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Abstract

The correlation coefficient squared, r2, is commonly used to validate quantitative models on

neural data, yet it is biased by trial-to-trial variability: as trial-to-trial variability increases,

measured correlation to a model’s predictions decreases. As a result, models that perfectly

explain neural tuning can appear to perform poorly. Many solutions to this problem have

been proposed, but no consensus has been reached on which is the least biased estimator.

Some currently used methods substantially overestimate model fit, and the utility of even

the best performing methods is limited by the lack of confidence intervals and asymptotic

analysis. We provide a new estimator, r̂ 2
ER, that outperforms all prior estimators in our test-

ing, and we provide confidence intervals and asymptotic guarantees. We apply our estima-

tor to a variety of neural data to validate its utility. We find that neural noise is often so great

that confidence intervals of the estimator cover the entire possible range of values ([0, 1]),

preventing meaningful evaluation of the quality of a model’s predictions. This leads us to

propose the use of the signal-to-noise ratio (SNR) as a quality metric for making quantitative

comparisons across neural recordings. Analyzing a variety of neural data sets, we find that

up to� 40% of some state-of-the-art neural recordings do not pass even a liberal SNR crite-

rion. Moving toward more reliable estimates of correlation, and quantitatively comparing

quality across recording modalities and data sets, will be critical to accelerating progress in

modeling biological phenomena.

Author summary

Quantifying the similarity between a model and noisy data is fundamental to advancing

the scientific understanding of biological phenomena, and it is particularly relevant to

modeling neuronal responses. A ubiquitous metric of similarity is the correlation coeffi-

cient, but this metric depends on a variety of factors that are irrelevant to the similarity

between a model and data. While neuroscientists have recognized this problem and pro-

posed corrected methods, no consensus has been reached as to which are effective. Prior

methods have wide variation in their accuracy, and even the most successful methods lack
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confidence intervals, leaving uncertainty about the reliability of any particular estimate.

We address these issues by developing a new estimator along with an associated confi-

dence interval that outperforms all prior methods. We also demonstrate how a signal-to-

noise ratio can be used to usefully threshold and compare noisy experimental data across

studies and recording paradigms.

Introduction

Building an understanding of the nervous system requires the quantification of model perfor-

mance on neural data, and this often involves computing Pearson’s correlation coefficient

between model predictions and neural responses. Yet this typical estimator, r̂2, is fundamen-

tally confounded by the trial-to-trial variability of neural responses: a low r̂2 could be the result

of a poor model or high neuronal variability.

One approach to this problem is to average over many repeated trials of the same stimulus

in order to reduce the influence of trial-to-trial variability. With a finite number of trials, this

approach will never wholly remove the influence of noise and its confounding effect, more-

over, the collection of additional trials is expensive. A more principled approach has been to

account for trial-to-trial variability in the estimation of the fraction of explainable variance or

r2. Most often, this takes the form of attempting to estimate what the r2 would have been in the

absence of trial-to-trial variability. Here we call this quantity r2
ER, the r2 between the model pre-

diction and the expected response (ER) of the neuron (i.e., the ‘true’ mean, or expected value,

of the estimated tuning curve). While a variety of solutions have been proposed to estimate

this quantity [1–10], they have not been quantitatively compared, thus there is no basis to

reach a consensus on which methods are appropriate, or more importantly inappropriate. We

find that several estimators still in recent use have large biases. Estimators that did have rela-

tively small biases lacked associated confidence intervals, thus the degree of uncertainty in

these sometimes highly variable estimates remains ambiguous. Finally, none of these methods

have been analyzed asymptotically to give a theoretical guarantee that they will converge to r2
ER,

i.e., it has not been shown that they are consistent estimators.

To address these substantial problems, we introduce r̂2
ER, which is a simple analytic estima-

tor of r2
ER, along with a method for generating α-level confidence intervals. We validate our

estimator in simulation, prove that it is consistent, and provide head-to-head comparisons to

prior methods. We then demonstrate the use of r̂2
ER and its confidence interval on two sets of

neural data. We find many cases where neuronal data is so noisy that estimates of r2
ER provide

little inferential power about the quality of a model fit. This naturally leads to a useful metric of

the quality of a neuronal recording that we will refer to as the signal-to-noise ratio (SNR), and

which can be interpreted in terms of the number of trials needed to reliably detect tuning.

Across a diverse set of neural recordings, we find that many neurons do not pass even a liberal

criterion for providing meaningful insight into the quality of a model fit.

Results

Our results are organized as follows. First, we give the essential intuition into the source of the

bias in r̂2 and we explain how r̂2
ER removes this bias. Next, we evaluate r̂2

ER through simulation

and compare it to prior methods. We then demonstrate the method on two neural data sets:

one from a study of motion direction tuning in area MT and one from a study of responses to
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natural images in area V4. Finally, we develop an estimator, dSNR, based on the signal-to-noise

ratio (SNR), as a metric to determine the inferential power of a given neuronal recording.

Bias of r̂2 and its correction

Consider a typical scenario in sensory neuroscience where the responses of a neuron to m sti-

muli across n repeated trials of each stimulus have been collected and the average of these

responses, the estimated tuning curve (Fig 1, dashed green line), is compared to responses pre-

dicted by a model (red line). These responses could be spike counts from a neuron but could

just as well be any other neural signal. Even if the m expected values of the neuronal response,

μi (solid green trace), perfectly correlate with the model predictions, νi (red trace is scaled and

shifted relative to green), the m sample averages, Yi (dashed green trace), will deviate from

their expected value owing to the sample mean’s variability. Here, we quantify this variability

using the variance, σ2, of the distribution of responses from trial-to-trial (see Methods,

“Assumptions and terminology for derivation of unbiased estimators”). We assume σ2 is con-

stant across responses to different stimuli, which can be achieved by applying a variance stabi-

lizing transform to the data. The variance of the sample mean for all stimuli will thus be s2

n .

Owing to the variance of the sample mean, the reported r̂2 can be appreciably less than 1 even

though the r2 between the underlying expected values of the neuronal response and the model

is 1.

The quantity we attempt to estimate in this paper is r2 between the model predictions (νi)
and the expected neuronal responses (μi). We will call this quantity r2

ER, the fraction of variance

of the ‘expected response’ explained by the model:

r2
ER ¼

ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2

Pm
i¼1
ðni � �nÞ

2Pm
i¼1
ðmi � �mÞ

2
: ð1Þ

Fig 1. Sampling noise confounds estimation of the correlation between model prediction and neuronal tuning

curve. The expected (true) spike counts in response to a set of 10 stimuli (solid green points) is perfectly correlated

with a model (red points), yet owing to sampling error (neural trial-to-trial variability) the estimated tuning curve

(green open circles) has correlation less than one with the model (r̂2 ¼ 0:83).

https://doi.org/10.1371/journal.pcbi.1009212.g001
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We will show that the naive sample estimator, which uses Yi in place of μi,

r̂2 ¼
ð
Pm

i¼1
ðni � �nÞðYi �

�Y ÞÞ2
Pm

i¼1
ðni � �nÞ

2Pm
i¼1
ðYi �

�Y Þ2
; ð2Þ

has an expected value that can be well approximated as the ratio of the expected values of its

numerator and denominator as follows (for asymptotic justification see Methods, “Inconsis-

tency of r̂2 in m”):

E½r̂2� �
E½ð
Pm

i¼1
ðni � �nÞðYi �

�Y ÞÞ2�
E½
Pm

i¼1
ðni � �nÞ

2Pm
i¼1
ðYi �

�Y Þ2�

¼
ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2
þ s2

n

Pm
i¼1
ðni � �nÞ

2

Pm
i¼1
ðni � �nÞ

2Pm
i¼1
ðmi � �mÞ

2
þ s2

n ðm � 1Þ
Pm

i¼1
ðni � �nÞ

2
:

ð3Þ

While the terms on the left in the numerator and denominator are the same as r2
ER, the terms

on the right are proportional to the trial-to-trial variability (σ2) and cause r̂2 to deviate from

r2
ER. This is the essential problem: r̂2 is biased away from r2

ER by terms proportional to the

amount of variability, s
2

n , in the estimated responses.

The strategy we take to solve this problem is straightforward: find unbiased estimators of

these noise terms and subtract them from the numerator and denominator of Eq 2 for r̂2, thus:

r̂2
ER ¼

ð
Pm

i¼1
ðni � �nÞðYi �

�Y ÞÞ2 � ŝ2

n

Pm
i¼1
ðni � �nÞ

2

Pm
i¼1
ðni � �nÞ

2Pm
i¼1
ðYi �

�Y Þ2 � ŝ2

n ðm � 1Þ
Pm

i¼1
ðni � �nÞ

2
; ð4Þ

where ŝ2 is an unbiased estimator for trial-to-trial variability, after a variance stabilizing trans-

form if necessary. Typically ŝ2 ¼ ŝ2, the sample variance, but not necessarily. For example if

stimuli are shown only once (n = 1), then an assumed value of trial-to-trial variability could be

substituted into ŝ2. The numerator and denominator of the fraction r̂2
ER are unbiased estima-

tors of the numerator and denominator of r2
ER; therefore, this solution is approximate since the

expected value of a ratio is not necessarily the ratio of the expected values of the numerator

and denominator (see Methods, “Bias of r̂2
ER”). Yet we show in simulation that the approxima-

tion is very good for typical neural statistics, and we show analytically that, unlike r̂2, our esti-

mator r̂2
ER converges to the true r2

ER as the number of stimuli m!1 (see Methods,

“Consistency of r̂2
ER in m”). We next evaluate this estimator in simulation.

Validation of r̂2
ER by simulation

To demonstrate the effectiveness and key properties of r̂2
ER, we ran a simulation with m = 362

stimuli, n = 4 repeats, and σ2 = 0.25 (the trial-to-trial variance of Poisson neuronal response

after a variance-stabilizing transform, see Methods: “Assumptions and terminology for deriva-

tion of unbiased estimator”). This corresponds, for example, to a minimal experiment to char-

acterize shape tuning in V4 neurons, which requires hundreds of unique shapes and takes on

the order of 1 hour [2]. In the case where the model prediction (νi) and expected response (μi)

were perfectly correlated (as in Fig 1) and SNR was moderate at 0.5, the distribution of the

naive estimator, r̂2, is centered well below 1 (Fig 2A, blue). Thus, the model appears to be a

poor fit to data that it in fact generated, indicating that r̂2 is a poor estimator of r2
ER. On the

other hand, the distribution of our corrected estimator, r̂2
ER, is appropriately centered at 1 (Fig

2A, orange). Approximately 50% of the time our estimator exceeds 1, taking on impossible val-

ues of r2
ER 2 ½0; 1�, but this is necessary to achieve unbiased estimates for high r2

ER because trun-

cating the values would shift the mean below 1.
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We evaluated the estimators r̂2 and r̂2
ER at five values of r2

ER (0, 0.25, 0.5, 0.75, 1) and plotted

the mean and 90% quantiles. Fig 2B shows that r̂2 (blue line) grossly underestimates r2
ER (black

line) at all levels except for r2
ER ¼ 0, whereas r̂2

ER (orange line) correctly estimates the true corre-

lation r2
ER (orange and black lines overlap). Thus the estimator r̂2

ER performs favorably in this

simulation. We ran similar simulations on the square root of Poisson distributed spikes counts

and found similar results for both low and high average firing rates. Next, we characterize the

performance of r̂2
ER relative to r̂2 in simulations that cover a wide range of the parameters, m, n

and SNR.

Asymptotic properties of r̂2
ER and r̂2

We ran simulations to determine the bias and variance of r̂2
ER relative to r̂2 as a function of the

parameters SNR, n, and m. Fig 3A shows that as SNR increases, r̂2 (blue) and r̂2
ER (orange) con-

verge (r2
ER ¼ 0:75, n = 4, m = 362). Thus, for neuronal recordings where variation in response

strength across stimuli is large relative to trial-to-trial variability, these two estimators should

have similar values. At low values of SNR, e.g., 0.1, r̂2 has a large downward bias (mean

r̂2 ¼ 0:23), whereas r̂2
ER has a small upward bias relative to its own variability and to the bias of

r̂2 (for the source of this bias see Methods, “Bias of r̂2
ER”). This small upward bias of r̂2

ER quickly

diminishes as SNR increases, whereas the large negative bias of r̂2 remains across a much

wider range of SNR. The essential problem this simulation reveals is that if SNR varies widely

from neuron to neuron, the bias in the naive estimate will cause apparent variation in r2 across

neurons that depends on SNR and not on the underlying tuning curve. Neuronal SNR is not

typically under experimental control, making this problem difficult to avoid.

The number of repeats, n, is under the experimenter’s control but is expensive to increase.

Fig 3B shows how r̂2 and r̂2
ER converge as n increases. Thus the bias in r̂2 can be reduced by

increasing the number of repeats, but to achieve this requires a very high number of repeats

Fig 2. Simulation of the naive r̂ 2 and unbiased r̂ 2
ER estimators for model-to-neuron fits at varying levels of r2

ER where m = 362,

n = 4, and σ2 = 0.25. (A) For true r2 = 1, at a moderately low SNR = 0.5, r̂2 (blue) is on average 0.67 whereas r̂2
ER (orange) is on

average 1.00. The bias of r2
ER (see Methods, “Bias of r̂2

ER”) is small relative to its variability (90% quantile = [0.93, 1.07] vertical bars)

and to the bias of r̂2. (B) Same simulation as A but at five levels of r2
ER (0, 0.25, 0.5, 0.75, 1). Lines show mean values of r̂2 (blue) and

r̂2
ER (orange). Black line (beneath orange) shows true r2

ER; error bars show 90% quantile.

https://doi.org/10.1371/journal.pcbi.1009212.g002
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for low SNR. An advantage of r̂2
ER is that even for low n, it on average estimates the true corre-

lation to the model (orange trace overlaps black trace, Fig 3B), providing a large gain in total

trial efficiency for estimating the quality of model fit.

When increasing the number of stimuli, m, unlike the previous two cases, r̂2 and r̂2
ER do not

converge to the same value (Fig 3C). While variability of both estimators decreases (90% quan-

tiles narrow), it is clear in simulation that r̂2 is not a consistent estimator of r2
ER in m since it

does not converge to r2
ER ¼ 0:75. While there is a small upward bias of r̂2

ER for low m, as m
increases this bias is reduced (see Methods, “Consistency of r̂2

ER in m”).

Comparison to prior methods

Accounting for noise when interpreting the fit of models to neural data has been examined

and applied in the neuroscientific literature for some time [1–10]. Several studies have fol-

lowed the approach of attempting to estimate the upper bound on the quality of fit of a model

given noise and then referencing the measure of fit to this quantity. Roddey et al. [1] estimate

this upper bound by computing their estimate of model fit, ‘coherence’, across split trials then

plotting coherence of the data to the model predictions relative to the split trial coherence.

Yamins et al. [7] normalize r2 with split-trial correlation transformed by the Spearman-Brown

prediction formula (averaged across randomly resampled subsets of trials); we will call this

r̂2
norm‐split‐SB. Hsu et al. [4] also use split-half correlation (averaged across randomly resampled

subsets of trials), to estimate an upper bound (CCmax) by a transformation they derive attempt-

ing to estimate the correlation of the true mean with the firing rate of the neuron. For purpose

of comparison, we square this estimator and call it CC2

norm‐split. Schoppe et al. [8] improve upon

this method by giving an analytic form, thus removing the need for resampling. They do this

by using the ‘signal-power’ (SP) estimate developed by Sahani and Linden [3], thus we call

their estimator CC2

norm‐SP. Kindel et al. [10] take inspiration from Schoppe et al., except to

Fig 3. Comparison of r̂ 2 and r̂ 2
ER for estimating model-to-neuron fit across broad, relevant ranges of SNR, n, and m. (A)

Average performance of naive r̂2 (blue) and corrected r̂2
ER (orange) as a function of SNR for a simulation where true r2

ER ¼ 0:75

(horizontal black line), m = 362, n = 4, and σ2 = 0.25. Error bars indicate 90% quantiles. (B) Performance of estimators as a

function of n, the number of repeats of each stimulus. Simulation like (A), except SNR = 0.5 and n is varied. (C) Performance as a

function of m, the number of unique stimuli, for a low number of repeats (n = 4). Like (A), except SNR = 0.5 and m is varied.

https://doi.org/10.1371/journal.pcbi.1009212.g003
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estimate CCmax they measure the correlation of responses from a Gaussian simulation (based

on the sample mean and variance of the neural data) with the sample mean. We square their

estimator and call it CC2

norm‐PB (PB for parametric bootstrap). Pasupathy and Connor [2] esti-

mate the fraction of total variance accounted for by trial-to-trial variability, intuitively the frac-

tion of unexplainable variance, then use it to normalize r̂2. We call this estimator r̂2ð1 � SE2

SStotal
Þ.

With a similar motivation, Cadena et al. [9] provide a metric they call “fraction explainable

variance explained” (FEVE). They form the ratio of mean squared prediction error over total

variance of the response (except subtracting off an estimate of trial-to-trial variability from

both) and subtract this ratio from one. While all of these methods might be intuitively appeal-

ing, the quantities to which they converge, and their relationship to r2
ER is unclear.

Unlike the above approaches, we follow a line of research [3, 6] that explicitly attempts to

construct an unbiased estimator of r2 in the absence of noise (see Methods, “Prior analytic

methods of estimating r2
ER”). Heretofore many of the methods reviewed above have not been

quantitatively validated and none have been directly compared. We now compare all these

methods with respect to estimating r2
ER. We exclude from this comparison David and Gallant

[5] because their method depends on a large number of repeated trials, at which point the esti-

mators’ utility decreases.

We quantified the ability of all methods to estimate r2
ER in a simulation with n = 4 trials and

m = 362 stimuli (see Methods, “Simulation procedure”). We sort the estimators (Fig 4, y-axis)

by their MSE in a test case where r2
ER ¼ 1. We generally find, r̂2

ER, U, SPEnorm, CC2

norm‐SP, FEVE,

and CC2

norm‐split are all comparable in their performance (red trace, top 6 points) with r̂2
ER

Fig 4. Comparison of r̂ 2
ER with published estimators of r2

ER on the basis of simulated and real data. (A) Low SNR (0.25)

simulation where estimators on vertical axis are sorted from top to bottom by smallest MSE with respect to estimating r2
ER ¼ 1.

Traces show mean and SD of each estimator. (B) Same simulation at higher SNR (1.0) but same m, n. (C) Estimated fit of DNN to

V4 data by r̂2
ER and published estimators. Each trace is the estimated fit of the model for one neural recording.

https://doi.org/10.1371/journal.pcbi.1009212.g004
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performing slightly, but significantly, better. SPEnorm and CC2

norm‐SP are numerically identical

in their performance and their trial-to-trial results. On the other hand, r̂2ð1 � SE2

SStotal
Þ and

r̂2
norm� split� SB both over estimate r2

ER, and the naive estimator r̂2, as expected, yields an under esti-

mate (mean = 0.50). In addition CC2

norm‐PB underestimates r2
ER. When the true r2

ER is 0.5, we find

similar results, where r̂2ð1 � SE2

SStotal
Þ and r̂2

norm‐split‐SB produce overestimates (0.63 and 1.04 on

average, respectively) and the mean r̂2 is 0.25. Thus, serious caution should be taken when

interpreting these last two estimators. We applied these estimators to neural data from V4 fit

by a deep neural network (see Methods, “Electrophysiological data”) and found a similar pat-

tern of results where the top 6 estimators give similar estimates to each other, r̂2ð1 � SE2

SStotal
Þ and

r̂2
norm� split� SB tend to be greater than these estimators, and the estimators r̂2 and CC2

norm‐PB are

lower (Fig 4C). We conclude r̂2
ER is as good as any estimator of r2

ER available, has a simple ana-

lytic form, and in contrast to U, can still be calculated without calculating the sample variance,

for example, if no repeats are collected and variance must be assumed (see Discussion, “Rela-

tionship to prior methods”). None of the top five prior estimators we reviewed have associated

confidence intervals, and thus we now provide confidence intervals for r̂2
ER.

Confidence intervals for r̂2
ER

In order to interpret point estimates such as r̂2
ER, it is important to be able to meaningfully

quantify uncertainty about the estimate relative to the true parameter r2
ER. An α-level confi-

dence interval (CI) provides an interval that will contain the true parameter α × 100% of the

time for IID estimates. We considered three typical generic approaches to forming CIs for r̂2
ER:

the non-parametric bootstrap, the parametric bootstrap, and BCa [11]. We found all methods

to be lacking because they did not achieve the desired α in simulations with ground truth.

Motivated by these problems, we developed a novel Bayesian method. We first recount the

issues we found with the bootstrap methods and then provide a basic account of the Bayesian

method we use throughout the paper. For more detailed exposition, see Methods: “Quantify-

ing uncertainty in the estimator”.

The non-parametric bootstrap is a commonly used method to approximate CIs. In our

case, it involves randomly re-sampling with replacement from the n trials in response to each

of the m stimuli then calculating r̂2ðbÞ
ER for the bootstrap sample. Repeating this many times

allows the quantiles of the bootstrap distribution of r̂2ðbÞ
ER to be used as CIs. We applied this

method across a simulated population of 3000 neurons with m = 40 and n = 4 and found it suf-

fered from two problems. First, the CIs were not centered around r2
ER, specifically the interval

was too low (Fig 5A), with the upper and lower bounds of the interval (orange and blue traces,

respectively) almost always falling below the true value (green). Secondly, as the true r2
ER

increased from 0 to 1, CIs contained r2
ER at rates far lower than the desired α = 0.8 (Fig 6 cyan

trace, open-circles under the trace indicate a significant difference, p< 0.01 Bonferoni cor-

rected z-test). Thus at practically all levels of correlation, the non-parametric bootstrap per-

forms poorly. The problem is a result of the expected value of the empirical distribution (the

sample mean) being typically much lower than r2
ER. To overcome this, we turned to the

parametric bootstrap where we could explicitly estimate r2
ER with our estimator r̂2

ER. This

method approximates CIs by estimating the parameters of an assumed distribution from

which samples are generated. In our case it involves estimating σ2, r2
ER, and the variance of the

neuronal tuning curve d2 (see Results, “Signal-to-noise ratio as recording quality metric”) and

then simulating observations from the distribution with these parameters to calculate r̂2ðPBÞ
ER .
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Drawing many r̂2ðPBÞ
ER we again use the sample quantiles as CI estimates. Fig 5B shows that this

overcomes the main failure of the non-parametric bootstrap, but this method tended to be too

conservative for low r2
ER values (Fig 6 red trace below 0.8 at left side) and too liberal for high

values (red trace above 0.8 at right side). Deviations such as these are well known for bootstrap

percentile methods when the variance is a non-constant function of the mean and/or the dis-

tribution of the estimator is skewed [11]. The correction to the bootstrap, the bias-corrected

and accelerated bootstrap (BCa), can help ameliorate these issues by implicitly approximating

the skewness and the mean-variance relationship from bootstrap samples. We employed BCa

with our parametric bootstrap and found that performance improved relative to the paramet-

ric bootstrap (Fig 6 green trace closer to desired α than red for low r2
ER) but still deviated from

the desired α for low and high r2
ER.

We aimed to create a CI with better α-level performance. To do this, we assumed uninfor-

mative priors on the parameters σ2 and d2 so that, conditioned on estimates of these parame-

ters, we can draw from the distribution of r̂2
ERjr

2
ER for an arbitrary r2

ER (see Methods,

“Confidence Intervals for r̂2
ER”). This allows us to compute the highest true r2

ER that would have

given an observed r̂2
ER or a lower value in α/2 proportion of IID samples. We take this as the

high end, r2
ERðhÞ, of our CI. Similarly we determine the low end, r2

ERðlÞ, of the CI as the lowest r2
ER

that produces a value greater than or equal to r̂2
ER in α/2 of the samples. In Methods we give

conditions under which this procedure will provide α-level CIs (see Methods, “Confidence

intervals for r̂2
ER”). In our simulations, this method consistently achieves the desired α at all lev-

els of r2
ER (Fig 6, orange trace). We use this CI method, which we call the estimate-centered

credible interval (ECCI), throughout the rest of the paper.

Fig 5. Validation of confidence interval (CI) methods by simulation—example CIs for three methods. Simulation

parameters: n = 4, m = 40, true r2
ER ¼ 0:91, dynamic range d2 = 0.25, trial-to-trial variability σ2 = 0.25, and target confidence

level α = 0.8. Of 2000 independent simulations, CIs for the first 100 are plotted here for three different methods. CIs for all

methods were calculated using the same set of randomly generated responses. (A) For the non-parametric bootstrap method,

the upper end (orange) and lower end (blue) of the CI were almost always both below the true correlation value (0.91, green

line), indicating an overwhelming failure to achieve 80% containment of the true value. (B) The parametric bootstrap method

and (C) our ECCI method perform substantially better. Performance of all three methods over the full range of true r2
ER is

plotted in Fig 6.

https://doi.org/10.1371/journal.pcbi.1009212.g005
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Application of estimator to MT data

We have shown in simulation that the use of r̂2 introduces ambiguity as to whether a low cor-

relation value was the result of trial-to-trial variability or a poor model, whereas r̂2
ER removes

this ambiguity. Here we demonstrate in neural data how this, in tandem with confidence inter-

vals, allows investigators to distinguish between units that systematically deviate from model

predictions versus those that simply have noisy responses. We re-analyzed data from single

neurons in the visual cortical motion area MT responding to dot motion in eight equally

spaced directions [12, 13]. A classic model of these responses is a single cycle sinusoid as a

function of the direction of dot motion with the free parameters phase, amplitude, and average

firing rate. We chose this MT data set as the first example application because it has a high

number of repeats (n = 10) and a low dimensional model, thus it is simple to visually inspect

whether the neuronal tuning curves agree with the model predictions.

An example of an MT neuron direction tuning curve (Fig 7A, orange trace) has an excellent

sinusoidal fit (blue trace), as reflected in its estimated r̂2
ER ¼ 1:0. Furthermore, the short confi-

dence interval ([0.99, 1.0]) quantifies the lack of ambiguity about the quality of the fit. On the

other hand, the tuning curve of a neuron with r̂2
ER ¼ 0:05 (Fig 7B) has a clear systematic devia-

tion from the least-squares fit. Here the tuning curve is double-peaked and thus largely orthog-

onal to any single cycle sinusoid. It is important to notice that this neuron has far lower SNR

(2.8 here vs. 20 for the example in A), as quantified by our estimator, dSNR (Eq 16), which cor-

rects for trial-to-trial variability (described below and defined in Methods, “Estimators of cor-

rection terms”). Thus without r2
ER, there would be plausible doubts about whether the

correlation was lower because of noise or systematic deviation. Furthermore, with low SNR it

would be plausible that the estimate itself is noisy (Fig 3A), but the short confidence interval

([0.01, 0.11]) unambiguously characterizes the fit as being systematically poor.

In some cases, neurons show little tuning for direction and thus have very low SNR over a

set of directional stimuli. This in turn can cause r̂2
ER to give wild estimates (Fig 7C,

dSNR ¼ 0:05, r̂2
ER ¼ 1:81). If we truncate the value to the nearest possible r2

ER ¼ 1, we might be

Fig 6. Comparison of four methods for computing confidence intervals for r̂ 2
ER spanning the full range of true

correlation. The fraction of times the CI contained the true value is plotted for each method (see line style inset) as a

function of the true correlation value, r2
ER, at 100 values linearly spaced between 0 and 1. The target α-level was 0.8.

Open circles indicate that the fraction deviated from 0.8 significantly (p< 0.01, Bonferroni corrected).

https://doi.org/10.1371/journal.pcbi.1009212.g006
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tempted to interpret this as a well-fit direction selective neuron. But, the CI covers most of the

interval of possible values ([0.3, 1]), making it clear that little information can be gleaned

about r2
ER from this data. Extreme r̂2

ER values themselves can indicate when the estimator is

unreliable, but even a reasonable seeming r̂2
ER value, for example r̂2

ER ¼ 0:59 (Fig 7D), can be

unreliable when there is a low dSNR (0.12). In this case, the confidence interval covers the maxi-

mal range ([0, 1]), indicating that the point estimate is unreliable. Thus, r̂2
ER and its associated

confidence interval quickly and unambiguously show how well the model fits the MT data,

avoiding the tiresome and unreliable process of judging each fit by eye for the 162 neurons.

While we have shown to a good approximation that r̂2
ER is unbiased and its expected value is

largely invariant to SNR, this is definitely not the case for the variance of the estimator. Fig 3A

shows clearly that the variability of the estimator is larger for lower SNR. This fact should be

kept in mind when interpreting the spread of r̂2
ER values. For example, we calculated r̂2

ER and

confidence intervals across our entire population of MT neurons. Of the estimates with high

SNR (Fig 8, right side, dSNR > 3:5), most neurons are well fit to the model and only a few have

less than 3/4 of their variance accounted for (8/81). For the estimates with low SNR

(dSNR < 3:5), left side of Fig 8), this fraction is substantially higher (39/81), but the increased

Fig 7. Applying our unbiased estimator with CIs to fit four example MT neuronal direction tuning curves to a

sinusoidal model. (A) Example neuron tuning curve (orange trace with SEM bars) with excellent fit to sinusoidal

model (blue trace, r̂2
ER ¼ 1:0), high SNR and tight CI (parameters specified above plot panel). (B) Example neuron

with poor fit to sinusoidal model but with a reasonable SNR and narrow CI that provide confidence that the neuronal

tuning systematically deviates from the model. (C) Example neuron with poor SNR and wild estimate of r̂2
ER, which is

reflected in large CI = [0.3, 1], suggesting that no conclusion can be made about how well the model describes any

actual tuning here. (D) Example neuron with a seemingly reasonable r̂2
ER, but the low SNR and CI covering the entire

interval [0, 1] reveals that this fit cannot be trusted.

https://doi.org/10.1371/journal.pcbi.1009212.g007
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variability of these estimates will spread out the distribution, thus this difference in quantiles

must be interpreted carefully. When estimating population dispersion, conclusions may be

confounded by the SNR-dependence of the variability of r̂2
ER.

Comparing the naive r̂2 to our unbiased r̂2
ER (Fig 9), the high SNR units (red points), lie

close to the diagonal. Thus for these units, one could exchange the two estimates and come to

similar general conclusions about model fits. The utility of r̂2
ER is that it removes ambiguity

about whether trial-to-trial variability may be spuriously pushing fits down (black points). The

interpretation of the naive estimator r̂2 remains ambiguous for any given unit until it can be

confirmed it does not suffer from this issue.

The MT data considered here has relatively few stimuli and many repeats, but other experi-

mental paradigms involve a larger number of stimuli and, consequently, fewer repeats. Below

we apply r̂2
ER in these more challenging conditions.

Fig 8. Confidence intervals (α = 90%, vertical lines) and point estimates (red dashes) for r̂ 2
ER across all MT neuron

direction tuning curves fit to sinusoidal model. Data points are grouped into two intervals on the basis of dSNR (of

the direction tuning curves) being less than or equal to or higher than the median value (3.5), revealing that lower SNR

(left interval) is associated with much longer CIs.

https://doi.org/10.1371/journal.pcbi.1009212.g008

Fig 9. Relationship of naive r̂ 2 and corrected r̂ 2
ER between fits of sinusoidal model to MT data. Units with dSNR

greater than the median across the population (dSNR ¼ 3:5) are plotted in red and those less than or equal to in black.

https://doi.org/10.1371/journal.pcbi.1009212.g009
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Application of estimator to V4 data

The primate mid-level visual cortical area V4 is known to have complex, high-dimensional

selectivity for visual inputs. To rigorously assess models of neuronal responses in areas like V4,

validation needs to be performed on responses to a large corpus of natural images to ensure

that models capture ecologically valid selectivity [14, 15]. Thus, the number of unique stimuli,

m, will be large at the expense of having relatively few repeats, n, and SNR can be low because

stimuli are not customized to the preferences of a given neuron. These are the challenging con-

ditions under which r̂2
ER avoids the major confounds of r̂2. Here we estimate r̂2

ER and associated

90% confidence intervals for a model that won the University of Washington V4 Neural Data

Challenge by most accurately predicting single-unit (SUA) and multi-unit activity (MUA) for

held-out stimuli (see Methods, “Electrophysiological data”). Plotting r̂2
ER against r̂2 (Fig 10A)

shows that the corrected estimates are higher than the naive estimates (points lie above diago-

nal line). Using r̂2
ER here is important because it provides confidence that the poor fit quality is

not a result of noise and that the best performing model often did not explain more than 50%

of the variance in the tuning curve.

While we have examined r̂2
ER for individual recordings, it can also be useful to estimate the

average quality of model fit across a population of neurons. Since the individual estimates are

unbiased, the group average is also an unbiased estimate of the population mean r̂2
ER. We com-

puted such group means for the single-unit and multi-unit V4 recordings (Fig 10B), and

found that the model performed significantly better in predicting the responses of multi-unit

activity (Welch’s t-test p = 0.005, MUA mean = 0.57, SUA mean = 0.35). If instead the naive r̂2

were used, this finding could have been dismissed as the result of MUA having higher SNR

and thus naturally higher r̂2. As it stands, this interesting observation can be followed up to

potentially gain insight about the structure of selectivity across multiple units recorded nearby

in V4.

Finally, this V4 data set provides a good example of how using r̂2
ER can allow testing a larger

stimulus space, as predicted by simulations above in Fig 3B. Fig 11 shows that with r̂2
ER (solid

lines, on average two trials is enough to estimate the true correlation, whereas the naive estima-

tor requires more repeats (higher n) to converge. For example, for recording 1 (red), r̂2
ER (solid

Fig 10. Applying r̂ 2
ER to analyze performance of a deep neural network (DNN) in predicting V4 responses to

natural images. (A) For single-unit (orange) and multi-unit (blue) recordings, r̂2
ER is plotted against the naive r̂2. The

relatively short α = 0.1 CIs (vertical bars) suggest that most of these correlation values are trustworthy. (B) The mean

r̂2
ER value across multi-unit recordings (horizontal blue line) is significantly higher than that for the set of single-unit

recordings (orange horizontal line; Welch’s t-test t = 3.7, p = 0.005). Because individual estimates are asymptotically

unbiased, the group average inherits this lack of bias.

https://doi.org/10.1371/journal.pcbi.1009212.g010
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line) on average predicts the same quality of model fit for two or more stimulus repeats,

whereas even after six repeats, the naive r̂2 has not converged.

Signal-to-noise ratio as recording quality metric

We have shown above that correcting for bias in r2 is important, but it is also critical to recog-

nize when recordings are so noisy that they are effectively useless for evaluating a model. Here

we demonstrate the use of the signal-to-noise ratio (SNR) as a quality metric to help make this

determination. We define the SNR for a neuronal tuning curve to be the ratio of the variation

in the expected response across stimuli to the trial-to-trial variability across repeats:

SNR ¼
1

m

Pm
i¼1
ðmi � �mÞ

2

s2
; ð5Þ

where μi is the expected response to the ith stimulus and �m ¼ 1

m

Pm
i¼1
mi. For experimental data,

we do not know μi in Eq 5, and rather than substituting sample estimates, Yi, which would give

an inflated estimate, we use an equation that corrects for trial-to-trial noise (dSNR, Eq 16, Meth-

ods). The removal of this bias in our SNR metric allows for direct comparisons between studies

with different numbers of repeats and amounts of trial-to-trial variability. This is appropriate

because SNR is not a function of n or m, rather it can vary across neurons, sets of stimuli and

recording modalities, as we show below.

We examined a diverse collection of neural data sets (see Methods, Electrophysiological

data) and found wide variation in dSNR both within and across the data sets (Fig 12A). At the

low end, calcium imaging data from cortical neurons in area VISp of mouse responding to

gratings (pink trace N = 40,520 neuronal ROIs, [16]) had a median SNR of 0.01, while at the

high end, MT neurons in response to dot motion [12] had a median dSNR of 3.5 (blue trace,

Fig 11. Relationship of naive r̂ 2 and corrected r̂ 2
ER with n, the number of repeats for V4 data. Different colors

indicate different recordings. Solid lines show the average r̂2
ER estimate across random shuffling of trials (with

replacement); vertical bars indicate SD. Dashed lines show average r̂2.

https://doi.org/10.1371/journal.pcbi.1009212.g011
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N = 162). A stimulus protocol nearly identical to that used for the VISp Ca2+ data (pink and

gray traces for gratings and natural images, respectively) was used to collect the Allen Institute

NeuroPixel electrode data [17] (purple and brown traces N = 2,015); however, the Ca2+ data

had a substantially lower dSNR (0.01 and 0.02) compared to the electrode data (dSNR 0.12 and

0.19), suggesting that this difference relates to the recording modality.

In the case of spiking neurons, SNR can be improved by increasing the stimulus duration

and thus the spike counting window. Under the generally optimistic assumption that spike

rate stays constant in the counting window and assuming that the spike counting window

could be changed given experimental constraints, we can normalize dSNR across the data-sets

to what the dSNR would have been had all spike count windows been 1 second long (Fig 12B).

Under these assumptions, this normalization allows us to examine SNR differences across

studies removing the counting window length as a factor. We find this reduces the differences

in dSNR across the spiking data-sets (the six right-most traces), thus the outstanding dSNR of

the MT data-set could potentially have been achieved if spike count windows had been longer

for the other experiments. Still, of the spiking data, the Allen Neuropixel data has the lowest

medians, thus additional efforts to ameliorate low SNR (via number of trials or stimulus

choice) could be utilized. Furthermore, the assumption of a constant spike rate will hold to

Fig 12. A comparison of our data quality metric, the signal-to-noise ratio estimator dSNR (Eq 16), across several

datasets. (A) The cumulative distribution of dSNR under the original experimental protocols. Traces with the same line

thickness have similar numbers of n and m. Thick line (blue): MT data has n� 10, m = 8. Medium lines (green, orange,

red): V4 data has n� 5, m� 350. Thin lines: Allen Inst. data has n� 50, m� 120. The Allen Inst. data has two

recording modalities: extracellular action potentials (spikes) on Neuropixel probes (NP) and two-photon calcium

imaging (Ca). Both were recorded for the same stimuli: natural scenes and gratings (see Methods, “Electrophysiological

data”). (B) Distribution of dSNR after normalization with respect to the duration of the spike counting window (traces

for calcium signal are not included). The normalization assumes that the original average spike rate can be applied to a

1 s counting window. But, if firing rates tend to decay over time, this will produce overestimates for recordings shorter

than 1 s and underestimates for recordings longer than 1 s.

https://doi.org/10.1371/journal.pcbi.1009212.g012
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different degrees: neural responses can peak shortly after stimulus onset and then return close

to baseline. Thus, different experimental conditions call for different standards for number of

trials and stimulus duration to adequately characterize a tuning curve.

To provide concrete meaning to dSNR, we suggest interpreting it in terms of the number of

trials (m and n) needed to reliably detect stimulus modulation in an F-test. Specifically, for a

given m and n we computed the minimal SNR required to achieve a high probability (β = 0.99)

of rejecting the null hypothesis that the mean response to all stimuli is the same (see Methods,

SNR relation to F-test and number of trials, Eq 22). We plot a color map of this minimal SNR

as a function of m and n (Fig 13), where the diagonal grey contour lines indicate fixed total

number of trials (mn) for different m: n ratios. In general, as the total number of trials increases

(moving perpendicular to the grey diagonals toward the upper right), the SNR required for

reliable tuning curve estimates decreases. The SNR threshold is lower when n is favored over

m for the same number of total trials, i.e., the SNR threshold level iso-contours have steeper

slopes than the grey diagonals.

On this map, we can locate points corresponding to the m and n, roughly, for data sets in

Fig 12. The three V4 data sets have about the same number of stimuli and repeats (arrow

marked “V4”, Fig 13), and thus require SNR�0.1 or greater, implying that from 3% to 23% of

the V4 data does not pass the criterion (Fig 12A, red and green traces, respectively, define end-

points). The MT data has the fewest number of total trials and thus has the highest threshold

SNR� 0.5, which leaves 10% of the neurons with poorly estimated tuning curves. If more sti-

muli had been used at the expense of fewer repeats, say n = 2 and m = 40, then only a quarter

of the neurons would have exceeded the increased threshold of SNR > 1. The Allen Ca2+ and

spike data sets both had similar m and n. Relative to the other data sets they had far more

total trials and a greater number of repeats, thus the SNR criterion is substantially lower

(SNR> 0.01). Still, for the Ca2+ data,� 37% of the grating and� 25% of the natural image

data did not have reliable tuning (Fig 12A, pink and grey thin trace). The Allen spiking data on

the other hand had much higher SNR, and thus more trials could have been spent on expand-

ing the stimulus set and fewer on repeated presentation (Fig 12A, thin brown purple trace).

Fig 13. The minimal SNR needed to reliably detect tuning as a function of m, the number of unique stimuli, and

n, the number of repeats of each stimulus. White arrows indicate the approximate location in (m, n) corresponding

to the datasets used in Fig 12. Gray diagonal lines indicate constant number of total trials (n ×m).

https://doi.org/10.1371/journal.pcbi.1009212.g013
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We have shown SNR can be employed as a simple metric with a concrete interpretation to

judge data quality across different organisms, recording modalities and brain regions for the

purpose of making comparative analyses and setting aside data that has little or no power. The

expected distribution of SNR, based on prior data, can be taken into account when choosing n
and m to achieve a criterion level of statistical power for an experiment. If SNR is high, record-

ing time can be reduced by keeping n and m low, or a larger stimulus set can be explored by

increasing m at the expense of n.

Discussion

Summary

We have investigated the estimation of the correlation between a model prediction and the

expected response of a neuron. Although it has been long established that trial-to-trial variabil-

ity will cause the classic estimator, Pearson’s r̂2, to underestimate correlation, there has been

no direct comparison of prior methods to account for this confound. We found that some

methods grossly over estimate correlation in high noise conditions, and we built upon the best

performing method to derive a more generally applicable estimator, r̂2
ER, that performs as well

as or better than prior methods. We analytically validated r̂2
ER by determining that it was a con-

sistent estimator in the number of stimuli. We found in simulation that it had a small upward

bias, but this was only appreciable at very high noise levels. None of the prior methods that we

examined had validated confidence intervals, thus we developed confidence intervals for r̂2
ER.

Motivated by the failure of generic bootstrap methods to achieve satisfactory confidence inter-

vals, we developed a confidence interval method that outperformed them.

Applying our estimator to neural data, we demonstrated its essential value. In the case of

MT recordings, it was able to unambiguously distinguish neurons for which a sinusoidal

model was a good fit from those for which it was a poor fit specifically because of systematic

deviation and not because of noise. The associated confidence intervals allowed the systematic

identification of noisy recordings that served no practical use in assessing the fit of the model.

Poor model fits caused by noise vs. those caused by systematic differences in selectivity have

very different interpretations, yet the traditional r̂2 does not differentiate them while r̂2
ER does.

Application of the estimator to the winning UW neural data challenge model, a deep neural

network (DNN), provides the only validated assessment of state-of-the-art predictive model

performance in V4. The estimator along with its CIs identified neurons that were challenging

to the DNN and perhaps require a different modeling approach. It also validated the existence

of single units that had nearly 50% of their variance explained, indicating that the DNN func-

tionally captured a substantial part of what these units encode across natural images and thus

could provide real insight into naturalistic V4 single unit encoding. On a practical level, we

showed how the estimator allows for gains in trial efficiency since it converges more rapidly

than r̂2 (Figs 3B and 11). This is important when many stimuli are needed to validate models

of high dimensional neural tuning.

Our tests on experimental data revealed that some neurons had confidence intervals cover-

ing the entire range of possible values, motivating us to propose the signal-to-noise ratio

(SNR) as a metric of neural recording quality in the context of model fitting. We provide an

unbiased estimator of SNR (Eq 16) and a practical interpretation: for a given number of stimuli

and repeats, the SNR should be sufficient to reliably detect stimulus-driven response modula-

tion on the basis of an F-test (Eq 22). Examining a variety of data sets, we found differences

with respect to how the numbers of stimuli vs. repeats (m vs. n) were balanced, revealing how

adjustments can be made on the basis of SNR to improve experimental efficiency. We also

found large differences in SNR across data sets that are likely related to recording modality
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(e.g., Ca2+ imaging vs. electrode recording), which could be important for selecting appropri-

ate experimental approaches and for guiding the refinement of current techniques to improve

SNR.

Interpretation of r2
ER

We have introduced an estimator and confidence intervals for the correlation between the true

tuning curve of a neuron (its expected value across stimuli) and model predictions: r̂2
ER. In the

context of sensory neurophysiology, we believe it is reasonable to think of r2
ER as reflecting

solely how well a model explains a sensory representation. We justify this by the fact that r2
ER is

solely a function of E[Response|Stimulus] thus solely a function of stimuli. We note two cave-

ats: (1) non-sensory signals can influence sensory responses, e.g., eye movements which may

be stimulus dependent and (2) E[Response|Stimulus] is not the only component of the sensory

response, e.g., variability can also be stimulus dependent [18].

Relationship of r̂2
ER to U

We have taken a similar approach to Haefner and Cumming [6], commensurately their esti-

mator gives nearly identical results to ours in simulation (less than< 0.0001% power unex-

plained for SNR = 1 vs >1% for the other estimators), though we provide an important

generalization. Their formula requires the calculation of the sample variance because their der-

ivation relies on the F-distribution formed by taking the ratio of the sum of squares of model

residual over the sample variance (see Methods, U). This is problematic if stimuli are never

repeated in an experiment (for example, in free viewing experiments), then one has to assume

a priori the trial-to-trial variability either from previous experimental measurements or by

asserting a theoretical mean-variance relationship (e.g., the square root of Poisson distributed

spiking gives s2 ¼ 1

4
).

Haefner and Cumming’s estimator is more general than the r̂2
ER we have presented. The

estimate r̂2
ER measures the variance of the mean centered data explained by a single covariate,

and U measures the variance explained by a linear combination of up to m covariates. In par-

ticular, U, accounts for the decrease in degrees of freedom available to the noise as more covar-

iates are added. We also provide the more general version of our estimator for the case of

variance explained by a linear model (Eq 23) with the advantage discussed in the previous

paragraph.

SNR

We found that differences in SNR can be substantial and widely varying across neurons, data

sets, and recording methods. Given the rise in large scale recordings and sharing of neuronal

data, we believe unbiased estimates of SNR should be reported so that researchers can quickly

judge whether a data set has sufficient statistical power or whether its power is on par with that

of data sets from potentially comparable studies. We provide concrete criteria by which to

interpret SNR: the statistical power to detect stimulus-driven response modulation. Strikingly,

in our small sample of data sets, many neurons do not pass this criteria, suggesting that the

adoption of a standard criterion for data quality, such as our SNR metric, could have a major

impact in practice. Furthermore, guided by the metric the experimentalist can take steps to

improve SNR by increasing stimulus duration and associated spike counting windows or by

customizing stimuli to the preferences of a neuron. On the other hand, the deleterious effects

of low SNR can be ameliorated by favoring repeats over number of stimuli (Fig 13).
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One conceptual interpretation of the SNR metric we introduced is that it quantifies, for the

time scale of the spike count window, the overall variance in the responses of the neuron

attributable to the tuning curve of the neuron vs. trial-to-trial variability about that tuning

curve. For example on the time scale of 1 second, a large fraction of spike-based recordings

had SNR>1, indicating that more variance was caused by the stimulus than by other sources

(Fig 12B blue, orange, green traces median SNR> 1). Still, an appreciable number of neurons

were dominated by their trial-to-trial variability. Whether this is the result of stimulus choice

and perhaps would be different in a more natural context is an open question. Recent theoreti-

cal and experimental work has argued that weakly tuned and untuned neurons can contribute

to sensory encoding [19–21]. The corrected estimate of SNR we provide (Eq 16) along with

naturalistic stimulation can help to identify such neurons.

Further work

Small improvements to our r̂2
ER estimator could be made by decreasing its bias in the case of

very low SNR (see Methods, “Bias of r̂2
ER”). In the case of very low SNR, a single neuronal

recording has little inferential power, but across a population of neurons, estimates of the aver-

age correlation to a model’s predictions can have low enough variance to provide useful infer-

ence. Yet, at very low SNR an appreciable bias begins to appear that will remain in the

population average. We showed this bias is a function of the covariance between the numera-

tor (ĈERm
) and inverse of the denominator ( 1

V̂ ERm
) of r̂2

ER and Jensen’s gap where E½ 1

V̂ ERm
� > 1

E½V̂ ERm �

(Eq 17). The former covariance can be removed by using separate subsets of the data for esti-

mation of the numerator and denominator. To reduce the influence of Jensen’s gap, further

work could attempt to directly estimate and correct for its value. In addition, analytic results

on how this small sample bias varies as a function of critical parameters m, n and SNR would

be helpful in it’s interpretation.

In the derivation of our estimator we assume the m responses across which the model pre-

dictions are evaluated are independent. Thus the estimator in its current form would not be

appropriate for evaluating models that make predictions across spike counts in adjacent time

bins. In future work we plan to extend our estimator to the case of correlated responses.

Here we have derived an estimator for the case where deterministic model predictions are

correlated to a noisy signal. Often, one noisy signal is correlated to another, for example when

judging the similarity of tuning curves from two neurons (termed signal correlation). We have

extended the methods described here to the neuron-to-neuron case and will describe this in a

forthcoming publication.

A subtle but important point about our estimator is that it assumes stimuli are fixed: it esti-

mates the r2
ER for the exact stimuli shown. An investigator may be interested in the quality of a

model across a large corpus of natural images of which only a small fraction can be included in

a recording session. In this case, one collects responses for a random sample of images, fits the

model to some (training set) and tests the model on others (test set). The random test set will

account for over-fitting and using r̂2
ER will account for noise in the neural responses in the eval-

uation on the test set. Crucially though, this does not account for the variability in the parame-

ters of the model induced by the random training sample. Intuitively, estimated model

parameters will vary across image sets even in the absence of trial-to-trial variability. The cor-

rect interpretation of r̂2
ER in this case is that it estimates how well a model can perform given

finite noisy training data on noiseless test set data, and not as the best the model could possibly

perform given infinite training data. Indeed, with more neural responses and less noise, model

test set performance would improve. David and Gallant [5] explored this issue calling it ‘esti-

mation noise’ and provided an extrapolation method for estimating the fit of a linear model
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given unlimited stimuli. The estimator was not evaluated in terms of its bias or variance, and

no analytic solutions that directly remove the bias of finite training data have been proposed.

Both are valuable directions to pursue: the former to build confidence in the current method

and the latter for potential gains in trial efficiency. A data driven re-sampling approach may be

unavoidable when evaluating complex models where the relationship between the amount of

training samples and model performance would be analytically intractable, such as a deep neu-

ral network or biophysical model.

Materials and methods

Simulation procedure

To simulate model-to-neuron fits, the square root of neural responses, ri,j, for the ith of m sti-

muli and the jth of n trials are modeled as independent normally distributed responses:

Yi;j � N½mi; s
2�; ð6Þ

where variance σ2 is the same across all Yi,j. The mean response of the neuron to the ith stimu-

lus (tuning curve) is mi ¼ aþ b sin ði� 1Þ2p

m þ y
� �

(Fig 1A, green trace solid dots) whose correla-

tion to the model predictions mi ¼ sin ði� 1Þ2p

m

� �
(red trace solid dots) are estimated, and the true

correlation is r2
ER ¼ cos 2ðyÞ. The results of the simulation are only a function of the magnitude

of the centered vector of expected responses d2 the correlation between model prediction and

tuning curves, m, n, and σ2 thus the form of the model and true tuning curve is arbitrary. We

choose a sinusoid for the simplicity of adjusting the phase, θ, to simulate different r2
ER.

From this model we draw n responses for each of the m stimuli and apply our estimator to

this sample. We repeat this across many IID simulations to accumulate reliable statistics.

Assumptions and terminology for derivation of unbiased estimators

Below we derive an unbiased estimator of the fraction of variance explained when a known sig-

nal is being fit to noisy neural responses. For this derivation, we assume the responses have

undergone a variance stabilizing transform such that trial-to-trial variability is the same across

all stimuli. For example, if the neural responses are Poisson distributed, Yi,j� P(λi), where Yi,j

is the response to the jth repeat of the ith stimulus, which has expected response λi, then a vari-

ance stabilizing transform is the square root. In particular, if Y�i;j ¼
ffiffiffiffiffiffi
Yi;j

p
, then,

E½Y�i;j� ¼ E½
ffiffiffiffiffiffiffiffiffiffiffi
PðliÞ

p
� �

ffiffiffiffi
li

p
;

and

Var½Y�i;j� ¼ Var½
ffiffiffiffiffiffiffiffiffiffiffi
PðliÞ

p
� �

1

4
:

The expected value of the transformed response, Y�i;j, still increases with λi, whereas the vari-

ance is now approximately constant. To improve the estimate of the mean response, n repeats

of each stimulus are collected. Invoking the central limit theorem, we can make the approxi-

mation:

1

n

Xn

j¼1

Y�i;j ¼ �Y �i � N
ffiffiffiffi
li

p
;

1

4n

� �

;

where the average across the n repeats is approximately normally distributed with variance

decreasing with n. The assumption of a Poisson distributed neural response is not always
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accurate. A more general mean-to-variance relationship,

s2ðmÞ ¼ amb;

can be approximately stabilized to 1 by,

f ðxÞ ¼ ½
ffiffiffi
a
p
ð1 �

1

2
bÞ�� 1x1� 1

2
b:

A square root will stabilize any linear mean-to-variance relationship (b = 1), but an unknown

slope, a, requires that this parameter be estimated. In the case of the linear relationship, this

simply requires taking a square root and then averaging the estimated variance, which is con-

stant, across all stimuli. To account for more diverse mean-to-variance relationships, the Box-

Cox technique can be used find an appropriate exponent by which to transform the data [22].

For the derivation below, we assume that variance-stabilized responses to n repeats have been

averaged for each of m stimuli to yield the mean response to the ith stimulus: Yi � N mi;
s2

n

� �
,

where σ2 is the trial-to-trial variability and μi the ith expected value.

Unbiased estimation of r2

Given a set of mean neural responses, Yi, and model predictions, νi, the naive estimator, r̂2, is

calculated as follows:

r̂2 ¼
ð
Pm

i¼1
ðni � �nÞðYi �

�Y ÞÞ2
Pm

i¼1
ðni � �nÞ

2Pm
i¼1
ðYi �

�Y Þ2
: ð7Þ

Our goal is to find an estimator such that,

E½r̂2
ER� ¼ r2

ER ¼
ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2

Pm
i¼1
ðni � �nÞ

2Pm
i¼1
ðmi � �mÞ

2
; ð8Þ

where r2
ER is the correlation in the absence of noise, i.e., the fraction of variance explained by

the model prediction, ν, of the expected response (ER), μi, of the neuron. Our strategy will be

to remove the bias in the numerator and denominator separately and then reform the ratio of

these unbiased estimators for an approximately unbiased estimator.

Unbiased estimate of numerator. The numerator of Eq 7, which we call Ĉm, is a weighted

sum of normal random variables that is then squared, thus it has a scaled non-central chi-

squared distribution:

Ĉm ¼
Xm

i¼1

ðni � �nÞðYi �
�Y Þ

 !2

�
s2

n

Xm

i¼1

ðni � �nÞ
2
w2

1

ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2

s2

n

Pm
i¼1
ðni � �nÞ

2

 !

; ð9Þ

and since E½w2
mðlÞ� ¼ lþm its expectation is:

E½Ĉm� ¼
s2

n

Xm

i¼1

ðni � �nÞ
2E w2

1

ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2

s2

n

Pm
i¼1
ðni � �nÞ

2

 !" #

¼
s2

n

Xm

i¼1

ðni � �nÞ
2 ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2

s2

n

Pm
i¼1
ðni � �nÞ

2
þ 1

 !

¼
Xm

i¼1

ðni � �nÞðmi � �mÞ

 !2

þ
s2

n

Xm

i¼1

ðni � �nÞ
2
:

ð10Þ
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In the final line, the term on the left is the desired numerator and the term on the right the bias

contributed by σ2. To form our estimator, ĈERm
, for the numerator of Eq 15, we simply subtract

an unbiased estimator of this bias term from the numerator of the naive estimator 2:

ĈERm
¼ ð
Xm

i¼1

ðni � �nÞðYi �
�Y ÞÞ2 �

ŝ2

n

Xm

i¼1

ðni � �nÞ
2
; ð11Þ

where ŝ2 is typically the sample variance, s2, estimated from the data, but it can be any unbi-

ased estimator, even an assumed constant. For example, if stimuli are not repeated (i.e., n = 1)

and one is willing to assume that responses are Poisson distributed, then the square root of

these responses will give s2 ¼ 1

4
and thus one can substitute ŝ2 ¼ 1

4
. The case for the denomina-

tor is similar.

Unbiased estimate of denominator. The denominator of Eq 7, which we call V̂m, is a

weighted sum of squared normal random variables and thus also follows a scaled non-central

chi-squared distribution:

Xm

i

ðni � �nÞ
2
Xm

i

ðYi �
�Y Þ2 �

s2

n

Xm

i¼1

ðni � �nÞ
2
w2

m� 1

Pm
i¼1
ðmi � �mÞ

2

s2

n

 !

; ð12Þ

with expectation,

E½V̂m� ¼
s2

n

Xm

i¼1

ðni � �nÞ
2E w2

m� 1

Pm
i¼1
ðmi � �mÞ

2

s2

n

 !" #

¼
Xm

i¼1

ðni � �nÞ
2
Xm

i¼1

ðmi � �mÞ
2
þ ðm � 1Þ

s2

n

Xm

i¼1

ðni � �nÞ
2
:

ð13Þ

Similarly to the numerator, the first term is the desired denominator, and the second term is

the bias. Thus, we subtract an unbiased estimate of this second term from the naive denomina-

tor:

V̂ ERm
¼
Xm

i¼1

ðni � �nÞ
2
Xm

i¼1

ðYi �
�Y Þ2 � ðm � 1Þ

ŝ2

n

Xm

i¼1

ðni � �nÞ
2
: ð14Þ

Taking the ratio of these two unbiased estimators (Eqs 11 and 14) we have:

r̂2
ER ¼

ĈERm

V̂ ERm

¼
ð
Pm

i ðni � �nÞðYi �
�Y ÞÞ2 � ŝ2

n

Pm
i¼1
ðni � �nÞ

2

Pm
i¼1
ðni � �nÞ

2Pm
i¼1
ðYi �

�Y Þ2 � ŝ2

n

Pm
i¼1
ðni � �nÞ

2
ðm � 1Þ

: ð15Þ

This equation can be further simplified by scaling the model predictions such that
Pm

i¼1
ðni � �nÞ

2
¼ 1.

Estimators of correction terms. Two important parameters, d2 ¼ 1

m

Pm
i¼1
ðmi � �mÞ

2
and

σ2, are unknown. Below we provide unbiased estimators of each of these terms. An unbiased

estimate of sample variance for trials of the ith stimulus is s2
i ¼

1

n� 1

Pn
j¼1
ðYi;j �

�Y i;�Þ
2
, where the

dot in the subscript of �Y i;� indicates the mean over repeats. Assuming the variance is the same

across stimuli, we can average over i for a global estimate:

s2 ¼
1

m

Xm

i¼1

s2

i :

Throughout the paper we use this as our estimate of trial-to-trial variability ŝ2.
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For d2 we have:

E½
1

m

Xm

i¼1

ðYi �
�Y Þ2� ¼

1

m
E
s2

n
w2

m� 1

n
s2

Xm

i

ðmi � �mÞ
2

 !" #

¼
1

m

Xm

i

ðmi � �mÞ
2
þ ðm � 1Þ

s2

n

 !

;

which would be inflated by trial-to-trial variability, so as an unbiased estimator we use,

d̂2

ER ¼
1

m

Xm

i¼1

ðYi �
�Y Þ2 � ðm � 1Þ

ŝ2

n

 !

:

We use this estimator to correct the estimate of SNR (Eq 5) for trial-to-trial variability as fol-

lows:

dSNR ¼
d̂2
ER

ŝ2
: ð16Þ

Bias of r̂2
ER

To remove the bias of Pearson’s r̂2, we follow the approach of subtracting off its effect in the

numerator and denominator. Prior work has not examined the potential problem with this

approach: the expectation of a non-linear transformation of a set of random variables is not

necessarily the transformation of their expected values. In this particular case, the expectation

of the ratio is not necessarily the ratio of the expectations: E½ĈERm
=V̂ ERm

� 6¼ E½ĈERm
�=E½V̂ ERm

�.

Thus even though we have removed the bias in the numerator and denominator, it does not

imply their ratio is unbiased. Calculating the expectation of the ratio we see the conditions

under which it will be unbiased:

E ĈERm
=V̂ ERm

h i
¼ E ĈERm

1

V̂ ERm

" #

¼ Cov ĈERm
;

1

V̂ ERm

" #

þ E ĈERm

h i
E

1

V̂ ERm

" #

: ð17Þ

Thus, r̂2
ER is unbiased if Cov ĈERm

; 1

V̂ ERm

h i
¼ 0 and E 1

V̂ ERm

h i
¼ 1

E½V̂ ERm �
, but we find in simulation

often Cov ĈERm
; 1

V̂ ERm

h i
6¼ 0 and by Jensen’s inequality E 1

V̂ ERm

h i
� 1

E½V̂ ERm �
.

Thus if the estimator r̂2
ER is not unbiased for r2

ER what recommends it over the naive r̂2?

While we mainly focused on how in simulation for typical ranges of parameters it has a lower

bias (Fig 3) it also has a theoretical justification. As we saw in simulation, as the number of sti-

muli, m, increases, its bias diminishes while that of r̂2 does not (Fig 3C). Convergence to the

parameter of interest, otherwise known as consistency, gives a theoretical justification for an

estimator. Below we show that r̂2
ER is consistent for r2

ER while r̂2 is not.

We note that the covariance in Eq 17 can be removed by using separate subsets of the

data for the estimation of ĈERm
and V̂ ERm

. This leaves the inflation by Jensen’s inequality

E½ 1

V̂ ERm
� � 1

E½V̂ ERm �
, which could be estimated and corrected for via a simulation-based method

such as the parametric bootstrap (see Discussion, “Further work”).
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Consistency of r̂2ER in m. We aim to show that r̂2
ER is consistent for r2

ER in m, more for-

mally:

r̂2

ER!
p
r2

ER � lim
m!1

Pðjr̂2

ER � r2

ERj � �Þ ¼ 0:

We make use of the continuous mapping theorem that guarantees if a random vector Xm!
p
~c,

then for a continuous transformation g, gðXmÞ!
p

gð~cÞ where the random vector is almost

surely different from any discontinuity points. Taking our random vector to be, ½ĈERm
; V̂ ERm

�
T
,

and our continuous transformation to be, gð½ĈERm
; V̂ ERm

�
T
Þ ¼

ĈERm
V̂ ERm
¼ r̂2

ER (assuming expecta-

tion of the denominator is non-zero), it then suffices to show that ĈERm
and V̂ ERm

themselves

are consistent estimators for the numerator and denominator of r2
ER.

First, we have already shown that ĈERm
and V̂ ERm

are unbiased estimators. Next, we must

show that their variance is decreasing with m, and then via Chebyshev’s inequality,

PðjX � mj � �Þ �
Var½X�
�2

;

we can show their convergence to their expectation. Here we consider the case where ŝ2 ¼ s2.

Since the model predictions (νi) are fixed for the purpose of the proof, we assume the dot prod-

uct between model predictions and neural responses is scaled linearly by m:

1

m

Xm

i

ðni � �nÞðmi � �mÞ

 !2

¼ c;

as is the dynamic range of the neuron:

1

m

Xm

i¼1

ðmi � �mÞ
2
¼ v;

and we scale the numerator and denominator of r̂2
ER by 1

m which makes no change to their

ratio.

The numerator, ĈERm
¼ 1

m ð
Pm

i ðni � �nÞðYi �
�Y ÞÞ2 � s2

n

� �
, has variance equal to the sum

of the variance of its first and second term (since they are independent). Since

Var½w2
mðlÞ� ¼ 2mþ 4l the variances are, respectively,

Var
1

m
ð
Xm

i¼1

ðni � �nÞðYi �
�Y ÞÞ2

" #

¼ Var
s2

nm
w2

1

ð
Pm

i¼1
ðni � �nÞðmi � �mÞÞ

2

s2=n

� �� �

¼
2s4

n2m2
þ

4s2c
mn

;

and

Var
s2

nm

� �

¼
1

n2m2

2s4

mn � 1
;

thus

Var½ĈERm
� ¼

2s4

n2m2
þ

4s2c
mn
þ

1

n2m2

2s4

mn � 1
:
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The denominator, V̂ ERm
¼ 1

m

Pm
i¼1
ðYi �

�Y Þ2 � ðm � 1Þ s
2

n

� �
, also has variance equal to the sum

of the variance of its first and second term (by independence). The variances are, respectively,

Var
1

m

Xm

i¼1

ðYi �
�Y Þ2

" #

¼ Var
s2

nm
w2

m� 1

Pm
i¼1
ðmi � �mÞ

2

s2

n

 !" #

¼
2s4ðm � 1Þ

n2m2
þ

4s2v
mn

;

and

Var
ðm � 1Þ

nm
s2

� �

¼
ðm � 1Þ

nm
s4

mn � 1
;

thus

Var½V̂ ERm
� ¼

2s4ðm � 1Þ

n2m2
þ

4s2v
mn
þ
ðm � 1Þ

nm
s4

mn � 1
:

For both Var½V̂ ERm
� and Var½ĈERm

�, all but m is constant; therefore, we can find an m to scale

variance below any given �. So by Chebyshev’s inequality we have:

PðjĈERm
� cj � �Þ �

Var½ĈERm
�

�2
:

Since as m!1,
s2

ĈERm
m�2 ! 0 we have that,

lim
m!1

PðjĈERm
� cj > �Þ ¼ 0 � ĈERm

!
p
c;

and similarly,

V̂ ERm
!
p
v:

Thus by the continuous mapping theorem:

r̂2

ER ¼
ĈERm

V̂ ERm

!
p c
v
¼ r2

ER:

In contrast, we show below that the naive estimator is not consistent and provide insight into

when the difference between r̂2 and r̂2
ER is large.

Inconsistency of r̂2 in m. Similarly to the previous derivation, we can take the numerator

and denominator of r̂2 (Eqs 9 and 12), scale by 1

m, find their expected values, and in turn find

the asymptotic value of r̂2. Here, though, we simplify by setting the model to be unit length,

r̂2

m!
p c
vþ s2

n

�
c
v
:

This result shows that r̂2 is not a consistent estimator in m of r2
ER.

Confidence intervals

Here we develop and prove a method that provides α-level confidence intervals for the estima-

tor r̂2
ER. We considered the typical parametric bootstrap and non-parametric bootstrap

approaches, but found that they were not reliable for typical ranges of parameters (see Results,

“Confidence intervals for r̂2
ER”).
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Our approach hinges upon finding the lowest r2
ER whose distribution would give an estimate

greater than the observed r̂2�
ER with probability α/2, calling this r2

ERðlÞ, and finding the highest r2
ER

that would give an estimate less then the observed r̂2�
ER with probability α/2, calling this r2

ERðhÞ.

The interval ½r2
ERðlÞ; r

2
ERðhÞ� then serves as our α- level confidence interval (see Fig 14 for graphical

explanation). We use a Bayesian framework to sample from the probability distribution,

f ðr̂2
ERjr

2
ERÞ, parameterized by the observed neural statistics s2 and d̂2, allowing us to find

½r2
ERðlÞ; r

2
ERðhÞ� under assumed uninformative priors on σ2 and d2 (see “Computing confidence

intervals”, below).

Proof of α-level confidence intervals. Here, we justify this procedure for the case of r2
ERðhÞ

(r2
ERðlÞ is similar). Our two main assumptions are that the cumulative distribution Fðr̂2

ERjr
2
ERÞ is

stochastically increasing in r2
ER,

r2
ER � r20

ER , Fðr̂2
ERjr

2
ERÞ � Fðr̂2

ERjr
20

ERÞ; ð18Þ

and that we can always find an r2
ER such that for any observed r̂2�

ER,

Fðr̂2�
ERjr

2
ERÞ ¼ a 2 ð0; 1Þ: ð19Þ

We now consider two mutually exclusive possibilities. First, with probability 1 − α/2, the

Fig 14. Illustrative schematic of confidence interval estimation. Given an observed estimate x� (green dashed vertical) from the distribution of the

estimator X with CDF T(x) (solid black curve) associated with the parameter being estimated μ (black dashed vertical), the upper limit of the α-level

confidence interval is the μU (purple vertical dashed) corresponding to the cumulative distribution of XU, U(x) (solid purple curve) that would generate

values less than x� with probability α/2 (purple horizontal dashed). Thus U(x) is defined by U(x�) = α/2. Under the assumption the family of CDFs of X are

stochastically increasing in μ, the event that T(x)� α/2 corresponds to the event that μ< μU, thus the upper limit of the confidence interval contains the

true value of μ. In graphical terms, if the black horizontal dashed line is above the purple, then it is guaranteed that the purple vertical dashed is to the right

of the black. Thus these two events have the same probability: Pr(μ� μU) = Pr(α/2� T(X)) = 1 − α/2. Here we have used generic symbols for illustrative

purposes, but for reference to the proof (see Methods, “Proof of α-level confidence intervals”), the notation used here correspond as follows: X ¼ r̂2
ER,

x� ¼ r̂2�
ER, m ¼ r2

ER, mU ¼ r2
ERðhÞ, TðxÞ ¼ Fðr̂2

ERjr
2
ERÞ, and UðxÞ ¼ Fðr̂2

ERjr
2
ERðhÞÞ.

https://doi.org/10.1371/journal.pcbi.1009212.g014
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observed r̂2�
ER is large enough to satisfy:

Fðr̂2�

ERjr
2

ERÞ � a=2:

Then by the assumption in Eq 19 we can find a r2
ERðhÞ where,

Fðr̂2�

ERjr
2

ERðhÞÞ ¼ a=2;

and under our initial assumption (Eq 18), this implies

r2

ER � r2

ERðhÞ;

because

Fðr̂2�

ERjr
2

ERÞ � a=2 ¼ Fðr̂2�

ERjr
2

ERðhÞÞ:

Second, if on the other hand r̂2�
ER is small enough such that

Fðr̂2�

ERjr
2

ERÞ < a=2;

then

r2

ER > r2

ERðhÞ:

Thus, under repeated sampling, with the desired probability α/2, the upper limit of our confi-

dence interval, r2
ERðhÞ, does not contain r2

ER. The proof for the lower end of the confidence inter-

val r2
ERðlÞ is similar. The probability of the mutually exclusive events that either r2

ER > r2
ERðhÞ or

r2
ER < r2

ERðlÞ is the sum of the probability of the two events, α. See Fig 14 for a graphical explana-

tion of this proof.

For simplicity of the proof, we assumed that it was possible to find Fðr̂2�
ERjr

2
ERðhÞÞ ¼ a=2,

which is not necessarily the case because r2
ERðhÞ 2 ½0; 1� is bounded but r̂2

ER is not. If Fðr̂2�
ERjr

2
ER ¼

1Þ > a=2 or Fðr̂2�
ERjr

2
ER ¼ 0Þ < a=2, then there is no r2

ERðhÞ that will achieve α/2. Under the con-

dition where Fðr̂2�
ERjr

2
ER ¼ 1Þ > a=2, we simply set r2

ERðhÞ ¼ 1, and since Fðr̂2�
ERjr

2
ER ¼ 1Þ > a=2

implies Fðr̂2�
ERjr

2
ER 2 ½0; 1�Þ > a=2, the confidence interval will contain the true value.

Under the condition Fðr̂2�
ERjr

2
ER ¼ 0Þ < a=2, we set r2

ERðhÞ ¼ 0, but we must set the confidence

interval, though normally inclusive, to be non-inclusive. Intuitively, this is because if r2
ER ¼ 0,

then the upper end of the confidence interval would always contain the true value, and we

would be restricted to α = 1. Making the CI non-inclusive avoids this problem. Doing this

does not cause a problem when the true r2
ER > 0, because Fðr̂2�

ERjr
2
ER ¼ 0Þ < a=2 implies

Fðr̂2�
ERjr

2
ER 2 ½0; 1�Þ < a=2, the confidence interval should not contain the true r2

ER and it does

not because r2
ER > 0 ¼ r2

ERðhÞ. The case for r2
ERðlÞ is similar.

In summary, our confidence interval is defined to be ½r2
ERðlÞ; r

2
ERðhÞ� when r2

ERðlÞ < 1 and

r2
ERðhÞ > 0 but ; (the empty set) if r2

ERðlÞ ¼ 1 or r2
ERðhÞ ¼ 0. The lower bound, r2

ERðlÞ, satisfies

Fðr̂2�
ERjr

2
ERðlÞÞ ¼ 1 � a=2, except if Fðr̂2�

ERjr
2
ER ¼ 1Þ > 1 � a=2 or Fðr̂2�

ERjr
2
ER ¼ 0Þ < 1 � a=2, then

respectively r2
ERðlÞ ¼ 1 or r2

ERðlÞ ¼ 0. The upper bound, r2
ERðhÞ, satisfies Fðr̂2�

ERjr
2
ERðhÞÞ ¼ a=2, except

if Fðr̂2�
ERjr

2
ER ¼ 1Þ > a=2 or Fðr̂2�

ERjr
2
ER ¼ 0Þ < a=2, then respectively r2

ERðhÞ ¼ 1 or r2
ERðhÞ ¼ 0.

To sample from the conditional distribution f ðr̂2
ERjs

2; d̂2; r2
ERÞ, we assume that σ2 and d2 fol-

low an uninformative non-negative uniform prior (U[0,1]), and given their observed esti-

mates s2 and d̂2, we obtain samples from the posterior distribution of σ2 and d2 via the

Metropolis-Hastings sampling method (for details see “Bayesian model and simulation”). For

PLOS COMPUTATIONAL BIOLOGY The unbiased estimation of the fraction of variance explained by a model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009212 August 4, 2021 27 / 36

https://doi.org/10.1371/journal.pcbi.1009212


a chosen r2
ER (e.g., a candidate for r2

ERðhÞ, we sample from f ðr̂2
ERjs

2; d̂2; r2
ERÞ by drawing samples of

σ2 and d2 from the posterior distribution f ðs2; d2js2; d̂2Þ while r2
ER is fixed to the desired value.

Thus for each sample we then draw observations Y and predictions νi from the model

described in Eq 6 and finally calculate r̂2
ER for a sample from f ðr̂2

ERjs
2; d̂2; r2

ERÞ.

Computing confidence intervals. We use a simple iterative bracketing algorithm to nar-

row down the range of candidate values for the ends of our confidence interval. For example,

to estimate r2
ERðhÞ within [0, 1], we first evaluate the highest possible value: 1. We sample

N = 2,500 draws from f ðr̂2
ERjs

2; d̂2; r2
ERðcÞ ¼ 1Þ to find the proportion, p̂, of those less than or

equal to r̂2�
ER. We then calculate a z-statistic to test whether this is significantly different from

the desired α/2:

z ¼
p̂ � a=2

p̂ð1 � p̂Þ=N
:

At some desired significance level (here p< 0.01), we either do not reject the null and accept

r2
ERðhÞ ¼ r2

ERðcÞ, or we reject the null. In the latter case, if z is positive we determine that r2
ERðhÞ

must be higher, whereas if z is negative it must be lower. In the case where r2
ERðcÞ ¼ 1 and z is

positive, there are no higher possible values of r2
ERðhÞ and thus we accept r2

ERðhÞ ¼ r2
ERðcÞ. Other-

wise, on the next step we choose a new candidate by sampling from r2
ERðcÞ � U½0; 1� then evalu-

ating the result and if we reject the null and z is positive our new interval will be ½r2
ERðcÞ; 1� and

if z is negative ½0; r2
ERðcÞ�. Otherwise, if we do not reject the null we accept r2

ERðhÞ ¼ r2
ERðcÞ. We con-

tinue this bracketing until we do not reject the null or a pre-determined number of splits has

passed (here we use 100). Accuracy of this algorithm will increase with number of splits and

simulation samples.

Confidence interval validation. We used simulations to evaluate our confidence interval

methods under the sampling distribution f ðr̂2
ERjs

2; d̂2; r2
ERÞ. Conceptually, this is the distribu-

tion of r̂2
ER after data has been collected and sample variance and sample dynamic range calcu-

lated, and now we wish to calculate the data’s fit to a model with unknown but fixed r2
ER. To

demonstrate that our method contains the unknown r2
ER at the desired α, our procedure is as

follows. For a chosen n, m, σ2, d2, and r2
ER, sample an n ×m data matrix (Y) and calculate its

sample variance s2 and dynamic range d̂2. Then using the Metropolis-Hastings algorithm (see

Methods, “Bayesian model and simulation”), draw 5,000 samples from the posterior distribu-

tion f ðs2; d2js2; d̂2Þ. Next, we simulate the distribution of r̂2
ER for each of these data samples by

drawing from f ðr̂2
ERjs

2; d2; r2
ERÞ. For each of these draws, we construct confidence intervals,

and then we calculate the proportion of times that the confidence intervals contain the true

r2
ER. This proportion estimates the true α level of the confidence interval method.

Bayesian model and simulation. We sample from the posterior of two parameters: σ2

and d2 ¼ 1

m

Pm
i¼1
ðmi � �mÞ

2
. Their associated sufficient statistics are:

ŝ2 ¼
1

mðn � 1Þ

Xm

i¼1

Xn

j¼1

ðYi;j �
�Y i;�Þ

2

d̂2 ¼
1

m � 1

Xm

i¼1

ð�Y i;� �
�Y �;�Þ

2
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and their distributions are:

ŝ2 �
s2

mðn � 1Þ
w2

mðn� 1Þ
ð20Þ

d̂2 �
s2

nðm � 1Þ
w2

m� 1

Pm
i¼1
ðmi � �mÞ

2

s2

n

 !

ð21Þ

By Bayes theorem we have,

Pðs2; d2 ĵs2; d̂2Þ / Pðŝ2; d̂2js2; d2ÞPðs2; d2Þ ¼ Pðŝ2js2ÞPðd̂2jd2Þ1ðs2Þ
½0;1�

1ðd2Þ
½0;1�

;

where the equality is derived by recognizing the sample variance (̂s2) and dynamic range (d̂2)

are independent and setting the prior to be uniform non-negative. The estimates ŝ2 and d̂2 are

fixed, calculated from the data, and our goal is to look up the distribution of the parameters

given these fixed values. We use the Metropolis-Hastings algorithm to draw from the desired

distribution Pðs2; d2 ĵs2; d̂2Þ and approximate it with the empirical distribution (a histogram).

Our sampling procedure is as follows. We initialize our parameter samples σ2, d2 at their esti-

mates ŝ2; d̂2, and we then sample a new candidate from our proposal distribution: a truncated

multivariate normal with means ŝ2; d̂2 and diagonal variances equal to the variance of the dis-

tributions (Eqs 20 and 21) where s2 ¼ ŝ2; d2 ¼ d̂2. We take the ratio of likelihoods,

a ¼ Pðŝ2; d̂2js2

proposal; d
2

proposalÞ=Pðŝ
2; d̂2js2

current; d
2

currentÞ:

If a> 1, we accept the candidates as our new current samples, but if a< 1, we then draw from

u� U [0, 1]. If u< a, we also accept the candidates but if not, we retain the current samples.

Throughout the paper we run the chain for 5,000 iterations then randomly sample with

replacement from it.

SNR relation to F-test and number of trials

Our goal is to be able find for a given SNR and number of repeats the number of stimuli

needed to reliably detect tuning under an F-test. To calculate the F-statistic for testing whether

there is variation in the expected responses across stimuli (i.e., stimulus selectivity), we form

the ratio,

F ¼
n

m� 1

Pm
i¼1
ð�Y i;� �

�Y �;�Þ
2

1

nðm� 1Þ

Pm
i¼1

Pn
j ðYi;j �

�Y i;�Þ
2
;

where for clarity we indicate dimensions averaged over with a dot. The numerator calculates

the amount of variance explained by stimuli and the denominator calculates the amount of

variance unexplained by stimuli. The numerator is a scaled non-central χ2 distribution:

n
m � 1

Xm

i¼1

ð�Y i;� �
�Y �;�Þ

2
�

n
m � 1

s2

n
w2

m� 1

P
ðmi � �mÞ

2

s2=n

� �

¼
n

m � 1

s2

n
w2

m� 1
mnSNRð Þ;

where the final equality comes from the definition of SNR (5). The denominator is a central χ2

distribution:

1

nðm � 1Þ

Xm

i¼1

Xn

j

ðYi;j �
�Y i;�Þ

2
�

s2

nðm � 1Þ
w2

mðn� 1Þ
:
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Thus taking the ratio we have a singly non-central F-distribution:

Fm� 1;mðn� 1ÞðmnSNRÞ: ð22Þ

To test for significant tuning, we set an α-level criterion, cF(α), under the null hypothesis that

the observed F-statistic is from a central F-distribution:

P½Fm� 1;mðn� 1Þ � cFðaÞ� ¼ a:

Finally, given m and n, we can find the SNR where, for some high probability β,

P½Fm� 1;mðn� 1ÞðmnðSNRÞÞ > cFðaÞ� ¼ b:

We set β = 0.99 and α = 0.01 and numerically solve for the SNR.

Electrophysiological data

We reanalyzed a variety of neuronal data from previous studies. This includes three experi-

ments in area V4 and one in MT of the awake, fixating rhesus monkey (Macaca mulattta), as

well as spiking and two-photon imaging in awake mouse VISp. Experimental protocols for all

studies are described in detail in the original publications.

From Pasupathy and Connor [2], we examined responses of 109 V4 neurons to a set of 362

shapes. There were typically 3-5 repeats of each stimulus, but we used only the 96 cells that had

at least 4 repeats for all stimuli. We used the spike count for each trial during the 500 ms stimu-

lus presentation.

From Popovkina et al. [23], we examined responses of 43 V4 neurons (7 from one monkey,

36 from another) to filled stimuli (drawn from the same set of shapes used for the previous

study) and to outline stimuli that were the same except the fill was set to be equivalent to back-

ground color. Stimulus color and luminance were customized to elicit a robust response from

the recorded neuron. Spikes were counted over the 300 ms duration of each stimulus

presentation.

From the 2019 UW V4 Neural Data Challenge, we examined single unit (SUA) and multi-

unit (MUA) data from 7 V4 recordings. Up to 601 images were shown with between 3-20

repeats for each image. The images were drawn semi-randomly from the 2012 ILSVRC valida-

tion set of images [24] where an 80X80 pixel patch was sampled and had a soft window applied

(circular Gaussian, SD 16 pixels, applied to the alpha channel). Images were shown for 300 ms

with 250 ms in between images. The model we analyze was the winner of the Neural Data

Challenge (out of 32 competitors) on held-out data from the 14 sets of V4 responses to natural

images.

From Zohary et al. [12, 13], we examined responses from 81 pairs of MT neurons recorded

from three awake rhesus monkey (Macaca mulatta) viewing dynamic random dots (stimuli

described in Britten et al. [25]). Optimal speed of drifting dots was found for the one of the

two neurons being recorded. Eight different directions of motion at 45˚ increments were

repeated 10-20 times. Monkeys performed a two alternative forced choice task of motion

direction discrimination during the experiment. Post-stimulus spikes were counted in the 2 s

window of stimulus presentation. Experimenters were rigorous in only recording from pairs

of neurons whose spike waveforms were strikingly different.

From the Allen Institute for Brain Science (AIBS) mouse database [16], we examined cal-

cium fluorescence data. Fluorescence of mouse visual cortex neurons expressing GCaMP6f

was measured via 2-photon imaging through a cranial window. We analyzed signals

recorded in response to natural scenes and static gratings presented for 0.25 s each with no

interval between with 50 repeats in random order. The natural scene stimulus consisted of
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118 natural images from a variety of databases. The static grating stimulus consisted of a full

field static sinusoidal grating at a single contrast (80%). Gratings were presented at 6 orien-

tations, 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and 4 phases (0,

0.25, 0.5, 0.75). For every trial, ΔF/F was estimated using the average fluorescence of the pre-

ceding second (4 image presentations) as baseline. We analyzed the average change in fluo-

rescence during the 1/2 s period after the start of the image presentation relative to 1 s

before. We also examined SUA data from the AIBS mouse neuropixel data set [17], which

was recorded in response to the same stimuli as the calcium data. Spike counting windows

were 0.25 s.

Prior analytic methods for estimating r2
ER

Our estimator, r̂2
ER, is derived via the strategy of Haefner and Cumming [6] to unbias the

numerator and denominator of the coefficient of determination. Haefner and Cumming in

turn cite Sahani and Linden [3] as the predecessor to their method. Sahani and Linden con-

structed an unbiased estimator of the variation in the expected response of the neuron (i.e.

tuning curve) they called this ‘signal power’. They normalize an estimator of explained varia-

tion, unbiased with respect to noise under conditions they did not specify (1-parameter

regression of model predictions, see Methods, “Derivation of Normalized Signal Power

Explained (SPEnorm)”). Sahani and Linden, by not specifying how a given model prediction

should be fit to the neural data before estimating the quality of the fit, introduced potential

problems in their estimator. This was recognized by Schoppe et al. [8], who point out that the

estimator was sensitive to differences between the mean and amplitude of the model predic-

tions and the neural data. Consequently, the estimator could give large negative values

because the squared error between model predictions and neural responses was unbounded.

This criticism, while technically correct, is easily overcome by regressing (with intercept

term) the given model predictions onto the neural data before using normalized SPE.

Schoppe et al., motivated by the problems they found in SPE, focused on simplifying CCnorm

of Hsu et al. [4] to not require re-sampling by making use of the signal power estimator devel-

oped by Sahani and Linden. They derived a simple estimator whose square, termed here

CC2

norm‐SP, we find is essentially numerically equivalent to SPEnorm of Sahani and Linden in

the case of one-parameter regression.

For the purpose of comparison, below we write out the exact formulas and approximate

expected values of two prior methods [3, 6] that are closely related to r̂2
ER in the notation we

use throughout our paper. For all estimators, we assume responses to m stimuli with n
repeats where variance have been stabilized. The response to the ith stimulus, jth repeat, is

Yi,j� N(μi, σ2) where σ2 is the trial-to-trial variability and μi the ith expected value of response

after variance stabilization. The predictions are fixed for the m stimuli and the ith predicted

expected value of the data is νi and we assume they have been fit by a linear model with d
degrees of freedom. When averaging data across trials our notation will be �Y i;� ¼

1

n

Pn
j¼1

Yi;j

and across stimuli �Y �;j ¼ 1

m

Pn
i¼1

Yi;j.

Derivation of normalized signal power explained (SPEnorm). The original description of

SPE [3] did not specify, when calculating sample estimates of ‘power’ (better known as vari-

ance), whether to normalize by m − 1 (the unbiased estimate) or m (the MLE). Nor was it spec-

ified whether an average across trials was used when calculating the difference between

variance of the measured response and the residual. We thus use the formula as described

by Schoppe et al. [8], who provide code to unambiguously calculate SPE, albeit in a manner
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that differs from their text (in particular, their TP ¼ ðn � 1Þ
Pn

j¼1
1

m� 1

Pm
i¼1
ðYi;j �

�Y �;jÞ
2
Þ

(similar to Eq 5 of Sahani and Linden), but in their code it is implemented as
1

n

Pn
j¼1

1

m� 1

Pm
i¼1
ðYi;j �

�Y �;jÞ
2
Þ). In the context of the quantities being estimated, the latter

makes more sense (see calculation of expected value of denominator below). For comparison

to the derivation in Schoppe et al., their notation equates to ours as follows: N = n, T = m,

R = Yi,j, y ¼ �Y i;�, ŷ ¼ n̂i , and VarðyÞ ¼ 1

m� 1

Pm
i¼1
ð�Y i;� �

�Y �;�Þ
2
. Finally, in our notation their esti-

mator is:

SPEnorm ¼
1

m� 1

Pm
i¼1
ð�Y i;� �

�Y �;�Þ
2
� 1

m� 1

Pm
i¼1
ð�Y i;� � n̂ iÞ

2

1

n� 1
n 1

m� 1

Pm
i¼1
ð�Y i;� �

�Y �;�Þ
2
� 1

n

Pn
j¼1

1

m� 1

Pm
i¼1
ðYi;j �

�Y �;jÞ
2

� � :

Calculating the expectation of the numerator and the denominator for the fit of a linear

model with d degrees of freedom, we can find the asymptotic expectation. Numerator:

E
1

m � 1

Xm

i¼1

ð�Y i;� �
�Y �;�Þ

2
�

1

m � 1

Xm

i¼1

ð�Y i;� � n̂ iÞ
2

" #

¼
1

m � 1
E
Xm

i¼1

ð�Y i;� �
�Y �;�Þ

2

" #

� E
Xm

i¼1

ð�Y i;� � n̂ iÞ
2

" # !

¼
1

m � 1
E
s2

n
w2

m� 1

Pm
i¼1
ðmi � �m �Þ

2

s2

n

 !" #

� E
s2

n
w2

m� d

Pm
i¼1
ðmi � n̂ iÞ

2

s2

n

 !" # !

¼
1

m � 1

Xm

i¼1

ðmi � �m �Þ
2
þ ðm � 1Þ

s2

n

 !

�
Xm

i¼1

ðmi � n̂ iÞ
2
þ ðm � dÞ

s2

n

 ! !

¼
1

m � 1

Xm

i¼1

ðmi � �m �Þ
2
�
Xm

i¼1

ðmi � n̂ iÞ
2
þ
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Denominator:
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Putting the expectations into the numerator and denominator we have:
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2
:

We note that only if d = 1 (i.e., the model has only 1 term) is the numerator unbiased. Below

we describe how Haefner and Cumming developed an estimator that accounts for degrees of

freedom more generally.

Derivation of U. For comparison to the original paper of Haefner and Cumming [6], we

give their notation and its equivalent terms in our notation: di,j = Yi,j, di ¼
�Y i;�,

��d ¼ �Y �;�, S
2 =

σ2, N = m, Nσ = m(n − 1), R = n, n = d, Di = μi, Mi = νi, mi ¼ n̂ i, s
2 ¼ ŝ2,
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:

These authors explicitly attempt to remove the bias of the coefficient of determination:
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Pm
i¼1
ð�Y i;� � niÞ

2

Pm
i¼1
ð�Y i;� �

�Y �;�Þ
2
:

Their unbiased estimator is derived by dividing the numerator and denominator by the sample

trial-to-trial variability (ŝ2 ¼ 1

m
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2
Þ and their respective degrees of free-

dom (d below being the degrees of freedom of the linear model), noting the numerator and

denominator become non-central F-distributions, then shifting and scaling these to provide

unbiased estimates. Since E½Fd1 ;d2
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, the expectation of the numerator is,
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thus the unbiased estimate of the numerator is:
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The expectation of the denominator is:
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thus the unbiased estimate of the denominator is:
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Forming the ratio, we obtain the Haefner and Cumming estimator:
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:

Extension of r̂2
ER to fit of linear model

The derivation of Haefner and Cumming via the non-central F was not necessary: the expecta-

tion of the numerator and denominator are straightforward to calculate as non-central χ2 ran-

dom variables. While our r̂2
ER is explicitly meant to be the analogue of Pearson’s r2, we re-

derive the Haefner and Cumming formula along the lines of r̂2
ER for measuring the fit of a lin-

ear model. We specifically avoid the non-central F-distribution so that it is unnecessary to esti-

mate variance (if for example there is a strong prior for the variance and/or multiple trials

were not collected). We assume, as did Haefner and Cumming that n̂ i were fit from a linear

model via least squares with d coefficients. The expectation of the numerator is:
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thus its unbiased estimate is:
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The expectation of the denominator is:
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thus its unbiased estimate is:
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Thus their ratio forms:
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