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Pasupathy, Anitha and Charles E. Connor.Shape representationnot yet understood. One approach to this issue is to elucidate
in area V4: position-specific tuning for boundary conformatidn. the nature of shape representation at intermediate stages in the
Neurophysiol86: 2505-2519, 2001. Visual shape recognition iganiral pathway such as area V4

primates depends on a multi-stage pathway running from primary . .
visual cortex (V1) to inferotemporal cortex (IT). The mechanisms Prior research has shown that, as in areas V1 and V2, cells

by which local shape signals from V1 are transformed into selell @réa V4 can be selective for orientation, length, and width of
tivity for abstract object categories in IT are unknown. One afar stimuli, as well as orientation and spatial frequency of
proach to this issue is to investigate shape representation at ingiratings (Desimone and Schein 1987). In addition, many V4
mediate stages in the pathway, such as area V4. We studied 1090éls are responsive to more complex shapes (Kobatake and
cells that appeared sensitive to complex shape in preliminary testgnaka 1994), and many are sensitive to curvature, as shown
To achieve a more complete picture of shape representation in Vi, 1 eir selective responses to curvilinear gratings (Gallant et

we tested each cell with a set of 366 stimuli, constructed b
systematically combining convex and concave boundary elemefits 1993, 1996). We sought to study these more complex V4

into closed shapes. Using this large, diverse stimulus set, we foulS, and specifically to provide a more complete picture of
that all the cells in our sample responded to a wide variety &0w they function in representing a wide range of shapes.

shapes and did not appear to encode any single type of globallo do so, we created a large set of moderately complex
shape. However, for most cells the shapes evoking strongest §fapes, by systematically combining convex and concave
sponses were characterized by a consistent type of boundary BBundary elements. Our stimulus set design was partly moti-

formation at a specific position within the stimulus. For exampl . : . L
a given cell might be tuned for shapes containing concave cur\(i/a\"’-lted by prior results showing tuning for individual curves and

ture at the right, with other parts of the shape having little or ng'9l€s in area V4 (Pasupathy and Connor 1999). Our scheme
effect on responses. Many cells were tuned for more complé®” combining individual boundary elements into complex
boundary configurations (e.g., a convex angle adjacent to a ca@hesed shapes yielded a total of 366 stimuli. These stimuli
cave curve). We quantified this kind of shape tuning with Gaussiaaried widely in overall shape but also shared common bound-
functions on a curvature< position domain. These tuning func-ary components.

tions fit the neural responses much better than tuning functions\ye sed these stimuli to study 109 V4 cells that appeared to

based on edge or axis orientation. Thus individual V4 cells app . g
to encode moderately complex boundary information at specifi ve complex shape response properties based on preliminary

locations within larger shapes. This finding suggests that, at inté£StS. Each cell in this sample responded to a variety of very
mediate stages in the V1-IT transformation, complex objects agéfferent shapes. No cell displayed a response pattern that
represented at least partly in terms of the configurations asduld be characterized in terms of a single type of global shape.
positions of their contour components. However, for most cells the effective stimuli showed some
degree of shape consistency at one position (relative to the
center of the object). In other words, these cells were tuned for
boundary conformation in one part of the shape. This kind of

The ventral pathway in primate visual cortex is thought to bgosition-specific tuning for boundary conformation was quan-
responsible for shape recognition (Felleman and Van Esd#ied with Gaussian functions on a curvatuxeposition do-
1991; Ungerleider and Mishkin 1982). At early stages in thimain. Many cells were tuned for sequences of two or three
pathway, such as V1, shape is encoded by cells with smalirvature values. The curvature-based tuning functions fit the
receptive fields (RFs) sensitive to simple features like edgeural responses much better than functions based on linear
orientation (Hubel and Wiesel 1968). Cells at the end of threglge or axial orientation (where axial denotes the axis of
pathway in inferotemporal cortex (IT) have large RFs and oftgreatest elongation; se&THobs). The results suggest a parts-
appear selective for abstract object categories like faces drabed representation of complex shape in V4, where the parts
hands. The mechanisms by which local orientation signalsane boundary patterns defined by curvature and position rela-
V1 are transformed into complex object selectivity in IT aréve to the rest of the object.

INTRODUCTION
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2506 A. PASUPATHY AND C. E. CONNOR

METHODS this would have further increased the size of an already large stimulus
) . set, and our previous results had shown a strong bias in V4 toward
Single-cell recording convex contour features (Pasupathy and Connor 1999). The shapes in

) o Fig. 1 constitute a complete combinatorial sampling based on a

We recorded single-cell activity in two female rhesus monkeygmited set of boundary elements and certain geometrical constraints
(Macaca mulatty weighing 7.5 and 5.6 kg, respectively. During(see legend). Obviously, a greater variety of stimuli could be con-
training and recording sessions the animal was seated in front oéteucted by allowing more variation in the curvatures and lengths of
computer monitor at a distance of 50 cm, with the head immobilizeéde boundary elements. The stimuli are arbitrarily arranged into blocks
by means of a custom-built titanium postsurgically attached to tlaecording to number and configuration of convex projections. Stim-
skull with orthopedic screws. The animal was trained to fixate a 0.0fus orientation varies along the rows.
white spot within 0.5° of visual angle for a period of 3.75 s to receive Stimulus size was based on estimated RF size, which in turn was
a juice reward. Eye position was monitored using the scleral seafésed on RF eccentricity. The average RF diameter at a given eccen-
coil method (Robinson 1963). A wire coil was surgically implantedicity was estimated as 1% 0.625 % RF eccentricity, based on a
beneath the conjunctiva of one eye (Judge et al. 1980) and conne&igdly by Gattass et al. (1988). Stimulus size was scaled with eccen-
to a signal converter (Riverbend, Birmingham, AL). The analog signHicity such that the outermost stimulus edges were offset from the RF
from the converter was digitized and sampled at 100 Hz through §fNter by 0.75< estimated RF radius. Thus as a group, the stimuli

A/D interface (BG Systems, Palo Alto, CA) connected to a serial p gvered _the centr_al three-quartere of the average V4 RF diameter. We
of an Indy workstation (Silieon Graph,ics Mountain View, CA). Th ased stimulus size on eccentricity rather than individually measured

workstation was also used for generating visual stimuli F diameter so that the stimulus set would be consistent from cell to

) X . ell. In some cases stimulus size would have been nonoptimum for the
We studied V4 neurons in the lower parafoveal representation on

o . | being studied. Scaling with eccentricity also compensates for
prelunate gyrus and adjoining banks of the lunate and superior tempg[dliry, changes and thus maintains the visibility of the stimuli. Stim-

sulci. Recording locations were based on skull landmarks, respopggs shape remained clearly perceptible at all eccentricities, based on
characteristics, retinotopy, and inferred positions of the sulci. Neuggl; subjective observations. We did not test stimulus size as a variable
activity was recorded with 12pm-diam epoxy-coated tungsten elecin any of our experiments, since smaller stimuli would have been
trodes (A-M Systems, Carlsborg, WA) with impedances of 1-8.M difficult to see, and larger stimuli would have exceeded the RF borders
Electrodes were inserted transdurally through a 5-mm-diam craniotogty many V4 cells. Additional tests in which we varied stimulus
by means of a custom guide tube system. Electrode position was cgosition (see below) verified that response functions did not depend
trolled with a stepping motor microdrive (National Aperture, Salem, NHpn the position of specific features with respect to the RF. Hereinafter,
Electrical waveforms were amplified and filtered, and single units wetieF diameter” and “RF radius” will be used to denote RF diameter
discriminated on the basis of 2 (occasionally 1) independently adjustadied radius estimated on the basis of eccentricity.
time/amplitude windows. The digital output of the window discriminator During each trial, following initiation of fixation and a 250-ms
was collected through the audio input channel of the workstation aPgestimulus interval, five randomly selected stimuli were flashed one
sample rate of 8 kHz. All animal procedures conformed to Nationgf @ time for 500 ms each, with interstimulus intervals of 250 ms.
Institutes of Health and USDA guidelines and were carried out under Aftal trial length was thus 3.75 s. The entire set of 366 stimuli was
institutionally approved animal protocol. sampled W|thqut replacement 5 times for most cells (91/109). There
Each cell was initially characterized with flashing and drifting barg/ere 9 cases in which only 4 repeitions were completed and 9 others
ellipses, and star-shaped stimuli under the experimenter's contfIWhich only 3 repetitions were completed. .
These stimuli were used to find the cell’s RF center and to determinel © Verify that responses did not depend on some specific placement of
an effective stimulus color (used in all subsequent tests). We pRimuli, or parts of stimuli, relative to the RF, we performed post hoc
sented eight colors: red, green, blue, yellow, cyan, magenta, whi@ntrol tests in which selected stimuli, including at least one effective and
and black. Each color was adjusted to an approximate luminance of®t§ inéffective stimulus, were presented at multiple positions. In some
cd/m?, except for blue (15 cd/R) and black, and displayed against &£ases these stimuli were presented in five positions: at the RF center and
background gray of 2.5 cdfmWe also assessed tuning for curves an@ffset to the left, right, above and below by 0.35RF radius. In other
angles (Pasupathy and Connor 1999) and bar orientation. Since G#&€S Stimuli were presented at 25 positions in & 5 square grid
specifically sought to study complex shape representation, and §gptered on the RF, with a spacing of &SRF radius.
complete testing procedure was extremely time-consuming, we fre-
quently bypassed cells that appeared sensitive only to bar orientatiData analysis
We isolated 409 neurons during the course of our experiments. Of ) .
these, we chose 222 for further study based on their responsiveness fdesponse rates were calculated by counting spike occurrences
curves, angles, ellipses or star-shapes during preliminary tests. In #ithin the 500-ms stimulus presentation period. Background response
paper we present results for 109 cells for which we completed at lekes were derived in the same way from null stimulus periods

3 repetitions (usually 5) of the entire stimulus set (S¢ienul). interspersed randomly among stimulus presentations in all tests. Back-
ground rates were low (average, 1.6 spikes/s), and analyses with and

without background subtraction yielded similar results. The results
Stimuli presented here are based on subtraction of average background rate
from the response rate for each repetition of each stimulus.

The stimulus set is shown in Fig. 1. Each stimulus is represented bywe characterized each shape in our stimulus set in terms of its
a white icon positioned within a black disk that represents the celé®@mponent boundary elements (angles and curves). For each bound-
RF. The stimuli were constructed by systematically combining convexy element we determined average curvature, orientation (of the
and concave boundary elements to form closed shapes. These bopedsendicular bisector, a perpendicular line intersecting the boundary
ary elements included sharp convex angles, medium and broad consegment’s midpoint; i.e., the direction in which the angle or curve
curves, and medium and broad concave curves. (Our description legems to point), and position. Curvature was defined as rate of change
assumes that the stimulus is perceived as figure and the rest of itheangent angle (in radians) with respect to contour length (in units of
display screen as ground, so that contour elements projecting outwastimated RF radius). For angles, curvature is infinitely high, so we
from the center of the stimulus are convex and indentations toward theed a squashing function (see below) to map raw curvature values
center are concave.) We did not include sharp concave angles becantgea continuum that would encompass angles. Divisions between
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FiG. 1. Stimulus set. Each stimulus is represented by a white icon drawn within a black circle representing the receptive field
(RF). The stimuli were created by systematically combining convex and concave boundary elements. We defined each shape by
the number and configuration of convex projections it contained. The angular separations between convex projections were
multiples of 45°, with a minimum separation of 90°. The convex projections ended in either sharp anglestitaslirs 1 labeled
with a superscript number) or medium curves with a radius equal t&XG=F radius (as irstimulus 3. They were connected by
concave and convex circular arcs. Stimuli with 2 convex projections are shown lieftidock. The angular separation between
these projections was either 9ady), 135° (niddle), or 180° potton). Each row corresponds to a particular combination of
boundary elements, presented at either 2, 4 or 8 orientations, depending on rotational symmetry. The orientations shown here were
standard, but in some cases the entire set was rotated to match the cell’s tuning for curvature orientation. Stimuli with 3 convex
projections are shown in thmiddle block.The angular separations between these projections were either 90°/90t§05r (
90°/135°/135° lpottorm). Stimuli with 4 convex projections, separated by 90°, are shown irrigie block. We also tested 2
disk-shaped stimulifér right) with radii equal to 0.1875 and 0.78 RF radius, respectively.

contour elements were defined as regions in which the rate of chamgate curvature values would just be represented redundantly. Posi-
in curvature exceeded 40 rad/radiuFhis threshold yielded four to tion was defined as polar angle and radial eccentricity with respect to
eight elements per stimulus. The stimulus shapes were designedht center of mass of the shape.

have four to eight contour segments of relatively constant curvature,Thus each boundary element was characterized by four numbers
and the arbitrary cutoff value of 40 rad/radijast serves to distin (curvature, orientation, angular position, and radial position) and could be
guish these segments. The results accord with subjective impressicoissidered a point in a multidimensional space. Each shape could be
of how many segments each shape has. For example, the star-shapesidered a collection of such points. This provided a metric stimulus
stimulus @ in Fig. 1) consisted of four convex angles (regions oflomain in which we could characterize shape tuning. In practice, we
extremely high curvature) and four intervening concavities (8 bounfibund that two dimensions, curvature and polar angle, were sufficient to
ary elements altogether). Large continuous regions of constant condescribe shape tuning in this experiment (SegJLT9.

curvature (as in the disk stimuli) were divided into 45° sections, sinceFor each cell, we characterized tuning in shape space by deriving
45° was the sampling interval for contour segment orientation, and timeilti-dimensional Gaussian functions based on neural responses.
angular extent of other contour segments was on the order of 4B&sume that each stimulus is represented Fbypoints in ann-
Dividing the shapes into fewer segments would confound multiptimensional shape space,, represents the value of thth stimulus
curvature values and thus reduce the power of the analysis. Divididignension for thgth point. The response function along each dimen-
into more segments would not affect results, since the same apprsioni was fit with a one-dimensional Gaussian with its peaj;and
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2508 A. PASUPATHY AND C. E. CONNOR

a standard deviation @f, The overall response function was fit by thethe P responses associated with its component points (cf. Riesenhuber
product of then Gaussians. Thus the predicted respanisegiven by and Poggio 1999). Thus if a cell were strongly driven by a particular
boundary element, the tuning function would predict high responses to
B T i all shapes containing that element, independent of other stimulus
r=max ke [ [ e 0oz characteristics. Tuning function estimates were similar when pre-
dicted responses were based on the sum of all component responses

wherek represents the amplitude of thedimensional Gaussian. The (2 instead of Ta)(
predicted response to a stimulus wRhpoints was the maximum of  The parameters of the Gaussian tuning function were estimated by

A
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SHAPE REPRESENTATION IN AREA V4 2509

minimizing the sum of squared errors between observed and prediatediments along and¢ + 90°, respectively. The elongati@ranges
values (across all stimuli) using the Gauss-Newton algorithm from 0.0 (for a circular object) to 1.0 (for a line). We described axial
MATLAB (MathWorks, Natick, MA). Since nonlinear regressionorientation tuning with 2-D Gaussian functions on thex e (orien-
solutions can be highly dependent on starting points, we derivition X elongation) domain. We also determined total extent inghe
solutions from multiple starting points uniformly spaced across a grahd ¢ + 90° directions (equivalent to length and width) and fit
in the stimulus domain. The functions that provided the best fits at@ree-dimensional (3-D) Gaussian functions on the orientation
presented here. (For each neuron, the majority of starting poitesgth X width domain.

yielded similar tuning functions.) Goodness-of-fit was assessed by

computing the coefficient of correlation between observed and pre-

dicted responses)( RESULTS

Since curvature has an inverse relationship to radius, absol . . : :
curvature values become extremely high for small radius curvé‘%.SSItlon specific tuning for boundary conformation

Moreover, perceived curvature has to asymptote at radii well below\y/a ;sed the stimulus set shown in Fig. 1 to study 109 area
the acuity threshold, which will be perceived as angles. Therefore\i}}1 e ) -

. neurons that appeared sensitive to complex shape in pre-
our analyses, we replaced absolute curvatoreyith squashed cur- liminary tests. RF epcrt):entricities ranged from 8 Oto6 6pZ° Eapch
vature,c’, based on the following formula y : h g : : : .

neuron responded to a diverse set of shapes. An example is
o 20 10 shown in Fig. A. For each stimulus icon in this figure, the
1+e 7 background gray level indicates response rate averaged across
five repetitions. Response rates ranged fref3 = 0.0 (SE)

0.0 (straight edge) to 1.0 (sharp convex angles). The \allietates sp!kes/s (light gray' below spontane_ous_ rate) to 38.77.0

the slope of the sigmoidal squashing function. In the analyses prRikes/s (black; see scale bar). Stimuli that evoked strong
sented herea was 0.125 and the curvatures sampled in our stimulti§Sponses varied widely in overall structure and included cres-
set ranged from-0.31 to 1.0. As an example, stimulus 1(Fig. 1), cents, triangles, teardrops, and four-pronged shapes. A com-
the curvature of the two sharp convexities was 1.0, the concavity wawn feature of these shapes, however, was the presence of a
—0.31, and the broad convexity was 0.2 stimulus 2the curvature convex projection near the bottom left (relative to the object
of the two medium convexities was 0.75. Analytical results wergenter). Stimuli with a sharp convex angle at this position were
similar witha = 0.075. o particularly effective (e.g.stimuli 1and?2 in the middle col-

We also investigated tuning based on edge orientation, hypothesigsy pottom blockthese stimuli are labeled with superscript

ing that cells might respond to shapes with relatively flat contoWu bers). Stimuli with a medium convex curve evoked mod-
segments at a preferred orientation. For this purpose, we decompose :

the stimuli into component boundary segments with absolute cunfg € resp(f)nses (e.gtlmull 3;;nd4). Thuslt?ls cell appears t.o
ture <6.0 rad/RF radius. This threshold yielded straight edge apprg‘?(UCOde information about the bottom left boundary region,
imations for all boundary segments except the sharp and medifig$ponding well to sharp convexity at this location and poorly
convexities. Edge orientation tuning was described with one-dimeli¢- broad convexity or concavity. B _
sional (1-D) Gaussian functions. As in the boundary curvature mod-These response characteristics were quantified with the
els, the predicted response to a stimulus was the maximum of Baussian tuning function shown in Fig32ZThe domain in this
responses associated with its component boundary segments.  plot has two dimensions: angular position and curvature. In the
We also investigated tuning for axial orientation, i.e., orientation efngular position dimension, 0° corresponds to boundary ele-
the axis of greatest elongation (as in tuning for oriented bars). For thisants on the right-hand side of the shape, 90° corresponds to
purpose, we used a standard analogy to mass, finding the axiyil 1 of the shape, 180° to the left, etc. In the curvature
lowest rotational inertia and determining its orientatiprand elon- dimension, positive \'/alues denote C(,)nvelx curvature. with
ation e (Jahne 1993 ’ ; . T
g € ) larger numbers representing higher (sharper, smaller radius)

Squashed curvature values range freth 0 (sharp concave angles) to

1 2-my curvature, and 1.0 corresponding to convex angles (the limit of
T2 amtanmxx -m, sharp curvature). Negative values represent concave curvature,
2 and 0.0 corresponds to straight lines. The predicted response

€= (M> for each combination of position and curvature is indicated by

Mex + My the height and color of the surface plot. For this cell, the

wherem,,, m,,, andm,,, are the second-order central moments alongest-fitting Gaussian had a peak at 229.6° in the angular
the Cartesian andy axes, anan,,,, andm,,. are second-order central position dimension (bottom left relative to the object center)

FIG. 2. V4 neuron tuned for acute convex curvature at the bottomAeftesponse pattern. The gray level surrounding each
stimulus icon denotes average response (across 5 repetitions) as indicated on the scale bd: &-dghensional (2-D) Gaussian
tuning function. Horizontal axes represent angular position and curvature of boundary elements. Vertical axis and surface color
represent normalized response predicted by the tuning function. To determine the best-fitting function, we first decomposed each
shape into its component boundary elements (curves and anglegsems). The stimulus irA labeled with a red, for example,
was decomposed into 3 sharp convexities and 3 concavities. We characterized each boundary element with 2 numbers, representing
curvature and position. Curvature runs frorll.0 (for sharp concavities) through 0.0 (for straight edges) to 1.0 (for sharp
convexities). The curvature values fetimulus 1were 1.0 for the 3 sharp convex angled).3 for the concavity on the left, and
—0.1 for the 2 broader concavities. We characterized position in terms of polar angle with respect to the object center. The 3 sharp
convexities instimulus lhad polar angle values of Ofight), 135° top lef) and 225° pottom lef}. In this manner, each stimulus
could be represented by a set of points (1 point for each boundary element) on the 2-D domain (curaisiton). We based
the predicted response for each stimulus on whichever of these points corresponded to the highest value in the function. In other
words, we predicted that the response would be determined by the part of the shape closest to the cell’s tuning peak. We used
nonlinear regression (with multiple starting points) to find the best-fitting Gaussian function (i.e., the function that minimized the
sum of squared errors between predicted and observed responses).
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2510 A. PASUPATHY AND C. E. CONNOR

and 1.0 in the curvature dimension (sharp convex). The stgpeak in these two dimensions still corresponds to sharp con-
dard deviation in the angular position dimension was 26.A%exity (1.0) near the bottom left (230.0°). The rows and col-
implying that the cell was sensitive to convexity within aimns of plots represent the other two dimensions. The rows
relatively narrow range of positions. The standard deviation @orrespond to different values for CW-adjacent curvature, and
the curvature dimension was 0.42, indicating responsivenesstte columns correspond to different values of CCW-adjacent
a range of convex curvatures. Thus the tuning function indiurvature. This cell exhibited strong tuning for concave CCW
cates that this cell represents convex curvature in the botteorvature, with a peak at0.15 (2nd column; SD in this
left boundary region. dimension was 0.21). There was no strong tuning for CW
Figure 2A shows that the most effective stimuli containe@durvature, as shown by the similarity of tuning surfaces across
not just a convexity at the bottom left but also a concavity abws. Thus the 4-D tuning function indicates that this cell was
the bottom; i.e., adjacent in the counterclockwise (CCW) diesponsive to shapes containing sharp convex curvature at the
rection (e.g.stimuli 1and?2). Stimuli that instead contained abottom left flanked by concave curvature at the bottom.
CCW:-adjacent convexity evoked much weaker responses (e.gGoodness-of-fit for these tuning functions is represented by
stimuli 58 in the middle column, top blogk In other words, the scatter plots in Fig. B For each stimulus, the average
this cell was tuned for boundary configurations comprisingeural response is plotted against the response predicted by the
more than one curvature element. 2-D (left) or 4-D (right) Gaussian function. The vertical band-
This slightly more complex tuning pattern is represented ing in these plots is due to the fact that groups of stimuli shared
Fig. 3A. Here, the stimulus domain has four dimensions, aamilar boundary patterns and thus similar predicted response
follows. Each individual surface plot represents the same twalues. The correlation between neural responses and predicted
dimensions as in Fig.&2 angular position and curvature. Theresponses appears stronger in the 4-D plot, and this difference

A CCW-Adjacent Curvature
0.25

FIG. 3. A: 4-D Gaussian tuning function.
The 4-D domain represents curvatures and po-
lar angle position for sequences of 3 boundary
elements. Each surface plot represents a 2-D
slice through the 4-D stimulus domain. Within
each surface plot, horizontal axes represent an-
gular position and curvature of the central
boundary element. Rows of surface plots rep-
resent different clockwise (CW)-adjacent cur-
vatures and columns represent counterclock-
wise (CCW)-adjacent curvatures. The specific
slice positions on the CW-adjacent and CCW-
adjacent curvature dimensions were chosen to
highlight the tuning range in those dimensions.
Vertical axes and surface color represent nor-
malized predicted response. Each stimulus has
the same number of points as in the 2-D do-
main, one for each boundary element, but the

Py > T60270%0  extra dimensions add information about adja-
Cl/,‘.,:"fs,- aler? reguarPest  cent elementsStimulus 1from Fig. 2, for ex-
e e ample, is represented by 6 points: 3 concave/
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is reflected by the correlation coefficients: 0.70 for the 2-DBoundary pattern but otherwise equivalent in shapston).
function and 0.82 for the 4-D function. (The correlation bewe presented each stimulus at 25 positions arranged iixa 5
tween predicted responses based on this cell's edge orientabagrid centered on the RF, with a spacing of & RF radius.
tuning function and observed neural responses was 0.25; $be star-shaped stimulus evoked strong responses at multiple
Tuning for linear orientatior) A partial F test showed that positions, while the other stimulus never evoked a strong
CCW curvature had a significant effect on respondes<( response. We performed similar tests on 33 cells in our sample.
0.01). Thus the 4-D tuning function, which represents complés expected, given the limited size of V4 RFs, responses were
local boundary configurations, provides a better description bt invariant with position. In all cases, however, the stimulus
the responses. containing the critical boundary pattern evoked the strongest

Even the 4-D scatter plot, however, still shows substantisdsponse across positions.
variation not explained by the Gaussian tuning function. This We performed other post hoc tests in which we varied the
variation may represent some combinatioripfore complex position of the critical boundary pattern relative to the rest of
boundary conformation tuning not captured by a simple Gaudke object. The results of this test for the Fig. 5 cell are shown
ian function, 2) sensitivity to other shape factors besidem Fig. 6B. We tested teardrop-shaped stimuli in which we
boundary conformation, ang) noise, due to our limited sam- varied1) the orientation of the convex projectioleft, middle,
ple of five repetitions of each stimulus. These issues are furtteerd right blocks in Fig. 6B), 2) the length of the convex
addressed below. In any case, the boundary conformation iprajection in the direction parallel to its orientationos
specific region of the object (bottom left and bottom) is clearlyithin eachblock), and 3) the offset of the convex projection
a major determinant of this cell's responses to complex shapisthe direction orthogonal to its orientationojumnswithin

Another example is shown in Fig. 4. This cell was sensitiveachblocK. Figure @ shows that the cell responded best to
to boundary conformation on the right side of the objecshapes that contained a sharp convexity near the top right
responding best to concave curvature at that position. This(islative to the object center). As a result, somewhat surpris-
exemplified bystimuli 1 and2 in the middle column, bottom ingly, the optimum orthogonal offset changed with the orien-
block of Fig. 4A. Stimulus 1,with a concavity at the right, tation of the convex projection. As orientation rotated CCW
evoked a stronger respon&timulus 2is almost identical, but (blocks left to right), optimum orthogonal offset shifted in the
with a convexity at the right, and it evoked no response. Tlgpposite direction.

4-D curvature tuning function for this cell is shown in Fi®3.4  We performed equivalent tests on 29 cells tuned for sharp
The Gaussian peak for the center boundary elementi9a&9 convexity (adjusting for optimum convex projection orienta-
(concave) and 6.3° (to the right of the object center; the peti&n of the individual cell). The majority of these cells showed
is artifactually split along the angular position dimension). Tha similar interaction between orientation and orthogonal offset.
cell also appears to be tuned for sharper convexities at fheo-factor ANOVA (orientationX offset) indicated a signif-
CCW:-adjacent position (peak curvaturel.0, SD= 0.33) and icant (P < 0.05) interaction effect for 26/29 cells. For these 26
medium convexities at the CW-adjacent position (peak curveells, we measured direction of shift in optimum offset by
ture = 0.70, SD= 0.66). This combination is exemplified byregressing optimum offset on orientation. In 23 cases, the
stimulus 3in Fig. 4A, which evoked a stronger response. Theegression line sloped in the same direction as for the cell in
opposite combination (sharp CW and medium CCW) is exerfig. 6B. In other words, for these 23 cells, the optimum offset
plified by stimulus 4 which evoked a weaker response. (Conshifted opposite to orientation, so that the position of the
pare alsoshapes 5and 6, and similar pairs throughout theconvex extremity remained similar. This analysis suggests that
stimulus set.) However, stimuli with two sharp adjacent cuthe position of contour elements relative to the object center is
vatures or two medium adjacent curvatures also producad important tuning dimension for these cells.

stronger responses (e.gstimuli 7 and 8). The correlation  In addition, we fit the observed responses with 1-D Gaussian
coefficient for the 4-D Gaussian tuning function was 0.81. THanctions on the angular position domain and on the orthogonal
correlation coefficient based on edge orientation tuning waffset domain. This analysis was limited to stimuli with the
0.38. longest convex projections (in thieottom row of Fig. 6B),

A third example is shown in Fig. 5. This cell was sensitiveince these produced the strongest responses. The effects of
to boundary conformation at the top right, responding best doientation were partitioned out by normalizing responses to an
sharp convexity, especially when flanked by a concavity @verage value of 1.0 within each orientation block. For the cell
one side or the other. The tuning function in Fi@® Eeflects in Fig. 6B, observed responses were more highly correlated
this response pattern, with a center curvature peak at 1.0 (shaiih predicted responses based on angular position of the
convex) and 44°top right). Tuning for adjacent concavitiesconvex extremity = 0.72) than with predicted responses
was strong, with a CW-adjacent peak-a0.13 (SD= 0.19) based on orthogonal offsat & 0.08). Correlation was higher
and a CCW-adjacent peak at0.21 (SD= 0.31). The corre- for angular position in 20/29 cells. Median correlation was 0.61
lation coefficient for the 4-D Gaussian was 0.85. The correlfor angular position and 0.23 for orthogonal offset. These
tion coefficient based on edge orientation tuning was 0.31. results further support the significance of relative position as a

To ensure that these response patterns did not result framing dimension for V4 cells.
differential stimulation of a RF hotspot (or some other mech-
anism related to absolute position), we tested shape tuningh@dribution of tuning parameters
multiple positions. The position test for the Fig. 5 cell is shown
in Fig. 6A. We selected two stimuli based on the original test, Each cell in our sample responded to a variety of shapes, as
one containing the boundary pattern that drove the cell (tireFigs. 2, 4, and 5, with strong activity distributed across the
star-shaped stimulus, FigA6 top and another without this 3 major stimulus categories in Fig. 1, i.e., stimuli with 2, 3, and
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4 convex projections. There were only 2 cases in whidkerized their responses in terms of tuning for local boundary
responses greater than half-maximum were restricted to jgsinformation.

one category, and only 17 cases in which responsés% We fit Gaussian tuning functions on the 2-D and 4-D bound-
of maximum were restricted to one category. Thus moaty curvatureX position domains for all 109 cells in our
cells responded to a diverse set of stimuli, including esample. We also fit tuning functions on domains that included
lipses, crescents, teardrops, stars, etc. They were not setgher dimensions (in addition to curvature and position), spe-
tive for a single type of global shape. We therefore characHically boundary element orientation (the direction in which
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the angle or curve seems to point) and radial position (witklative importance of angular position and boundary element
respect to the object center). These dimensions would téentation. However, post hoc tests (see FB). Gemonstrated

important for complete descriptions of some shapes, but in dhat tuning for angular position generalized across boundary
stimulus set they were superfluous. Boundary element orieslement orientation. Radial position, for any given curvature
tation was usually equivalent to angular position (i.e., mostpe, was fairly standard across stimuli, and parkatests

curves were pointed outward from the center) and hence nedicated that including radial position as a stimulus dimension
dundant. As a result, we could not completely distinguish tltéd not substantially improve goodness-of-fit in most cases.
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the curvature dimension for the 2-D fits. The 2-D fitting pro-

A

- @ cedure provides a better estimate of which single curvature
lzo% type had the greatest effect on responses. Curvature tuning
. 3 peaks are represented on the vertical axis and summarized in
- ® the histogram at théeft. The distribution covers the entire

f g range of concave and convex curvatures, but there is a stronger
-10 5 representation of sharper convexities, in the 0.5 to 1.0 range,
- 2 which includes cells like those in Figs. 2 and 5. A smaller

_ @ number of cells was tuned for concavities, in the negative
- § curvature range, like the example cell in Fig. 4. (Peak positions

-0 below the range of curvatures actually tested, i.e., less than
—0.31, signify that neural responses were best fit by the flank
of an off-center Gaussian.) Other cells were tuned for broad
convexity, in the 0.0 to 0.25 range. The example cell in Fig. 8
fell within this range, responding to broad convex curvature at
angular positions near 90°. SDs were large in some cases but
covered less than one-half the sampled curvature range (i.e.,
<0.65) for the majority of cells (87/109). The distribution of
curvature tuning peaks may be influenced by the fact that sharp
concavities were not represented in our stimulus set. However,
previous results with a stimulus set that included sharp con-
cavities also showed a strong bias toward convexity (Pasupathy
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FIG. 6. A: position test. Surrounding gray levels denote average re- 1 e
sponses to an optimuntop) and nonoptimum Kotton) stimulus, both o
shown in black ateft, presented at 25 positions on @65 grid centered 3 0.5
on the RF center. Stimulus size was the same as in the primary test (Fig. g o
5A). In this plot, the background circles are larger than the estimated RF. &5 005 s o
B: boundary element position test. The basic stimulus was the teardrop © O
shape from the main stimulus set. The orientation and relative position of ﬁ 05 ;
the effective boundary element (the convex angle) were systematically g ’
varied, as shown by the stimulus icons. Response rates are indicated by
surrounding gray levels. 30 15 262
For these reasons, we have focused our discussion on the 9
curvaturex position domain. =
Figure A shows the distribution of tuning peaks and SDsin @ -
the angular position dimension (for the 4-D Gaussian fits). The 5: o
distribution of tuning peaks is represented on the vertical axis < -
and summarized by the histogram at te# of the scatter plot. § R .
This distribution was not significantly different from a uniform | 4 25" ssi )
distribution P = 0.79) according to a Monte Carlo version of 50 25 0 o0 1.31 2.62
Kuiper’s test (a circular Kolmogorov-type analysis) (Mardia Number of Cells Standard Deviation

1972; PaSU_p_athy and Connor 1999). Thus the full range ofic. 7. Distribution of tuning parametera: angular position in 4-D tuning
angular positions seems to be represented by our sample offifftions. In the scatter plot, theaxis represents SD, and thexis represents
cells. SDs are shown on the horizontal axis. In most cas@gular position tuning peak. Tuning peaks are summed across SD into the

0 indinati .. _histogram at théeft. B: curvature in 2-D tuning functions. One cell with a SD
(86/109) SDs were<90°, indicating that V4 cells are SenSItIVe>2.62 is not shownC: curvature in 4-D tuning functions. Red, green, and blue

to boundary conformation at fairly restricted locations. represent center, CCW-adjacent, and CW-adjacent curvature segments, respec-
Figure B shows the distribution of tuning peaks and SDs ifively. Eleven curvature peaks with SDs2.62 are not shown.
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and Connor 1999). Also, the definitions of convexity an@W curvature tuning by a blue dot. Tuning peaks for all three

concavity depend on the assumption that the stimulus is petrvature values are summed into the stacked histogram at the
ceived as figure and the rest of the display screen as groumeft. The center curvature peaks (red) were again biased toward
Figure TT shows the distribution of curvature tuning paramsharper convexities. The adjacent curvature peaks included

eters in the 4-D domain, which represents sequences of curiare broad convex and concave points. SDs for adjacent

ture elements. For each cell, center curvature tuning is repcervature (green and blue) were often larger than the sampled

sented by a red dot, CCW curvature tuning by a green dot, arahge, indicating weak, shallow tuning. If 0.6% the sampled
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FIG. 8. V4 neuron tuned for broad convex
curvature at the topA: response patterrB:
4-D tuning function, with a peak at 100°
(angular position), 0.24 (central curvature),
—0.65 (CCW-adjacent curvature), and 0.7
(CW-adjacent curvature). Some anomalously
strong responses IA fall near the edges of
this tuning function (e.g., the crescent-shaped
stimulus in thetop right cornerof the 2 pro-
jection/135° separation block). The correla-
tion coefficient for this tuning function was
0.71. The correlation coefficient based on
edge orientation tuning was 0.13.
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curvature range) is considered as a threshold, there wereif®y 2/3 of the original stimulus set) and using this function to
cells tuned in at least 1 curvature dimension, 49 cells tunedpredict responses to the testing group (the remaining 1/3 of the
at least 2 curvature dimensions, and 16 cells tuned in 3 curnaiimuli). The median correlation (across cells) between pre-
ture dimensions. Thus the influence of adjacent boundary etlicted and observed responses for the testing group was 0.48.
ments varied across cells, but many cells appeared to repreddns was similar to the median correlation for the training
complex boundary configurations comprising multiple curvagroup (0.61). Thus the 4-D tuning functions generalize to
ture segments. This could be important for encoding relatigmuli not used in the original fitting procedure.

positions of adjacent boundary features. The example cells in Figs. 2-5 fell in the high end of the Fig.
9B distribution, withr values of 0.82, 0.81, and 0.85, respec-
Goodness-of-fit tively. The Fig. 8 example had anvalue of 0.71. Figure B

shows that many cells exhibited a significant amount of re-
Goodness-of-fit was assessed by calculating the coefficisppnse variance not explained by the Gaussian curvature tun-
of correlation () between neural responses and responsag functions. Three possible sources of variance are consid-
predicted by the tuning functions (see Fig. 3). The distributicgred below.
of r for Gaussian tuning functions on the 2-D curvatute
position domain is shown in Fig A The fit was significantR Complex tuning functions
test,P < 0.01) for 101/109 cells; these cells are plotted with
filled bars. The median value was 0.46. The distribution of ~ One possibility is that responses depend on boundary con-
values for Gaussian functions on the 4-D domain (which refsrmation in a more complex way that cannot be captured by
resents sequences of contour elements) is shown in Big. @& simple Gaussian surface. In particular, there might be some
The inclusion of the adjacent curvature dimensions signifateraction, either facilitatory or inhibitory, between different
cantly improved goodness-of-fit (partigltest,P < 0.01) in boundary regions within the object. To assess this possibility
94/109 cases. The medianvalue was 0.57. The fit was we constructed models based on two Gaussian peaks in the 4-D
significant £ test,P < 0.01) for all but one of the cells. ThuscurvatureX position space. The amplitude of each Gaussian
many cells appear to encode information about more complesuld be either positive or negative. The predicted response
boundary configurations. was the sum of the responses predicted by each Gaussian
We further verified significance of the 4-D Gaussian tuninglone. The parameters of both Gaussians were simultaneously
functions by randomly dividing the stimuli into two groupsadjusted by nonlinear regression to minimize squared error
fitting a 4-D Gaussian function to the training group (comprigetween observed and predicted responses.
The addition of the second Gaussian tuning function in-

Boundary Conformation Tuning Functions creased the correlation between neural responses and predicted
4 e 1 40 responses significantly (parti&l test,P < 0.01) for the ma-
A B C jority of cells (80/109). The amplitude of the second Gaussian
20 20 20 was negative in 29/80 cases, suggesting an inhibitory interac-
tion. The average increase inwas moderate (0.07). The
° 0 o/ distribution ofr for the two-Gaussian models is shown in Fig.
g e i 0 L LA & 1 9C. The mediarr value of 0.64 was only slightly higher than
o Edge Orientation Tuning Functions the median of 0.57 for the single Gaussian tuning function.
g “ D 40 E This result suggests that the single Gaussian tuning functions
- described most of the response variation associated with
° » 20 boundary curvature. However, the two-Gaussian analysis is
3 just one fairly simple approach, and it may be that another,
E 8 i | more complex analysis would provide a much better descrip-
z 0 0.5 1 0 0.6 1

tion of shape tuning.

Axial Orientation Tuning Functions
40 407

E G Response measurement error
20 20 A second possibility is that unexplained variance represents
noise in our response measurements. To explore a greater
" - region of shape space, we opted for a large number of stimuli
0 05 10 0.5 1 but a small number of repetitions (5). This approach yields
Goodness of Fit (Coefficient of Correlation) more accurate estimates of overall tuning but less accurate

o o o ) estimates of the true mean responses to individual stimuli. As

FIG. 9.' Goodness-of-flt_. F!Iled' bars indicate significant fistést; P < a result, much of the variance in our response patterns may be
0.01). Histograms show distributions of/alues for 2-D boundary conforma- . .
tion tuning functions 4), 4-D boundary conformation tuning functionB)( due to noise and thus unexplamable. In fact, the Standarq errors
2-Gaussian boundary conformation tuning functio®, (edge orientation (SES) of our mean response estimates tended to be high. For
tuning functions D), edge orientatior+ contrast polarity tuning function&f, responses greater than half-maximum, the average SE (across
2-D axiallorier;]tationﬁ r(?Iongatiolp tuning fl(JGr)]CtiOHQ:O, and 3—D”axial l;)rien;c all stimuli and all cells) was 25.8% of the mean response
tation X length X width tuning functions @). In D-G, a small number o : : :
tuning functions with negative correlations between observed and predic%ﬁtlmate' For ea.Ch stimulus, the exPeCtEd squared difference
responses are not represented.ARC, none of the tuning functions were D€tween the estimated mean response and the true mean re-
associated with negative correlations. sponse is SE To estimate response variance due to noise for
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each cell, we summed the expected squared differences actoamg (Fig. 9,A—C) and linear orientation tuning (Fig. B-G)
stimuli and divided by the number of stimuli. The estimatethdicates that boundary configurations consisting of one or
noise variance averaged 41.6% of total variance, implying thabre angles and curves were more relevant for most of the
a substantial fraction of the variance not captured by boundamils in our sample. This was not simply due to the number of
curvature tuning functions was unexplainable. Based on tliiging parameters, since the 2-D curvature fits (based on 5
estimate, the median 4-D Gaussian tuning function explainpdrameters; Fig.A) were better than the 3-D axial orientation
about 55% of the explainable variance € 0.74), and the fits (based on 7 parameters; Figs)9 The stronger tuning for
median two-Gaussian model explained about 70% of the ébeundary conformation is probably specific to the subpopula-

plainable variancer(= 0.84). tion of cells that we studied here. In an unbiased sample, a
substantial proportion of V4 cells would show strong tuning for
Tuning for linear orientation linear orientation.

A third possibility is that some cells are sensitive to othe§|scussion
aspects of shape besides boundary curvature. In particular, it . . _ )
has been shown that many V4 cells are tuned for linear oridh@Sition-specific tuning for boundary conformation

tation (Desimone and Schein 1987). We intentionally sampledoyr results indicate that many neurons in area V4 are sen-
cells that appeared more sensitive to complex shape proper§gige to boundary information at a specific position relative to
and less sensitive to linear orientation, based on prelimingpg object center. For example, a given cell may respond well
tests. It is possible, nevertheless, that some of the shape selgcshapes with convex curvature at the right and poorly to
tivity we observed reflected standard orientation tuning. Wehapes with concave curvature on the right, without being
tested this by using Gaussian functions to describe tuning f@iich affected by other parts of the shape. The effective bound-
edge orientation and axial orientation. . ary pattern often comprises a sequence of adjacent curves and
To test for edge orientation tuning, we first decomposeghgles. This kind of shape tuning is apparent at a qualitative
each stimulus into component contour segments with relativeie| from inspection of response patterns (see, for example,
flat curvature (i.e., the broad convex and concave segmemtgjs. 2, 4A, and 5). It can also be quantified with Gaussian
seemeTHops). We hypothesized that these relatively flat seguning functions on a multidimensional curvatuxe position
ments might drive cells tuned for linear orientation. We fit eaGomain (as in Figs. B, 3A, 4B, and B). These tuning func-
cell's responses with a 1-D Gaussian on a 0-180° edge origgns seem to be biased toward sharper convex curvature,
tation domain. The distribution of values for these tuning zithough this may reflect our choice of stimuli, and the defi-
functions is shown in Fig. B. The majority of fits (73/109) nition of convexity depends on an assumption about figure/
were significant  test, P < 0.01), but ther values were ground organization. The specific dimensions that we tested
generally low (median 0.21). We also tested the possibility thgfay not correspond exactly to the underlying dimensionality in
some cells were sensitive to both orientation and contragea v4, and our limited stimulus set may have fallen well
polarity of edges, by fitting 1-D Gaussians on a 0-360° d@ytside the true shape-tuning peak for many of the cells we
main. This produced a few more significant fits (90/109) andsgydied. It seems clear, however, that some cells in area V4
slightly higher mediarr value (0.29). The distribution of represent complex shape in a parts-based fashion, and that the
values is shown in Fig.B There was only one cell for which relevant parts, for these cells, are contour segments defined by
the edge-based value was higher than the 4-D curvaturetheir conformation and position relative to the rest of the
basedr value. . . _object. In our experiment, which involved only simple, silhou-
To test for axial orientation tuning, we determined the maj@fite-like stimuli, these contour segments always formed part of
axis and degree of elongation of each shape, using a standgedobject boundary, but selectivity for contour curvature pre-
analogy to mass to sum contributions from all parts of thgmably extends to internal contours of more complex, realis-
shape (se#eTHoDs). These numbers are equivalent to orienjc objects as well.
tation and aspect ratio for rectangular bars. We fit responses fofrg our knowledge, this type of shape coding has not previ-
each cell with a 2-D Gaussian tuning function on the orientgysly been demonstrated, but the results are consistent with
tion X elongation domain. The distribution of values for previous data. Curvature is known to be an important dimen-
these fits is shown in Fig.Fa The majority of fits (78/109) sjon in area V4 (Gallant et al. 1993, 1996; Kobatake and
were significant k test, P < 0.01), butr values were low Tanaka 1994; Pasupathy and Connor 1999; Wilkinson et al.
(median 0.24). There was only one cell for which the axiglpoo) and elsewhere in the ventral processing pathway (Dob-
orientationr value was higher than the 4-D curvature-basedpins et al. 1987: Hegde and Van Essen 2000; Heggelund and
value. Hohmann 1975; Janssen et al. 1999; Schwartz et al. 1983;
We also tested the possibility that cells might be sensitive {@naka et al. 1991: Versavel et al. 1990). Previous work
total extent along the main and orthogonal axes (comparablest@ygests that some area V4 cells encode feature position in
bar length and width). We fit 3-D Gaussian tuning functions o#|ation to objects lying wholly or partially outside their clas-

the orientationx length X width domain. The resulting dis- sjcal receptive fields (CRFs) (Connor et al. 1997; Zhou et al.
tribution of r values is shown in Fig.®. The majority of fits 2000).

were significant (81/109), but the correlation values were low
(median 0.29). There were five cases in which correlation feft
3-D axial orientation tuning was higher than correlation for
4-D curvature, but the differences were small (maximum 0.05). Tuning for local boundary conformation is only one aspect
Comparison ofr distributions for boundary conformationof shape representation in V4. We specifically sampled cells

her sources of response variance

J Neurophysiof vOL 86 « NOVEMBER 2001 WWW.jN.Org

Downloaded from journals.physiology.org/journal/jn at UB Marburg (137.248.041.124) on July 22, 2022.



2518 A. PASUPATHY AND C. E. CONNOR

that, in preliminary tests, appeared selective for more complgans at specific object-relative positions are important second-
shapes rather than oriented bars. Our results therefore agplel shape features at intermediate processing stages like area
only to a subpopulation within area V4. Many V4 cells ar&4. Of particular significance here is our finding that tuning for
tuned for orientation and other aspects of linearly extend&gtal boundary conformation can remain consistent across a
shape elements (Desimone and Schein 1987; Gallant etvalriety of complex shapes. Thus an individual cell can partic-
1996). Some V4 cells may respond to complex shapes irnipate in coding local boundary conformation within any num-
manner more similar to IT neurons (Kobatake and Tanaker of shapes. This is an essential characteristic for units in a
1994). Our stimulus set represents only one class of sha@ets-based, distributed coding system.
stimuli (cf. Gallant et al. 1993; Kobatake and Tanaka 1994; Our results indicate that angles and curves, and combina-
Richmond et al. 1987), and many V4 cells must resporibns of angles and curves, are important boundary features in
optimally to objects not represented in our experiment. area V4. A number of theories posit angles and/or curves as
Even among the cells we tested, there were clearly othiatermediate shape features (Biederman 1987; Dickinson et al.
sources of response variance besides local boundary confi#92; Riesenhuber and Poggio 1999). Psychophysical experi-
mation. A substantial fraction of the remaining variance waments have demonstrated that human observers are highly
due to noise. Standard error values suggest that this fracteensitive to both angles (Chen and Levi 1996; Heeley and
was 41.6% of total variance on average. In addition, howev@&uychanan-Smith 1996; Regan et al. 1996) and curvature (Watt
there must have been other shape-related factors affectingdahd Andrews 1982; Wilson et al. 1997). Functional imaging
responses of some cells. Our analysis showed little tuning foas revealed a strong representation of curvature in human area
edge and axial orientation. This was not surprising, given owd (Wilkinson et al. 2000).
selective sampling and the nature of the stimulus set. Therdn our data, curvature tuning peaks cover the range from
may be more complex shape factors that affected responses)vex to concave, but there appears to be a bias toward sharp
especially interactions between shape elements that could ocmtvex curvature. This may be due to the fact that our stimulus
be described by Gaussian tuning functions. set did not include sharp concave curvature. Moreover, our
In addition, some cells may have been selective along natefinition of convexity depends on the assumption that the
shape dimensions that we did not vary. For example, size isgtimulus is perceived as figure and the rest of the display screen
important dimension in area V4 (Ghose and Ts'o 1997). Tlas ground. Our previous results also suggested a bias toward
stimuli in this experiment were designed to be small enough¢onvexity (again, assuming that the stimulus is perceived as
fit within the average V4 CRF at the cell’'s eccentricity, but ouigure) (Pasupathy and Connor 1999). Theoretical consider-
previous results imply that some V4 cells function to encodsions and psychological findings favor the perceptual impor-
parts of larger shapes extending beyond the CRF (Pasupatmyce of convexity. As Hoffman and Richards (1984) pointed
and Connor 1999). Tuning for binocular disparity (Hinkle andut, concave curvature is more likely to represent joints be-
Connor 2001) and absolute distance (Dobbins et al. 1998)tigeen object parts, while convex curvature is more likely to
also common in V4. The stimuli in this experiment were allefine the parts themselves. Psychological results support this
presented at zero disparity and at a distance of 50 cm, whipbstulate, showing that observers tend to parse shapes into
would be nonoptimum for many cells. We attempted to optconvex elements (Braunstein et al. 1989; Singh et al. 1999).
mize color, but color and luminance were always unifor@onvex features also dominate shape similarity and figure/
across the shape, whereas many ventral pathway cells appeagreand judgments (Kanizsa and Gerbino 1976; Subirana-Vil-
be selective for color gradients and textures within objecésova and Richards 1996).

(Hanazawa and Komatsu 2001; Tanaka et al. 1991). Ultimately, signals for the identities and positions of shape
parts must be integrated for recognition to occur. Responses at
Shape recognition theories later stages of the ventral pathway in IT show a high level of

integration and selectivity for global shape. Cells at these later

Our data imply that shape representation in area V4 stages may synthesize V4 signals that define the curvature and
distributed, with individual cells encoding smaller parts oposition of individual boundary segments. Even in V4, how-
larger objects. This is consistent with shape-processing thewer, we find some indication of integration in progress: many
ries based on the idea of “recognition by parts” (Biedermarells in our study exhibited tuning for multiple adjacent cur-
1987; Dickinson et al. 1992; Hoffman and Richards 1984ature segments. This kind of tuning may reflect gradual syn-
Marr and Nishihara 1978; Riesenhuber and Poggio 199®)esis of global shape representations.
According to these theories, shapes are represented as combi-
nations of simpler elements, called features or primitives.We thank S. Brincat, P. Fitzgerald, D. Hinkle, S. Hsiao, K. Johnson, R.

L . .. . . Rasupathy, G. Poggio, and R. von der Heydt for comments and suggestions.
Shape recognition is envisioned as a hierarchical process, vql@ihﬁicalyassistangcge was provided by B. ,\ﬁ'ash and B. Sorenson. 99

progr_essively more comple>_< features at eaCh. stage. Local Orirhis work was supported by National Institute of Neurological Disorders
entation (of edges or medial axes) is considered to be thel Stroke Grant NS-38034 and by the Pew Scholars Program in the Biomed-

primary shape feature at early stages, based on the prevald¢fté&ciences.

of orientation tuning in areas V1 and V2 (Hubel and Wiesel

1968). The final representation may involve structural descriB'—EFERE'\ICES

tions based on volumetric primitives (Biederman 1987; DickBiepberman I. Recognition-by-components: a theory of human image under-
inson et al. 1992; Marr and Nishihara 1978) or interpolation Standing.Psychol Rew4: 115-147, 1987.
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