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Summary
Humans and other primates rely on vision. Our visual system endows us with the ability to perceive, recognize, and 
manipulate objects, to avoid obstacles and dangers, to choose foods appropriate for consumption, to read text, and 
to interpret facial expressions in social interactions. To support these visual functions, the primate brain captures a 
high-resolution image of the world in the retina and, through a series of intricate operations in the cerebral cortex, 
transforms this representation into a percept that reflects the physical characteristics of objects and surfaces in the 
environment. To construct a reliable and informative percept, the visual system discounts the influence of 
extraneous factors such as illumination, occlusions, and viewing conditions. This perceptual “invariance” can be 
thought of as the brain’s solution to an inverse inference problem in which the physical factors that gave rise to the 
retinal image are estimated. While the processes of perception and recognition seem fast and effortless, it is a 
challenging computational problem that involves a substantial proportion of the primate brain.
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Signal Transformations Along the Object-Processing Pathway

When we look at a complex visual scene, its image is encoded in the activity patterns of retinal 
cells as a fine-grained representation of local contrast. This representation is highly dependent 
on viewing conditions (e.g., the position and pose of objects in the scene, the viewing distance, 
the plane of focus) and on extraneous factors, including occlusions and illumination conditions. 
The retinal image is transformed via successive stages of cortical processing along the object- 
processing pathway (also ventral, temporal, or “what” pathway). In the primate brain, this 
pathway runs from V1 through areas V2 and V4, terminating in subregions of the 
inferotemporalcortex (IT) (Figure 1) (Felleman & Van Essen, 1991). The transformed visual 
representations along this pathway are thought to facilitate the parsing of visual scenes into 
component objects and regions and to mediate our perception of scenes by signaling the identity 
of these components and their spatial relationships (Felleman & Van Essen, 1991; Logothetis & 
Sheinberg, 1996; Ungerleider & Mishkin, 1982). These transformed representations also underlie 
our ability to recognize objects in the scene irrespective of size or position in the retinal image, 3D 
pose, or clutter and occlusions due to nearby objects.
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Figure 1. The Object-Processing Pathway. Lateral view of the macaque brain showing the different cortical areas 
involved. This pathway, known variously as the “what,” ventral or temporal pathway, is important for visual form 
processing and object identification.

(Adapted with permission from Parker, 2007.)

To understand the algorithmic operations that mediate shape perception and recognition in the 
primate brain, one experimental strategy has been to investigate the representational basis in 
each cortical processing stage, i.e., to identify the visual features encoded in areas V1, V2, V4, and 
IT. Once the features encoded are understood, we could attempt to deduce the algorithms that 
support the transformations from one level to the next. In area V1, neurons encode visual stimuli 
in terms of local orientation and spatial frequency (Albrecht, De Valois, & Thorell, 1980; Hubel & 
Wiesel, 1959, 1968; Movshon, Thompson, & Tolhurst, 1978a, 1978b). Specifically, each small 
patch of the retinal image is represented by a subpopulation of V1 neurons that signal the 
orientation and scale of image features at a particular position in visual space, and the full retinal 
image is represented by thousands of such V1 subpopulations that tile the visual field. In area V2, 
some neurons encode line conjunctions and orientation combinations (Anzai, Peng, & Van Essen, 
2007; Hegde & Van Essen, 2000; Ito & Komatsu, 2004), and others are sensitive to spatial 
structure in texture patches (Freeman, Ziemba, Heeger, Simoncelli, & Movshon, 2013). Whereas 
the representations at the level of V1 and V2 are consistent with encoding “stuff,” i.e., the surface 
characteristics of images (Adelson & Bergen, 1991), an explicit representation of object 
boundaries, an intermediate encoding of “things,” begins to emerge in area V4.

Many V4 neurons encode stimuli in terms of the curvature of the boundary at specific positions 
relative to object center (Pasupathy & Connor, 2001), and their responses cannot be explained by 
a spectral receptive field model (Oleskiw, Pasupathy, & Bair, 2014). For example, one neuron may 
respond preferentially to stimuli that contain a sharp convexity to the upper right (Figure 2A), 
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and another to stimuli that contain a concavity to the top (Figure 2B). The responses of neurons 
that encode boundary form can be described quantitatively as a two-dimensional Gaussian 
function in object shape space, defined by curvature and the angular position relative to object 
center. Together, a population of such neurons can provide a complete representation of isolated 
objects in terms of the boundary features (Figure 2C; see also Pasupathy & Connor, 2002).

Curvature-based object representations have also been demonstrated in subregions of IT (Brincat 
& Connor, 2004; Ponce, Hartmann, & Livingstone, 2017; Schwartz, Desimone, Albright, & Gross, 
1983), and fMRI imaging studies have confirmed the existence of a curvature-processing network 
in visual cortex (Yue, Pourladian, Tootell, & Ungerleider, 2014). These neurophysiological 
findings of a curvature-based code for object representation are consistent with shape theories 
and psychophysical studies, which have long argued for the importance of curvature as a 
representational basis (Asada & Brady, 1984; Attneave, 1954; Besl & Jain, 1985; Marimont, 1984; 
Verri & Yuille, 1986; Watt & Andrews, 1982; Wilson, Wilkinson, & Asaad, 1997). Additionally, 
these findings support the hypothesis for a structural representation of objects in terms of object 
parts and their positional relationships (Biederman, 1987; Connor, Brincat, & Pasupathy, 2007). 
Structural representations can be compact—because few parts can define an object—and 
versatile—since the same dictionary of parts can be used to represent a plethora of objects 
(Connor et al., 2007).
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Figure 2. Shape Representation in Cortical Area V4. A. The stimulus preferences of a hypothetical neuron are 
shown. This neuron responds strongly to some shapes (see gray rectangle) but not others (see black rectangle). 
These responses can be explained in terms of selectivity for a sharp convex projection to the top right, relative to 
object center. B. The stimulus preferences of a second hypothetical neuron. This neuron’s preferences for shape 
stimuli can be explained in terms of selectivity for a broad concave indentation to the top, relative to object center. 
C. Because both shapes shown contain a sharp convexity to the top right (1) and a concavity to the top (2), these 
stimuli will evoke a strong response from hypothetical neurons 1 and 2. Different V4 neurons respond to the 
different contour features that constitute the shape. In this way, any arbitrary shape can be encoded in terms of its 
component contour features in area V4.

(Illustration based on previously published data; Pasupathy & Connor, 2001, 2002.)
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Beyond boundary curvature, there is evidence that IT neurons represent objects in terms of their 
skeletal shape, another structural basis (Hung, Carlson, & Connor, 2012). IT neuronal responses 
are also more strongly modulated by non-accidental properties that are invariant to rotations in 
depth (e.g., straight versus curved boundaries) than by equivalent metric variations that are 
depth-dependent, consistent with the proposal that IT shape representations highlight 
perceptually salient features relevant for essential categorizations (Kayaert, Biederman, & 
Vogels, 2003, 2005a; Kayaert, Biederman, Op de Beeck, & Vogels, 2005b).

IT neurons provide a sparse representation of objects (see, e.g., Gross & De Schonen, 1992; 
Tamura & Tanaka, 2001), with clustered groups of neurons having similar preferences 
(Desimone, Albright, Gross, & Bruce, 1984; Downing, Jiang, Shuman, & Kanwisher, 2001; Fujita, 
Tanaka, Ito, & Cheng, 1992; Perrett, Rolls, & Caa, 1982; Tanaka, 1996; Tsao, Freiwald, Tootell, & 
Livingstone, 2006). For example, neuronal clusters selective for faces and body parts have been 
demonstrated in several subregions of IT. While this evidence supports the proposal of a “gnostic 
field,” a region of cortex subserving a particular class of perception (Konorski, 1967), it does not 
support the idea of a “grandmother cell”—a hypothetical neuron that responds to one specific 
visual stimulus and no other. Instead, the current working model proposes a sparse distributed 
representation of objects mediated by groups of neurons that encode specific structural parts and 
modulated by semantic category (Kiani, Esteky, Mirpour, & Tanaka, 2007). Semantic-based 
representations may rely on learning, attention, and behavioral relevance (Cukur, Nishimoto, 
Huth, & Gallant, 2013). This sparse but non–grandmother-cell-like encoding has also been 
described in the medial temporal lobe, a region known to be important for memory and 
recognition (Quiroga, Kreiman, Koch, & Fried, 2008). Finally, recent evidence suggests that IT 
neurons may represent the weight of objects in addition to their form (Gallivan, Cant, Goodale, & 
Flanagan, 2014). To summarize, visual signals are transformed across stages of the object- 
processing pathway to give rise to a representation that reflects not only the physical features of 
objects in a scene, but also their cognitive and behavioral relevance.
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Invariant Representations

Figure 3. Position-Invariant Tuning for Stimulus Form. A. Each bell-shaped curve represents a hypothetical 
neuron’s tuning for stimulus shape at various positions within the receptive field (dashed circle). The tuning curve 
scales with position, but the position of the peak and the shape of the tuning curve do not change as a function of 
stimulus position. The influence of stimulus position can be expressed in terms of a position-dependent 
multiplicative gain that modulates the shape tuning curve. B. Example responses of a V4 neuron to 48 stimuli 
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presented at 4 positions within the RF. Each panel shows the neuronal responses at one position within the RF to 6 
shapes (abscissa), each presented at 8 rotations (ordinate). The magnitude of positional shifts is expressed as 
center ± % of RF diameter. This neuron was strongly tuned for stimulus shape and rotation, responding best to 
stimuli with a convex projection to the lower left. Tuning preferences were similar at all positions tested. The 
coefficient of correlation between responses at center and other positions was >0.9, implying similar shape 
preferences at all positions.

(Illustration based on previously published data; El-Shamayleh & Pasupathy, 2016.)

The visual image cast on the retina depends on the relationship between the viewer and the 
object. Thus, the retinal image of an object can be dramatically different depending on the precise 
position and pose of the object, gaze angle, viewing distance, and the observer’s plane of focus. 
These factors pose a major challenge to the visual system, because successful recognition 
requires mapping different retinal images to a single object identity. The implementation of this 
many-to-one mapping from retinal image to object identity has captivated biological and 
computer vision scientists over the years. Hubel and Wiesel (1962) originally observed that, 
whereas simple and complex V1 cells are both selective for line orientation, the responses of 
simple cells are highly dependent on stimulus position within the receptive field (RF), but the 
responses of complex cells are not. They speculated that the “generalization” of orientation 
tuning in complex cells may engender generalization of form selectivity across position within 
the RF of cells selective for higher order form. Indeed, position-invariant neuronal shape coding 
has been demonstrated by several groups in V4 (El-Shamayleh & Pasupathy, 2016; Gallant, 
Braun, & Van Essen, 1993) and IT (Desimone et al., 1984; Ito, Tamura, Fujita, & Tanaka, 1995; 
Rust & DiCarlo, 2010; Sáry et al., 1993; Tanaka, 1996). Within the RF of a given neuron, response 
magnitude may change across stimulus position, but the neuron’s stimulus preference is 
typically maintained (Figure 3A). V4 neurons are tuned to boundary curvature in an object- 
centered reference frame (see Figure 2), and positional shifts simply result in a translation of 
object center but no associated change in the position of boundary features relative to object 
center. Thus, curvature tuning in V4 is expected to be independent of stimulus position, and the 
responses to a shape stimulus s at position p can be described by the following equation:

where f denotes the tuning for stimulus form and g denotes the modulatory influence of the 
absolute position of the stimulus within the RF. The independence of stimulus tuning implies that 
neuronal preferences for shape stimuli translated spatially will be strongly correlated; this is 
indeed what we have observed in area V4 (Figure 3B) (El-Shamayleh & Pasupathy, 2016). It is 
important to note that the invariance of shape tuning does not imply the loss of position 
information; rather, the responses of most V4 and IT neurons are modulated by stimulus 
position, i.e., g is a function of p. Therefore, neurons in V4 and IT encode information about 
stimulus identity and position in a separable manner, allowing for both attributes to be decoded 
from neuronal populations.
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Figure 4. Pitfalls in Assessing Position-Invariant Coding. A hypothetical experimental paradigm (top) and results 
(bottom) are shown. Three arbitrary natural images (A–C) are presented at three positions relative to a neuron’s RF 
(white circle): shifted left, centered, shifted right relative to RF. Stimuli extend well beyond the RF of the neuron. If 
the neuron were only selective for the color red, it would respond best when a red patch in the image falls on its RF, 
i.e., for stimulus B at the left position, stimulus A at the center, and stimulus C at the right position. Such an 
observation could be interpreted as position-dependent coding, but the same neuronal responses could be fully 
accounted for by biases in the particular images and stimulus manipulations used. To avoid this pitfall, studies of 
invariant coding should take into account the feature selectivity and spatial RF of the neurons studied.

Some studies have reported limited position-invariant shape tuning in V4 and IT, but this finding 
may be due to how invariance is tested. A neuron with position-invariant shape tuning may 
appear to be highly position-dependent in two cases: (1) if invariance is tested beyond the 
confines of the RF (where measured responses will be dominated by neuronal noise) or (2) if we 
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do not know the critical stimulus attribute that drives neuronal responses. For example, when 
probed with a set of natural stimuli, a neuron that prefers a red stimulus in its RF may appear to 
exhibit position-dependent stimulus preference if its color preference is not known (Figure 4). 
Thus, tuning invariance cannot be adequately examined by presenting an arbitrary set of stimuli 
at multiple positions within the visual field. To disambiguate response patterns consistent with 
multiple encoding strategies, it is important to characterize the spatial RF and then probe 
position invariance using stimuli in which a relevant stimulus feature is varied parametrically 
within the confines of the RF. With this controlled experimental approach, neurons in V4 and IT 
consistently show invariance in their form tuning across position as illustrated (Figure 3B; see 
also El-Shamayleh & Pasupathy, 2016).

As with position, size-invariant tuning for object shape has also been demonstrated in V4 and IT 
(Brincat & Connor, 2004; El-Shamayleh & Pasupathy, 2016; Hikosaka, 1999; Ito et al., 1995; 
Logothetis & Sheinberg, 1996; Rust & DiCarlo, 2010; Sáry et al., 1993; Schwartz et al., 1983; 
Tanaka, 1996). In V4, ~70% of shape-selective neurons encode boundary form in a size-invariant 
manner; their responses are consistent with encoding the curvature of boundary segments, 
defined in Cartesian coordinates, and normalized by stimulus size (El-Shamayleh & Pasupathy, 
2016), which is equivalent to encoding curvature in polar coordinates. In V4 and IT, the responses 
of neurons that exhibit size-invariant tuning for object shape are nevertheless modulated by 
stimulus size (e.g., see El-Shamayleh & Pasupathy, 2016). Thus, information about stimulus form 
as well as size can be decoded from a population of these neurons.
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Figure 5. Tuning for Stimulus Rotation. Responses of an example V4 neuron with strong tuning for stimulus 
rotation. Each line shows the responses of a neuron to 8 stimulus rotations (abscissa). Responses were strongest for 
stimuli at 225° and 270° and weaker at other rotations. This tuning for stimulus rotation was consistent across all 6 
shapes shown (see color-coded stimuli in inset).

(Illustration based on previously published data; El-Shamayleh & Pasupathy, 2016.)

Unlike position and size, there appears to be limited invariance for object rotation in visual cortex 
(Figure 5; e.g., see El-Shamayleh & Pasupathy, 2016; Logothetis & Sheinberg, 1996). The 
observation of weak rotation invariance is consistent with a structural, parts-based code for 
objects in V4 and IT. When stimuli are rotated in the fronto-parallel plane, the position of 
boundary features will change relative to object center. Additionally, when stimuli are rotated in 
depth, some features may become occluded. Under these conditions, a V4 neuron tuned to a 
specific boundary feature relative to object center will not be expected to maintain its preference 
when stimuli are rotated. Thus, whereas size- and position-invariant object recognition in the 
visual system could be mediated by the responses of neurons in V4 and IT that exhibit size- and 
position-invariant form tuning, rotation-invariant recognition would require storing many 
templates in memory for each object, and matching the stimuli viewed against any of these 
templates would trigger successful recognition (Logothetis & Sheinberg, 1996; Riesenhuber & 
Poggio, 2000).

Occlusions and Scene Context

Another major challenge for the visual system is the fact that the retinal image of an object also 
depends on contextual factors, such as occlusions caused by other objects, illumination 
conditions, and shadows. This means that the same retinal image could be the product of 
different object/context combinations. For example, an image (Figure 6A, left) could be 
interpreted either as a collection of arbitrary dark gray shapes, or as a letter B that is partially 
occluded by light gray rectangles. The latter interpretation is more salient when the occluding 
rectangles are not in the same color as the background (Figure 6A, right). Thus, developing a 
visual percept from a retinal image requires solving an ill-posed, inverse problem that lacks a 
unique solution. In other words, this is a one-to-many mapping problem, unlike the invariance 
problem discussed earlier, which is a many-to-one mapping problem. Not much is known about 
how the primate brain accomplishes this feat, but neurophysiological experiments are beginning 
to reveal some of the underlying principles.
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Figure 6. Partial Occlusions. A. The perceptual interpretation of the image in the two panels is drastically different 
depending on whether the occluding rectangles are the same color as the background (left) or different (right). 
Other regions of the image are identical in both panels. B. A partially occluded apple and its component contours in 
the retinal image. The T-junctions, accidental contours, and the ambiguous contour are labeled.

Let us consider the problem of partial occlusion. When one apple partially occludes another 
(Figure 6B, left), the retinal image includes several contour features at the junction of the 
occluding and occluded object surfaces. First, a pair of T-junctions (Figure 6B, right) is formed at 
the intersection of the occluded and occluding boundaries. Second, accidental contours defined by 
a curvature discontinuity (angles θ and φ) are evident at the T-junctions. Third, an ambiguous 
contour, which could be interpreted as convex or concave, intercedes two object surfaces. The set 
of boundary contours illustrated (Figure 6B) is equally consistent with the apples pictured and 
with a crescent shape on the right adjoining a circular object on the left, with no partial occlusion. 
However, perceptually, we discount the accidental contours and assign the ambiguous contour to 
the occluding object, such that we perceive an apple on the right that is partially occluded by 
another on the left. Shape theorists and psychophysicists have long postulated that the 
perception of partial occlusion begins with the detection of T-junctions (Clowes, 1971; Elder & 
Zucker, 1998; Guzman, 1968; Helmhotz, 1910; Huffman, 1971; Rubin, 2001; Waltz, 1975), and 
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models of image segmentation have typically invoked the explicit or implicit encoding of T- 
junctions, followed by the instantiation of rules to identify the direction of the occluding 
boundary at T-junctions (Craft, Schutze, Niebur, & von der Heydt, 2007; Sajda & Finkel, 1995; 
Zhaoping, 2005).

Figure 7. Suppression of Accidental Contours and Border Ownership Signals in Visual Cortex. A. Suppression of 
accidental contours, as observed in V4. Responses of 4 hypothetical neurons (Neuron 1–4) to three stimulus 
conditions (Stimuli 1–3): a crescent shape presented in isolation, adjoined by a circle implying partial occlusion, 
and alongside a circle with a small gap in between. Neurons 1–4 have the following feature preferences: (1) sharp 
convexity to the top, (2) concavity to the upper right, (3) sharp convexity to the right, (4) broad convexity to the 
bottom left. All four neurons will respond strongly to the crescent in isolation (Stimulus 1) and to the crescent and 
circle with a gap in between (Stimulus 3). Only Neuron 4, which prefers the broad convexity, will respond to the 
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partial occlusion condition (Stimulus 2). (Illustration based on results presented in Bushnell et al., 2011.) B. Border 
ownership signals, as observed in V2. Responses of two hypothetical V2 neurons to four stimulus conditions are 
shown. Black circle indicates the neuron’s RF. Stimulus characteristics within the RF are identical for Stimuli 1–2 
and Stimuli 3–4. Responses of Neuron 1 illustrate tuning for contrast polarity: similar responses to Stimuli 1 and 2 
and to 3 and 4. Responses of Neuron 2 illustrate border ownership signals. Responses are modulated by the 
position of the occluding object, i.e., the object to which the edge belongs. In this case, responses are strongest 
when the edge within the RF belongs to the object below the RF regardless of edge contrast polarity. (Illustration 
based on results previously presented in Zhou et al., 2000.) C. A schematic of how a simple scene may be encoded 
by a population of V4 neurons (modified from Bushnell et al., 2011). An example image (first panel) and its 
component contours (second panel) are shown. Accidental sharp convexities at T-junctions are labeled s. 
Concavities formed at the junction between the occluding and occluded surfaces are labeled c. The suppression of 
accidental sharp convexities produces a fragmented contour map (third panel). Collinear and co-circular facilitation 
mechanisms lead to the suppression of the ambiguous concavities (c) and the development of border ownership 
signals (fourth panel).

Neurophysiological studies in area V4 suggest that partial occlusion context provided by 
neighboring objects strongly modulates neuronal responses (Figure 7A; also see Bushnell, 
Harding, Kosai, & Pasupathy, 2011). V4 neurons that preferentially encode a sharp convexity to 
the top, or to the right, or a concavity to the top-right (Figure 7A; see neurons 1–3) will respond 
strongly to a crescent shape in isolation (stimulus 1), but not when the crescent is adjoined by a 
circle (compare responses of neurons 1–3 to stimulus 1 and 2). In the latter case, the angles θ and 
φ are accidental contour features, and the boundary between the two objects may be convex or 
concave, depending on whether it is assigned to the circle or to the crescent shape, respectively. 
When a small gap is introduced between the crescent and the circle (stimulus 3), the partial 
occlusion context no longer exists: θ, φ, and the concavity are all real contour features. In this 
case, neuronal responses are again comparable to the crescent in isolation. Many V2 neurons also 
exhibit similar context-dependent response modulations. Von der Heydt and colleagues (Zhou, 
Friedman, & Von der Heydt, 2000) have studied V2 neuronal responses to a variety of partially 
occluded stimuli in which the local contrast polarity and position of the occluding object were 
systematically varied (Figure 7B). While many V2 neurons (e.g., see neuron 1) simply signal the 
contrast polarity of the edge running through the RF (black dotted circle), others have a 
preference for the position of the object to which the edge belongs, i.e., the position of the 
occluding object. For example, neuron 2 prefers an edge when it belongs to an object below the 
RF; its responses to stimulus 1 are stronger than to stimulus 2, even though both provide identical 
stimulation within the RF.

Thus, signals related to partial occlusion context provided by neighboring objects modulates 
neuronal responses in the intermediate stages of visual cortex to produce a representation that 
faithfully encodes real contours, that suppresses accidental contour features, and that resolves 
the ambiguity of contours that lie between the occluding and occluded surfaces. These contextual 
modulations are fast: suppression of accidental contours in V4 is observed, on average, ~60 ms 
after stimulus onset (Bushnell et al., 2011), while border ownership signals in V2 are observed 
60–70 ms after stimulus onset (Zhou et al., 2000). These contextual signals are therefore likely 
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based on neuronal processing within V4 and do not reflect feedback from higher cortices such as 
IT or prefrontal cortex, where response latencies are longer. Results from additional control 
experiments are consistent with the hypothesis that local competition between two contours—a 
sharp convexity at the T-junction and a smooth continuous contour (e.g., contour labeled s and 
its neighboring convex contour in Figure 7C)—at the same location in the visual scene could 
produce the observed suppression of accidental contours (Bushnell et al., 2011). Local competition 
between contours could be achieved, for instance, if neurons tuned to a broad convexity inhibit 
neurons tuned to a sharp convexity, and where these two neuronal groups have a common set of 
V1 or V2 inputs. Local competition augmented by collinear facilitation (Craft et al., 2007; Sajda & 
Finkel, 1995; Zhaoping, 2005) could facilitate correct boundary assignment at the interface 
between the occluding and the occluded object boundaries (as diagrammed in Figure 7C). Thus, 
contextual modulations that produce suppression of accidental contours and accurate border 
assignment could represent the bottom-up instantiation of the Gestalt prior for continuity.

Figure 8. Shape Selectivity Under Partial Occlusion. Shape selectivity of an example V4 neuron, measured as the 
area under the receiver-operating characteristic curve, constructed from the neuron’s responses to two shape 
stimuli. Line color represents the level of occlusion provided by a set of random dots in a contrasting color of 
varying diameter (see inset shapes). Occlusion level was quantified as % unoccluded area: 100% level (black line) 
corresponds to unoccluded stimuli, and lower numbers correspond to stimuli with greater occlusion. For 
unoccluded stimuli, shape selectivity emerges rapidly and peaks early; with increasing occlusion, selectivity 
increases more slowly and peaks later.

(Illustration based on data published in Kosai et al., 2014.)

In addition to bottom-up processes, feedback from higher cortical areas is also likely to facilitate 
perception under occlusion (Rust & Stocker, 2010). When the occluded object is highly familiar, 
e.g., a tiger in the bushes, recognition could be triggered rapidly at the highest stages of object 
processing on the basis of a single diagnostic feature (e.g., a tiger’s stripes). Feedback to 
intermediate stages of cortical processing could then clarify the representations that underlie 
perception. Neurophysiological studies in area V4 support this hypothesis. When monkeys are 
required to report whether two shape stimuli presented in sequence are the same or different, 
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shape selectivity in V4 emerges earlier for unoccluded stimuli and later for occluded stimuli 
(Figure 8; see also Kosai, El-Shamayleh, Fyall, & Pasupathy, 2014). The delayed selectivity for 
occluded stimuli is observed only when the animal is engaged in a perceptual shape 
discrimination task and not under passive fixation conditions (our unpublished observations). In 
IT and the ventrolateral prefrontal cortex, two areas hypothesized to be engaged in object 
recognition and memory, many neurons respond more vigorously and more selectively to 
occluded objects compared to unoccluded objects (Fyall, El-Shamayleh, Choi, Shea-Brown, & 
Pasupathy, 2017; Namima & Pasupathy, 2016). The stronger responses to occluded stimuli in 
higher cortices, when fed back to V4, could produce the delayed and augmented selectivity 
observed under occlusion and could facilitate the perception of occluded stimuli.

To summarize, the visual system relies on both bottom-up neural signals relaying spatial form 
cues as well as top-down neural signals carrying influences of familiarity and experience. 
Together, these signals underlie the generation of stable and consistent object percepts in the 
face of ambiguous representations due to occlusion.

Contour Grouping and Segmentation

Scene segmentation—the process of parsing a scene into a meaningful arrangement of regions 
and objects—is another computational problem faced by the visual system. Not much is known 
about how this is solved by the primate brain, but an emerging view suggests that curvilinear 
contour grouping, combined with contextual modulations and top-down signals, may facilitate 
the preferential encoding of object boundaries and thus contribute to scene segmentation.

In computer vision, algorithms have traditionally focused on region-based segmentation, where 
the image is partitioned into pixel sets with coherent image properties such as brightness, color, 
and texture (Leung & Malik, 1998). Region-based algorithms can be fast, but they can fail when 
objects contain steep gradients in color, texture, or luminance. Recent algorithms therefore 
combine region-based segmentation with curvilinear contour grouping (Leung & Malik, 1998), 
the main strategy proposed by psychophysicists. Here, contours are grouped based on Gestalt 
rules (Wertheimer, 1938) of similarity, proximity, continuity, common fate, symmetry, and 
convexity. In pathfinder displays with Gabor patch elements (Figure 9A), human subjects can 
detect a continuous path easily if the elements lie parallel to the path, but not if they lie 
orthogonal to it. Field, Hayes, and Hess (1993) hypothesized that this asymmetry in detection was 
due to curvilinear facilitation: the enhanced encoding of contour elements that lie along a curve.
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Figure 9. Parallel and Serial Contour Grouping. A. Example pathfinder display. The string of elements on a curve is 
salient, and human subjects can detect it despite the distractor elements (based on Field et al., 1993). This process 
is thought to depend on collinear facilitation. B. Curve tracing task. Subjects are required to report if the two black 
dots belong to the same curve (based on Jolicoeur et al., 1986). In this task, behavioral reaction time depends on 
the distance between the dots. C. Another variant of the curve tracing task. Monkeys are required to make a 
saccade from the fixation spot (black dot) to the target dot that is connected to it. V1 neurons with RFs on the target 
path (solid rectangles) but not those with RFs on the distractor path (dotted rectangles) show enhanced activity 
during the sustained portion of the neuronal response (Roelfsema et al., 1998).

Neurophysiological studies in V1 have demonstrated that neuronal responses to stimuli within 
the RF can be facilitated by collinear elements outside the RF, especially in the presence of 
randomly oriented distractors (Bauer & Heinze, 2002; Kapadia, Ito, Gilbert, & Westheimer, 1995; 
Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998). Long-range horizontal connections in V1 
could underlie this collinear facilitation (Schmidt, Goebel, Lowel, & Singer, 1997), as could 
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feedback signals from higher cortices: for example, neurons in V4 that are sensitive to the 
boundary of elongated curves could modulate the responses in early visual cortex (see Roelfsema, 
2006, for a more complete discussion). When visual stimuli include three-dimensional surface 
configurations, collinear facilitation processes in V2 appear to integrate depth information such 
that neuronal responses are consistent with encoding the amodal completion of occluded 
contours and the segmentation of surfaces (Bakin, Nakayama, & Gilbert, 2000).

In addition to collinear facilitation, which could operate in parallel and segregate collinear 
elements from background elements, psychophysical studies suggest that a serial process may be 
required for segregating one curve from another. In curve-tracing tasks in which subjects are 
asked to report whether two points in a visual display are connected (Figure 9B), behavioral 
reaction time increases with increasing distance between the queried points (Jolicoeur, Ullman, & 
McKay, 1986). Neurophysiological recordings in monkeys trained to make a saccade to a dot on a 
target curve in the presence of a distractor curve (Figure 9C) show neuronal response facilitation 
in V1 ~100 ms or more after stimulus onset during the sustained portion of the neuronal response 
(Roelfsema, Lamme, & Spekreijse, 1998). This finding supports the existence of an incremental 
contour grouping process. Under this hypothesis, enhanced activity would gradually spread 
across the representation of an object in visual cortex; such a process corresponds to the labeling 
of image elements with object-based attention (Roelfsema & Houtkamp, 2011). To summarize, 
contour grouping in visual cortex likely includes a fast collinear facilitation process and a slower 
serial grouping process that is related to object-based attention.
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Figure 10. Component Edges in Natural Images and the Role of Contextual Modulations in De-texturizing Scenes. 
A. A natural scene (left) and the component edges in the scene, as computed by a Canny edge detector (right). B. 
The role of surround suppression in de-texturizing an image. An input image (left), the component edges based on a 
Canny detector (middle) and the representation of the image by a complex cell model with strong surround 
suppression (right). (From Gheorgiu et al., 2014.) C. An example two-tone Mooney face. D. Luminance-based 
segmentation of the image in C, ignoring shadow boundaries, makes correct recognition difficult.

(Inspired by Cavanagh, 1991.)

In natural scenes, segmentation on the basis of contour grouping alone can be challenging. The 
challenge arises because even a very simple natural scene devoid of clutter is associated with an 
extremely complex edge map (Figure 10A), and teasing apart which contours belong together can 
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be difficult. A novel idea, proposed by Gheorghiu and colleagues (2014), is that contextual 
modulations in visual cortex serve to de-texturize images, enhancing contour representations at 
the expense of textures and thus facilitating the signaling of object boundaries. Many neurons in 
visual cortex exhibit tuned surround suppression, where responses are suppressed when the RF 
center and surround are activated by stimuli with similar characteristics (e.g., see Blakemore & 
Tobin, 1972; Cavanaugh, Bair, & Movshon, 2002; Kapadia et al., 1995; Knierim & Van Essen, 1992; 
Levitt & Lund, 1997; Nelson & Frost, 1985; Nothdurft, Gallant, & Van Essen, 1999). Responses to 
textures could therefore be suppressed due to inherent spatial correlations in texture regions. 
This idea is illustrated in the output of a model that tiles complex-like cells exhibiting strong iso- 
orientation suppression across the image (Figure 10B, right). Responses of this model are weak 
for the grassy regions of the image because neighboring regions are highly correlated.

To illustrate their point, Gheorghiu and colleagues implemented high levels of suppression in the 
model, which completely eliminated the representation of texture regions, whereas more realistic 
levels of surround modulations produced partial suppression of the texture regions. A scene, 
when de-texturized in this way, results in the preferential encoding of object boundaries thereby 
facilitating segmentation. Psychophysical results from shape-frequency and shape-amplitude 
adaptation after-effects also support the hypothesis that contextual modulations serve to de- 
texturize images. In these experiments, subjects were adapted to a single sinusoidal contour and 
then tested on the perceived frequency and amplitude of another contour (Gheorghiu & Kingdom, 
2006, 2007; Kingdom & Prins, 2005). These studies found that while adaptation effects were 
strong when the adaptor and test were both single contours, effects were much weaker when the 
adapting contour was flanked by parallel contours yielded a stimulus that resembled a texture. 
These findings support the hypothesis that neurons encoding single contours in visual cortex 
may be suppressed when those contours are part of a texture. Results from fMRI experiments also 
support the hypothesis that texture and contour processing are segregated in the brain. 
Dumoulin, Dakin, and Hess (2008) evaluated how contrast-energy contained in contours and 
textures within natural images affected BOLD responses in visual cortex. Whereas BOLD 
responses in V1 were consistent with representing natural images based on local oriented filters, 
responses in extrastriate areas were stronger for contours compared to textures, thereby 
amplifying sparse contour (as opposed to texture) information within natural images. 
Preliminary neurophysiological results from our group are consistent with this observation: V4 
neurons respond more strongly to isolated shapes than to luminance-matched texture patches, 
and this preference persists even when shapes are overlaid on texture patches or when a texture is 
shown through a shape aperture (Kim, Bair, & Pasupathy, 2017). Nevertheless, these results do 
not imply that textures are poorly represented in this part of the visual cortex, and recent 
neurophysiological studies have documented selective responses to texture patches in V2 that 
reflect the encoding of higher-order image statistics (Freeman et al., 2013). Taken together, these 
results support the idea that different neuronal subsets in the intermediate stages of cortex may 
be specialized to encode contours (in V4) and textured regions (in V2) by taking advantage of 
differences in the statistical characteristics of these visual cues.

Finally, for successful segmentation to occur, the visual system must distinguish veridical object 
boundaries from internal contours and borders cast by shadows. This requirement has been 
elegantly demonstrated with Mooney images (Figure 10C) where the segmentation and 
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interpretation of an image are dramatically different when information from shadows is withheld 
(Figure 10D; see also Cavanagh, 1991). In such cases, the segmentation process may need to be 
guided by object prototypes stored in memory that coarsely match subsets of contours in the 
image. As with occlusion context, image segmentation and scene understanding are likely to 
depend on feedback signals from higher cortices, triggered by successful recognition. Further 
experiments are needed to clarify how these processes unfold.

Models of Visual Processing

One benchmark for success in our pursuit of understanding visual perception is to build models of 
cortical processing that can accurately predict responses to novel stimuli and match the 
behavioral levels of object recognition in primates. Currently, we have good models that can 
capture the responses of simple and complex cells in V1. Beyond V1, however, our progress has 
been limited. To explain boundary form encoding in V4, Cadieu and colleagues (2007) proposed a 
contour template model, a specific instantiation of the hierarchical max model proposed by 
Poggio and colleagues (Riesenhuber & Poggio, 2000). Intuitively, the model achieves selectivity 
for a sharp convexity to the top of object center, for example, by pooling orientation signals from 
V1 neurons tuned to 45° and 135°. However, such a contour template model does not capture the 
object-centered nature of selectivity for boundary form in V4 and fails to achieve the level of 
position invariance observed in real neurons (Bair, Popovkina, De, & Pasupathy, 2015). In fact, no 
current model of V4 neurons can account for object-centered encoding. Discovering how object- 
centered encoding is built in V4 is a necessary and critical step to advancing current models of 
form processing.

In recent years, with the advent of efficient learning algorithms for deep neural networks, 
computer vision has made great strides with developing algorithmic solutions for object 
recognition: on some tasks, these networks have reached levels that are comparable to humans 
(Kriegeskorte, 2015). Briefly, these feedforward hierarchical models are typically four or more 
layers deep and are composed of features in each stage that are learned by training on large- 
scale, labeled image data. Encouraged by the improved performance of deep networks, many 
recent studies have focused on comparing the internal representations of these models to the 
response properties of visual cortical neurons (e.g., see Khaligh-Razavi & Kriegeskorte, 2014). 
This approach can be insightful because the emergence of similar encoding features in models 
and neurons could imply similar computational strategies. For example, model units in the first 
layer behave like oriented filters similar to the properties of V1 neurons while many neurons in 
later stages of the models show tuning to boundary curvature similar to the properties of V4 
neurons (Pospisil, Pasupathy, & Bair, 2016). Dissecting the underlying architecture of model units 
could provide insights into how these response properties arise in the brain. Furthermore, the 
detailed study of model units could promote the development of more targeted experiments on 
neurons, given the practical constraints that limit experimental time. However, similarities 
between the responses of model units and neurons to a few hundred stimuli should not be 
overinterpreted because there are no guarantees of model uniqueness: very different 
architectures could produce similar responses when probed with a small set of stimuli (see 
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Kriegeskorte, 2015, for a detailed review). For example, the responses of a hypothetical neuron 
described earlier (Figure 4) are consistent both with the responses of a neuron selective for the 
color red and the responses of a neuron with position-dependent form selectivity. These two 
possibilities cannot be differentiated on the basis of the nine stimuli shown (Figure 4), and 
detailed characterization of RF position dependence and other properties will be needed. Thus, 
the discovery of representational similarity between models and neurons calls for more 
experiments with more diverse stimuli to ask how model units and real neurons may diverge. 
Such a divergence may help to constrain the number and types of candidate models.

Finally, most models of visual form processing, including deep neural networks, are envisioned 
as hierarchical feedforward pathways. This model design choice is partly to simplify the task of 
building a model, but it is also motivated by findings of behavioral studies and ERP recordings in 
humans which suggest that base category discrimination (e.g., animal versus non-animal) can be 
achieved ~120 ms after stimulus onset (Kirchner & Thorpe, 2006; Thorpe, Fize, & Marlot, 1996), 
using the earliest neural signals in IT. Nevertheless, given that perception relies heavily on 
contextual information and on learning and experience, recurrence and feedback signals play a 
critical role. A complete and accurate model of form processing must therefore include these 
influences.

Moving Forward

Decades of studies in human and non-human primates have revealed a great deal about the 
neural basis of visual shape and object perception. We now have concrete models for visual 
processing in the earliest stages, conceptual models for processing in the intermediate stages, 
and we are beginning to discover how the visual system tackles problems like occlusion. These 
discoveries have primarily come from rigorous experiments that correlate neuronal responses to 
stimuli presented within the RF. So, rather than abandoning this strategy, we need to augment it. 
We need to combine the careful characterization of RF position and basic RF tuning properties of 
visual neurons with the study of neuronal responses to tens of thousands of novel and diverse 
stimuli, ranging from parameterized artificial stimuli to isolated natural objects and entire visual 
scenes. We need to expand our stimulus repertoire to include naturalistic stimulus features, such 
as surface shading, blur, and 3D form. Given that movement cues are also important for object 
segmentation, it will be important to investigate how dynamic shape stimuli are encoded in the 
object-processing pathway. These data could then constrain working models. In return, model 
predictions will direct the design of new experiments and stimuli by constraining plausible 
hypotheses for underlying computations.

A major bottleneck to progress has been the constraint of experimental time, especially given that 
a typical neurophysiological recording session in the awake, behaving monkey lasts 4–6 hours, 
allowing an experimenter to probe responses to hundreds, but not thousands of visual stimuli. As 
such, a key technological advance would be the ability to study the same neurons over days, 
weeks, and months. This would provide experimentalists the unprecedented opportunity to study 
the responses of neurons to many stimuli, both during passive fixation and under a variety of 
behavioral conditions and contexts. This technology would also facilitate the longitudinal 
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tracking of neuronal responses during the course of visual experience. These richer datasets will 
help us to reveal how the primate visual cortex achieves the encoding, segmentation, and 
perception of visual objects and scenes. These data will also illuminate how experience shapes 
visual perception, another important frontier.
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