0.07). The
distribution ofr for the two-Gaussian models is shown in Fig.
9C. The medianr value of 0.64 was only slightly higher than
the median of 0.57 for the single Gaussian tuning function.
This result suggests that the single Gaussian tuning functions
described most of the response variation associated with
boundary curvature. However, the two-Gaussian analysis is
just one fairly simple approach, and it may be that another,
more complex analysis would provide a much better descrip-
tion of shape tuning.

Response measurement error

A second possibility is that unexplained variance represents
noise in our response measurements. To explore a greater
region of shape space, we opted for a large number of stimuli
but a small number of repetitions (5). This approach yields
more accurate estimates of overall tuning but less accurate
estimates of the true mean responses to individual stimuli. As
a result, much of the variance in our response patterns may be
due to noise and thus unexplainable. In fact, the standard errors
(SEs) of our mean response estimates tended to be high. For
responses greater than half-maximum, the average SE (across
all stimuli and all cells) was 25.8% of the mean response
estimate. For each stimulus, the expected squared difference
between the estimated mean response and the true mean re-
sponse is SE2. To estimate response variance due to noise for

FIG. 9. Goodness-of-fit. Filled bars indicate significant fits (F test; P ,
0.01). Histograms show distributions ofr values for 2-D boundary conforma-
tion tuning functions (A), 4-D boundary conformation tuning functions (B),
2-Gaussian boundary conformation tuning functions (C), edge orientation
tuning functions (D), edge orientation1 contrast polarity tuning functions (E),
2-D axial orientation3 elongation tuning functions (F), and 3-D axial orien-
tation 3 length 3 width tuning functions (G). In D–G, a small number of
tuning functions with negative correlations between observed and predicted
responses are not represented. InA–C, none of the tuning functions were
associated with negative correlations.
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each cell, we summed the expected squared differences across
stimuli and divided by the number of stimuli. The estimated
noise variance averaged 41.6% of total variance, implying that
a substantial fraction of the variance not captured by boundary
curvature tuning functions was unexplainable. Based on this
estimate, the median 4-D Gaussian tuning function explained
about 55% of the explainable variance (r 5 0.74), and the
median two-Gaussian model explained about 70% of the ex-
plainable variance (r 5 0.84).

Tuning for linear orientation

A third possibility is that some cells are sensitive to other
aspects of shape besides boundary curvature. In particular, it
has been shown that many V4 cells are tuned for linear orien-
tation (Desimone and Schein 1987). We intentionally sampled
cells that appeared more sensitive to complex shape properties
and less sensitive to linear orientation, based on preliminary
tests. It is possible, nevertheless, that some of the shape selec-
tivity we observed reflected standard orientation tuning. We
tested this by using Gaussian functions to describe tuning for
edge orientation and axial orientation.

To test for edge orientation tuning, we first decomposed
each stimulus into component contour segments with relatively
flat curvature (i.e., the broad convex and concave segments;
seeMETHODS). We hypothesized that these relatively flat seg-
ments might drive cells tuned for linear orientation. We fit each
cell’s responses with a 1-D Gaussian on a 0–180° edge orien-
tation domain. The distribution ofr values for these tuning
functions is shown in Fig. 9D. The majority of fits (73/109)
were significant (F test, P , 0.01), but ther values were
generally low (median 0.21). We also tested the possibility that
some cells were sensitive to both orientation and contrast
polarity of edges, by fitting 1-D Gaussians on a 0–360° do-
main. This produced a few more significant fits (90/109) and a
slightly higher medianr value (0.29). The distribution ofr
values is shown in Fig. 9E. There was only one cell for which
the edge-basedr value was higher than the 4-D curvature-
basedr value.

To test for axial orientation tuning, we determined the major
axis and degree of elongation of each shape, using a standard
analogy to mass to sum contributions from all parts of the
shape (seeMETHODS). These numbers are equivalent to orien-
tation and aspect ratio for rectangular bars. We fit responses for
each cell with a 2-D Gaussian tuning function on the orienta-
tion 3 elongation domain. The distribution ofr values for
these fits is shown in Fig. 9F. The majority of fits (78/109)
were significant (F test, P , 0.01), but r values were low
(median 0.24). There was only one cell for which the axial
orientationr value was higher than the 4-D curvature-basedr
value.

We also tested the possibility that cells might be sensitive to
total extent along the main and orthogonal axes (comparable to
bar length and width). We fit 3-D Gaussian tuning functions on
the orientation3 length 3 width domain. The resulting dis-
tribution of r values is shown in Fig. 9G. The majority of fits
were significant (81/109), but the correlation values were low
(median 0.29). There were five cases in which correlation for
3-D axial orientation tuning was higher than correlation for
4-D curvature, but the differences were small (maximum 0.05).

Comparison ofr distributions for boundary conformation

tuning (Fig. 9,A–C) and linear orientation tuning (Fig. 9,D–G)
indicates that boundary configurations consisting of one or
more angles and curves were more relevant for most of the
cells in our sample. This was not simply due to the number of
fitting parameters, since the 2-D curvature fits (based on 5
parameters; Fig. 9A) were better than the 3-D axial orientation
fits (based on 7 parameters; Fig. 9G). The stronger tuning for
boundary conformation is probably specific to the subpopula-
tion of cells that we studied here. In an unbiased sample, a
substantial proportion of V4 cells would show strong tuning for
linear orientation.

D I S C U S S I O N

Position-specific tuning for boundary conformation

Our results indicate that many neurons in area V4 are sen-
sitive to boundary information at a specific position relative to
the object center. For example, a given cell may respond well
to shapes with convex curvature at the right and poorly to
shapes with concave curvature on the right, without being
much affected by other parts of the shape. The effective bound-
ary pattern often comprises a sequence of adjacent curves and
angles. This kind of shape tuning is apparent at a qualitative
level from inspection of response patterns (see, for example,
Figs. 2A, 4A, and 5A). It can also be quantified with Gaussian
tuning functions on a multidimensional curvature3 position
domain (as in Figs. 2B, 3A, 4B, and 5B). These tuning func-
tions seem to be biased toward sharper convex curvature,
although this may reflect our choice of stimuli, and the defi-
nition of convexity depends on an assumption about figure/
ground organization. The specific dimensions that we tested
may not correspond exactly to the underlying dimensionality in
area V4, and our limited stimulus set may have fallen well
outside the true shape-tuning peak for many of the cells we
studied. It seems clear, however, that some cells in area V4
represent complex shape in a parts-based fashion, and that the
relevant parts, for these cells, are contour segments defined by
their conformation and position relative to the rest of the
object. In our experiment, which involved only simple, silhou-
ette-like stimuli, these contour segments always formed part of
the object boundary, but selectivity for contour curvature pre-
sumably extends to internal contours of more complex, realis-
tic objects as well.

To our knowledge, this type of shape coding has not previ-
ously been demonstrated, but the results are consistent with
previous data. Curvature is known to be an important dimen-
sion in area V4 (Gallant et al. 1993, 1996; Kobatake and
Tanaka 1994; Pasupathy and Connor 1999; Wilkinson et al.
2000) and elsewhere in the ventral processing pathway (Dob-
bins et al. 1987; Hegde and Van Essen 2000; Heggelund and
Hohmann 1975; Janssen et al. 1999; Schwartz et al. 1983;
Tanaka et al. 1991; Versavel et al. 1990). Previous work
suggests that some area V4 cells encode feature position in
relation to objects lying wholly or partially outside their clas-
sical receptive fields (CRFs) (Connor et al. 1997; Zhou et al.
2000).

Other sources of response variance

Tuning for local boundary conformation is only one aspect
of shape representation in V4. We specifically sampled cells
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that, in preliminary tests, appeared selective for more complex
shapes rather than oriented bars. Our results therefore apply
only to a subpopulation within area V4. Many V4 cells are
tuned for orientation and other aspects of linearly extended
shape elements (Desimone and Schein 1987; Gallant et al.
1996). Some V4 cells may respond to complex shapes in a
manner more similar to IT neurons (Kobatake and Tanaka
1994). Our stimulus set represents only one class of shape
stimuli (cf. Gallant et al. 1993; Kobatake and Tanaka 1994;
Richmond et al. 1987), and many V4 cells must respond
optimally to objects not represented in our experiment.

Even among the cells we tested, there were clearly other
sources of response variance besides local boundary confor-
mation. A substantial fraction of the remaining variance was
due to noise. Standard error values suggest that this fraction
was 41.6% of total variance on average. In addition, however,
there must have been other shape-related factors affecting the
responses of some cells. Our analysis showed little tuning for
edge and axial orientation. This was not surprising, given our
selective sampling and the nature of the stimulus set. There
may be more complex shape factors that affected responses,
especially interactions between shape elements that could not
be described by Gaussian tuning functions.

In addition, some cells may have been selective along non-
shape dimensions that we did not vary. For example, size is an
important dimension in area V4 (Ghose and Ts’o 1997). The
stimuli in this experiment were designed to be small enough to
fit within the average V4 CRF at the cell’s eccentricity, but our
previous results imply that some V4 cells function to encode
parts of larger shapes extending beyond the CRF (Pasupathy
and Connor 1999). Tuning for binocular disparity (Hinkle and
Connor 2001) and absolute distance (Dobbins et al. 1998) is
also common in V4. The stimuli in this experiment were all
presented at zero disparity and at a distance of 50 cm, which
would be nonoptimum for many cells. We attempted to opti-
mize color, but color and luminance were always uniform
across the shape, whereas many ventral pathway cells appear to
be selective for color gradients and textures within objects
(Hanazawa and Komatsu 2001; Tanaka et al. 1991).

Shape recognition theories

Our data imply that shape representation in area V4 is
distributed, with individual cells encoding smaller parts of
larger objects. This is consistent with shape-processing theo-
ries based on the idea of “recognition by parts” (Biederman
1987; Dickinson et al. 1992; Hoffman and Richards 1984;
Marr and Nishihara 1978; Riesenhuber and Poggio 1999).
According to these theories, shapes are represented as combi-
nations of simpler elements, called features or primitives.
Shape recognition is envisioned as a hierarchical process, with
progressively more complex features at each stage. Local ori-
entation (of edges or medial axes) is considered to be the
primary shape feature at early stages, based on the prevalence
of orientation tuning in areas V1 and V2 (Hubel and Wiesel
1968). The final representation may involve structural descrip-
tions based on volumetric primitives (Biederman 1987; Dick-
inson et al. 1992; Marr and Nishihara 1978) or interpolation
between and alignment with canonical images in memory
(Ullman 1989; Vetter et al. 1995).

The results presented here imply that boundary configura-

tions at specific object-relative positions are important second-
level shape features at intermediate processing stages like area
V4. Of particular significance here is our finding that tuning for
local boundary conformation can remain consistent across a
variety of complex shapes. Thus an individual cell can partic-
ipate in coding local boundary conformation within any num-
ber of shapes. This is an essential characteristic for units in a
parts-based, distributed coding system.

Our results indicate that angles and curves, and combina-
tions of angles and curves, are important boundary features in
area V4. A number of theories posit angles and/or curves as
intermediate shape features (Biederman 1987; Dickinson et al.
1992; Riesenhuber and Poggio 1999). Psychophysical experi-
ments have demonstrated that human observers are highly
sensitive to both angles (Chen and Levi 1996; Heeley and
Buchanan-Smith 1996; Regan et al. 1996) and curvature (Watt
and Andrews 1982; Wilson et al. 1997). Functional imaging
has revealed a strong representation of curvature in human area
V4 (Wilkinson et al. 2000).

In our data, curvature tuning peaks cover the range from
convex to concave, but there appears to be a bias toward sharp
convex curvature. This may be due to the fact that our stimulus
set did not include sharp concave curvature. Moreover, our
definition of convexity depends on the assumption that the
stimulus is perceived as figure and the rest of the display screen
as ground. Our previous results also suggested a bias toward
convexity (again, assuming that the stimulus is perceived as
figure) (Pasupathy and Connor 1999). Theoretical consider-
ations and psychological findings favor the perceptual impor-
tance of convexity. As Hoffman and Richards (1984) pointed
out, concave curvature is more likely to represent joints be-
tween object parts, while convex curvature is more likely to
define the parts themselves. Psychological results support this
postulate, showing that observers tend to parse shapes into
convex elements (Braunstein et al. 1989; Singh et al. 1999).
Convex features also dominate shape similarity and figure/
ground judgments (Kanizsa and Gerbino 1976; Subirana-Vil-
anova and Richards 1996).

Ultimately, signals for the identities and positions of shape
parts must be integrated for recognition to occur. Responses at
later stages of the ventral pathway in IT show a high level of
integration and selectivity for global shape. Cells at these later
stages may synthesize V4 signals that define the curvature and
position of individual boundary segments. Even in V4, how-
ever, we find some indication of integration in progress: many
cells in our study exhibited tuning for multiple adjacent cur-
vature segments. This kind of tuning may reflect gradual syn-
thesis of global shape representations.
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