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Decision-related feedback in visual cortex lacks
spatial selectivity
Katrina R. Quinn1, Lenka Seillier1, Daniel A. Butts 2 & Hendrikje Nienborg3✉

Feedback in the brain is thought to convey contextual information that underlies our flexibility

to perform different tasks. Empirical and computational work on the visual system suggests

this is achieved by targeting task-relevant neuronal subpopulations. We combine two tasks,

each resulting in selective modulation by feedback, to test whether the feedback reflected the

combination of both selectivities. We used visual feature-discrimination specified at one of

two possible locations and uncoupled the decision formation from motor plans to report it,

while recording in macaque mid-level visual areas. Here we show that although the behavior

is spatially selective, using only task-relevant information, modulation by decision-related

feedback is spatially unselective. Population responses reveal similar stimulus-choice align-

ments irrespective of stimulus relevance. The results suggest a common mechanism across

tasks, independent of the spatial selectivity these tasks demand. This may reflect biological

constraints and facilitate generalization across tasks. Our findings also support a previously

hypothesized link between feature-based attention and decision-related activity.
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The brain excels at flexibly performing a multitude of tasks.
This ability likely requires the relevant neuronal circuits to
have access to task-relevant contextual information. The

communication of such context could be supported through
feedback signals to upstream populations in accordance with task
demands1,2. In the visual system, such feedback has been impli-
cated in the modulation of neurons representing task-relevant
variables2–5. Current thinking suggests that feedback to the visual
cortex mediates context-dependent predictions6, perceptual
learning7, beliefs for hierarchical Bayesian inference5,8,
expectations9,10, gating11, or tagging of the relevant sensory
information12,13 to support downstream processing.

These accounts predict the feedback to be selective, targeting
some sensory information over other depending on the context of
the task and stimulus14. Anatomical evidence supports some
selectivity of the feedback connections in the visual system15,16,
but the extent to which this enables the selective targeting of
specific subsets of neurons is unknown. In light of the enormous
number of ethologically possible tasks and contexts, such task-
dependent selectivity could become anatomically costly. Limiting
the selectivity of the feedback may also be beneficial by facilitating
generalization across different tasks.

Here, we set out to test how flexible the selectivity of this feed-
back is. Specifically, we explored whether previously reported task-
specific modulation by feedback3 is selective for neurons repre-
senting a relevant stimulus in the presence of task-irrelevant stimuli.
We extended a widely used visual discrimination paradigm17 to
include both task-relevant and task-irrelevant stimuli at different
spatial locations; thus, performance in this task required spatial
selectivity in addition to selectivity for visual discrimination. During
simple visual discrimination tasks using a single stimulus, visual
neurons are typically correlated with an animal’s choice, unex-
plained by the stimulus (“choice correlations”)17,18. Previous work
identified a significant decision-related feedback component of
these choice correlations3,19,20. Conversely, tasks directing attention
to one spatial location over others have identified spatially selective
modulation of responses in the visual cortex21.

In the current study, performance in the task required both
aspects of selectivity. Thus, we can measure the spatial selectivity
of the decision-related modulation by feedback to see how the
additional task demands shaped the feedback. If the decision-
related feedback modulates the visual neurons selectively
according to their task-relevance, it should not affect neurons
representing a task-irrelevant stimulus, and these neurons should
hence not be correlated with choice (Fig. 1b, c). This also should
be the case if choice correlations only reflected feed-forward
effects, cf. ref. 22, in which case the predictions for choice cor-
relations would be identical to those for the selective feedback
(Fig. 1e, f). Conversely, if the decision-related feedback is unse-
lective to whether the neurons representing the stimulus are
relevant for the task, the neurons should show correlations with
choice even when representing a task-irrelevant stimulus (Fig. 1h,
i). In fact, it has been hypothesized that decision-related feed-
back in feature discrimination tasks engages the same neural
mechanism as feature-based attention3,4,23. Studies examining
feature-based attention showed that when a subject’s attention
was directed to a particular stimulus feature, the response of
neurons selective for this feature was increased24–26. A defining
characteristic of such modulation by feature-based attention is
that it is observed throughout the visual field26–29. As a con-
sequence, if decision-related feedback is linked to the spatially
global feedback of feature-based attention, this predicts that
neurons representing a task-irrelevant stimulus are correlated
with choice (Fig. 1h, i).

Here, we show that although the animals’ behavior is highly
spatially selective, the decision-related feedback is not. The lack of

selectivity cannot be explained by stimulus effects, behavioral
covariates, or stimulus- and task-independent neuronal covaria-
bility (“noise correlations”). At the level of simultaneously
recorded populations, the representation of choice and stimulus is
partially misaligned. These stimulus-choice (mis)alignments are
similar whether the stimulus is relevant or not. Our results sup-
port the previously hypothesized link between feature-based
attention and decision-related activity and reveal a feedback
mechanism that may support generalization across tasks.

Results
To test these predictions, we trained two macaque monkeys to
perform a disparity discrimination task on a random-dot ste-
reogram (RDS) while ignoring another RDS (Fig. 1j). The rele-
vant stimulus was cued block-wise, and the irrelevant stimulus
was presented in the opposite visual hemifield. It was statistically
identical but independent of the relevant stimulus to ensure that
it provided no information about the correct choice.

The animals’ behavior is spatially selective. The animals’ psy-
chophysical behavior shows that they learned to successfully
ignore the task-irrelevant stimulus (Fig. 1k, m).

This was further verified by “psychophysical reverse correla-
tion” analysis, which was computed using trials restricted to the
randomly rewarded no-signal trials. This analysis examines any
systematic relationship, on average, between the noise in the
stimulus and the animals’ choices, by computing a “psychophy-
sical kernel” (see “Methods”). Non-zero values of the psycho-
physical kernel reveal systematic differences of the noise
disparities with choice, as can be seen for the relevant stimulus
(Fig. 1l, n, top panels), similar to previous findings19. In contrast,
the amplitude of the psychophysical kernel for the irrelevant
stimulus was consistently around zero, confirming that the
irrelevant stimulus did not systematically affect the animals’
choices. The results were similar when we selected trials for which
both the relevant and irrelevant stimulus had no signal
(Supplementary Fig. 1). Additionally, we examined the degree
to which the irrelevant stimulus or its interaction with the
relevant stimulus influenced the animals’ behavior using general-
ized linear model (GLM) analysis (see “Methods”). This GLM
yielded weights for each covariate (the relevant stimulus, the
irrelevant stimulus and their interaction). The weights for the
irrelevant stimulus and for the interaction between the stimuli
were close to zero (Supplementary Fig. 2), which also shows that
the irrelevant stimulus had minimal influence on the animals’
behavior.

Visual responses are rate modulated by spatial attention. Fur-
thermore, as is characteristic of the modulation of visual
responses by spatial attention30, we found a substantially smaller
response when the stimulus in the receptive field of a unit was
irrelevant compared to when it was relevant (Fig. 1o). This
modulation of the neuronal response was very consistent across
the populations of visual neurons in V2 and V3/V3a (Fig. 1p, V2
mean AI= 0.14, n= 703, p= 10−32; V3/V3a mean AI= 0.12, n
= 486, p= 10−30, two-sided Wilcoxon signed-rank test for sig-
nificant deviation from 0).

Evidence for spatially unselective decision-related feedback. We
next examined how modulation of neural activity by decision-
related feedback depended on whether the stimulus was relevant
or irrelevant. The behavioral analyses satisfy a key prerequisite for
this analysis, since they show that if the irrelevant stimulus had
any effect on the animals’ choices such effect was very small. We
addressed this question using recordings in mid-level areas V2,
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the earliest site in the visual processing hierarchy for which sys-
tematic decision-related activity in disparity-based tasks have
been observed31, and a subsequent processing stage, areas V3/
V3a, which has significant disparity selectivity32. We computed
choice correlations for each unit separately for trials when the

task-relevant (Fig. 2a, x-axis) or task-irrelevant (Fig. 2a, y-axis)
stimulus was in its receptive field. Choice correlations quantify
the degree to which a unit’s firing is correlated with an animal’s
choice and are closely related (see “Methods”) to “choice prob-
abilities” (CPs)15 (area under the receiver-operating curve

Fig. 1 Predictions, task, and behavior. a–i Predictions for choice correlations of visual neurons representing a task-relevant or an ignored, task-irrelevant
stimulus. Neurons representing relevant (red) and irrelevant (blue) sensory information (N), or choices (C). Middle column: Firing rate distributions of
sensory neurons representing relevant (red) or irrelevant (blue) stimuli, separated for trials on which the observer chose a neuron’s preferred (solid) or null
stimulus (dashed). Right column: Distribution of choice correlations across a population of sensory neurons representing the relevant (abscissa) or
irrelevant (ordinate) stimulus. For selective feedback (a–c) or feed-forward processes (d–f) choice correlations are only expected for neurons representing
the task-relevant stimulus. If feedback is unselective choice correlations are also expected when neurons represent the irrelevant stimulus (g, h, i). For
feature-discrimination tasks, spatially global feature-based attention predicts such unselective modulation if these feedback processes are linked. j
Monkeys performed a disparity discrimination task on a cued stimulus while a task-irrelevant stimulus was simultaneously presented in the opposite
hemifield. The relevant hemifield (red circle only for schematic) was indicated at the beginning of each block. k, m Psychophysical performance for each
session (n= 41, n= 26 for monkeys A and B, respectively; circle-size proportional to number of trials) for both monkeys and for the relevant (red,
cumulative Gaussian fit, psychophysical threshold: 12% (19%) signal for monkey A (B)) and irrelevant (blue) stimulus. l Psychophysical kernels (in
proportion of frames per 0.5 s time-bin) computed for 0% signal trials (relevant, upper panel; irrelevant, lower panel) as a function of disparity and time for
monkey A (trials: n= 5709 relevant, n= 5575 irrelevant). n Same as l but for monkey B (trials: n= 5355 relevant, n= 5203 irrelevant). o Tuning curves
(spike rate as a function of % disparity signal; error bars show s.e.m., n= 16–111 repeats per condition) of two example units (left: V2 unit, monkey A; right:
V3/V3a unit, monkey B) when the relevant (red) or irrelevant (blue) stimulus was inside the receptive field. Responses are reduced for the irrelevant
stimulus as expected for modulation by spatial attention. p Spatial attention index across the population for V2 (cyan, n= 703 units, mean= 0.14) and V3/
V3a (gray, n= 486 units, mean= 0.12).
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(aROC)). The choice correlations are signed. That is, positive
choice-correlation values mean that a unit has a higher firing rate
on trials when the animal chooses this unit’s preferred disparity.
Conversely, negative choice correlations imply lower firing rates
on trials when the animal chooses the unit’s preferred disparity.
We note that positive choice correlations are expected for e.g.
self-reinforcing feedback5,20, while negative choice correlations
would be expected, e.g. for predictive coding8. In contrast with
what would be predicted in the case of selective feedback (Fig. 1a),
we found that units were significantly correlated with choice even
when the stimulus in their receptive field was irrelevant to the
behavior. On average, the choice correlations for the irrelevant
stimulus were positive across the population both in V2 (mean=
0.07, n= 703, two-sided sign-rank test for significant deviation
from 0: p= 10−12; monkey A: mean= 0.09, n= 543, p= 10−11;
monkey B: mean= 0.03, n= 160, p= 0.049) and V3/V3a (mean
= 0.07, n= 486, p= 10−12; monkey A: mean= 0.10, n= 315,
p= 10−11; monkey B: mean= 0.02, n= 171, p= 0.07). (Note that
decision noise during task performance would lead to worse
performance and lower choice correlations, consistent with what
we observe in monkey B compared to monkey A.) Across units
the choice correlations for the relevant and irrelevant stimulus were

strongly correlated both in V2 (Spearman’s rank correlation, r=
0.61, p= 10−71; monkey A: r= 0.66, p= 10−68; monkey B: r=
0.32, p= 10−4) and in V3/V3a (r= 0.42, p= 10−21; monkey A: r
= 0.38, p= 10−13; monkey B: r= 0.34, p= 10−5). This finding is
incompatible with the predictions for selective feedback (Fig. 1a) or
feed-forward accounts (Fig. 1d) but predicted for spatially unse-
lective decision-related feedback (Fig. 1g). It also provides support
for the hypothesis that feature-based attention, which is spatially
global, and decision-related feedback in our task, engage a linked
neural mechanism.

Conversely, the degree to which units were modulated by
spatial attention was not related to their choice correlations for
either stimulus in V2, and only modestly in V3/V3a (V2: both
animals: r= 0.06, p= 0.11; r= 0.05, p= 0.17 for Spearman’s rank
correlation between AI and the cc for the relevant and irrelevant
stimulus, respectively; animal A: r= 0.024, p= 0.58 and r=
0.018, p= 0.68, respectively; animal B: r=−0.073, p= 0.36 and
r= 0.012, p= 0.88, respectively; V3/V3a: both animals: r= 0.16,
p= 0.001 and r= 0.11, p= 0.01, respectively; animal A: r= 0.16,
p= 0.01 and r= 0.18, p= 0.001, respectively; animal B: r= 0.12,
p= 0.13 and r=−0.08, p= 0.3, respectively).

The distributions of choice correlations for the relevant and
irrelevant stimulus were overall similar, although their pair-wise
comparison showed a systematic difference in animal A in V2
(two-sided Wilcoxon signed rank, p= 10−3, p= 0.08, p= 10−4

for animal A, B, and both, respectively), but not in V3/V3a (p=
0.26, p= 0.11, p= 0.07 in animal A, B, and both, respectively).
The difference was not explained by the stimulus selectivity of the
units (V2: r=−0.007, p= 0.87; r=−0.1, p= 0.21; r= 0.024,
p= 0.52. V3/V3a: r= 0.019, p= 0.74; r= 0.13, p= 0.083; r=
0.06, p= 0.23; for animal A, B, and both, respectively, Spearman’s
rank correlation between the difference of the Fisher-transformed
choice correlations for the relevant and irrelevant stimulus and
each unit’s d-prime). Nonetheless, any such difference could
reflect the feed-forward contribution to choice correlations for the
relevant stimulus, since the animals used the relevant, but not the
irrelevant, stimulus for their decisions. Our animals’ behavior
relied more strongly on the early part of the relevant stimulus
(Fig. 1l, n). A feed-forward component, revealed as a difference
between the choice correlations for the relevant and irrelevant
stimulus, should therefore be more pronounced early during the
trial cf. refs. 19,20. Yet the difference in choice correlations in our
data emerged later (Fig. 2c, f). It therefore suggests that it is not
entirely attributable to the feed-forward component and also
reflects weakened feedback to the neurons representing the
irrelevant stimulus. Since the difference emerged later during the
trial although the animals’ behavior relied more strongly on the
stimulus early during the trial, it occurred at a time when an effect
on behavior would likely be weak. Nonetheless, it is conceivable
that for tasks that further increase the pressure for spatially
selective processing, the decision-related feedback might be more
spatially selective.

Unselective modulation is not explained by the stimulus. In
control experiments and analyses we verified that the choice cor-
relations for the irrelevant stimulus did not result from stimulus-
driven, eye-movement, or task-independent effects. First, we found
no effect on a unit’s firing rate of the stimulus in the opposite
hemifield while the animal performed a simple fixation task that
would explain the correlations with choice (see example units
in Fig. 3b). Indeed, the recorded units showed no systematic dif-
ference if the stimulus outside the receptive field had the preferred
or null disparity (Fig. 3c). Across the population of the responses for
units in V2 and V3/V3a, the proportion of units showing a mod-
ulation by the disparity outside the receptive field did not exceed

Fig. 2 Neurons representing the task-irrelevant stimulus are correlated
with choice. a Choice correlations (cc) for n= 703 units in V2 when the
stimulus in the receptive field was relevant (abscissa) or irrelevant (ordinate)
are correlated (r=0.61, p= 10−71, two-sided Spearman’s rank correlation). b
Choice correlations for both the relevant (red, mean=0.11 (area under the
receiver-operating characteristic, aROC=0.55), p= 10−21)) and irrelevant
(blue, mean=0.07 (aROC=0.53), p= 10−12, two-sided Wilcoxon signed
rank) stimulus were significantly positive and similar although their distributions
differed significantly from one another (two-sided Wilcoxon signed rank,
p= 10−4). c Choice correlation (300ms wide sliding window, 10ms
increment) as a function of time after stimulus onset for the relevant (red) and
irrelevant (blue) stimulus. Error bars depict s.e.m. d–f Same as a–c but for
n= 486 units in V3/V3a (correlation between relevant and irrelevant choice
correlations r=0.42, p= 10−21; relevant: mean=0.09 (aROC=0.54),
p= 10−10; irrelevant: mean=0.07 (aROC=0.53), p= 10−12; difference in
distributions, p=0.07).
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chance-level (5% of units for V2, n= 427, and V3/V3a, n= 329,
respectively, two-way ANOVA at 5% significance level).

Unselective feedback is not explained by behavioral covariates.
Second, our stimulus and task were designed to minimize sys-
tematic differences of eye movements with choice by disen-
tangling saccade direction and choice (Fig. 1j, see “Methods”),
and to minimize systematic effects of vergence on the neuronal
responses. Control analyses (Supplementary Information) show
that these do not explain the neuronal correlations with choice.
Although we corrected the choice correlations for systematic
stimulus differences with choice (see “Methods”), we verified that
they were similar when we removed any differences in the ran-
domly generated stimuli between trials (Supplementary Fig. 3).

Unselective modulation is not explained by task-independent
noise correlations. Third, our findings could not be accounted
for by stimulus-independent correlated variability (“noise

correlations”33,34) across hemispheres. Such an explanation, e.g.
refs. 22,35,36, would stem from previous observations that pairs of
neurons with similar stimulus tuning tend to have higher noise
correlations than those with dissimilar tuning34,37,38. Indeed, we
found such a relationship in our data when the animals were
fixating and not engaged in the task: within a hemisphere the
correlated variability increased with signal correlation (V2: r=
0.08, [0.07 0.1], n= 3847; V3/V3a: r= 0.11, [0.09 0.13], n= 1519,
type II regression, 95% CI). However, across hemispheres we
observed no systematic relationship between correlated variability
and signal correlation in V2 (r= 0.01, [−0.001 0.02], n= 1726)
or V3/V3a (r=−0.01, [−0.02 0.002], n= 660; Fig. 3f, left col-
umn). The correlated variability during fixation therefore lacked
the structure that would be required to account for choice cor-
relations in a feed-forward way, suggesting that the choice cor-
relations for the task-irrelevant stimulus result from decision-
related feedback.

In fact, the presence of choice correlations for the task-
irrelevant stimulus implies39 that neurons in both hemispheres

n=427 units n=427 units

n=329 units n=329 units

V2

Within hemisphere
Across hemispheres

Fixation

0 1-1

0

1

Task

Signal correlation

N
oi

se
 c

or
re

la
tio

n

f

RFRF

Cross-hemisphere 
recordings

e
Pref. Out RF
Null Out RF

45

130

30

50

30

300

-0.2 0 0.2 
0

-0.2 0 0.2 

-0.1 0 0.1 
V2

Fixation only

Disparity (°)

Fi
rin

g 
ra

te
 (s

pi
ke

s/
s)

a b

Null In RF

Preferred Outside RF

N
ul

l O
ut

si
de

 R
F

Firing rate (spikes/s)

Fi
rin

g 
ra

te
 (s

pi
ke

s/
s)

3

30

300

RF

Preferred In RF

3 30 300

100

V3a

c

Fixation or Task

V3/V3a

-0.1 0 0.1 

 n=3847 pairs

d g

 n=1726 pairs

 n=711 pairs
 n=450 pairs

 n=1519 pairs
 n=660 pairs

 n=461 pairs
 n=136 pairs

V2

V3/V3a

Fig. 3 Choice correlations for the irrelevant stimulus do not result from the stimulus outside the receptive field, nor from noise correlations in the
absence of a task. a Fixation task with one stimulus presented inside the receptive field, and one stimulus in the opposite hemifield. b Disparity tuning
curves of four example units (V2, top row; V3/V3a, bottom row) as a function of the disparity of the stimulus inside the receptive field, plotted separately
(labels) for the disparity of the stimulus in the opposite hemifield. Data points are horizontally offset for visibility. Error bars show s.e.m. n= 10–40 repeats
per condition). c Firing rates to the preferred disparity (top: V2, bottom: V3/V3a) inside the receptive field as a function of the disparity of the stimulus in
the opposite hemifield. Histograms show firing rate ratios. Filled data points depict units whose firing rates significantly deviate from unity (p < 0.05, two-
sample t-test). Error bars show s.e.m. d as c but for the null disparity inside the receptive field. e Bi-hemisperic recordings during fixation or task
performance. f Noise correlations between pairs of units within (blue) and across (orange) hemispheres are plotted as a function of their signal correlation,
during fixation and g during performance of the task for V2 (top) and V3/V3a (bottom). Note the change in the regression slope within versus across
hemispheres during fixation but not during task performance.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24629-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4473 | https://doi.org/10.1038/s41467-021-24629-0 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


that share tuning preferences should also receive more similar
decision-related feedback compared to inter-hemispheric pairs
with different tuning. This would predict that, during task
performance, noise correlations are increased between neurons in
different hemispheres that have similar tuning (i.e. higher signal
correlation). Our results showed exactly this (Fig. 3g; V2: r= 0.11,
[0.02 0.22], n= 711 within hemisphere, r= 0.12, [0.07 0.17], n=
450 across hemispheres; V3/V3a: r= 0.25, [0.14 0.34], n= 461
within hemisphere and r= 0.26, [0.16 0.37], n= 136 across
hemispheres). The fact that the structure of the correlated
variability changes when the animal engages in the task further
supports the finding that this structure depends on task-related
feedback3.

Analysis of population responses. To better understand how the
structure of the decision-related variability related to the stimulus
representation across the population (cf. also ref. 40), we used a
GLM to separately estimate the effect of stimulus tuning and
decision-related modulation on neural activity. The model was
necessary because the choice and stimulus were often correlated
across trials, and the GLM assigns weights according to the best
explanation for each effect, which can be statistically dis-
tinguished from each other despite their correlation. This model
predicted the response of a given neuron (its spike count) on each
trial t using the distribution of disparities per trial, the animal’s
choice, and a drift term (Fig. 4a, see “Methods”).

The main parameters of the model used to predict firing rate
are the disparity tuning curves for the relevant and irrelevant
stimulus, fr(x) and fi(x) and the choice weights in each condition
wr and wi. Each tuning curve f(x) is comprised of weights (one
weight per disparity x), which operate on the histogram of
disparities presented over a given trial nt(x) (Fig. 4a, left), and the
choice weights w operate on the choice (Fig. 4a, middle). We also
fitted a drift term d(t) that was slowly varying across a session (i.e.
one parameter for each cycle of relevant and irrelevant blocks, see
“Methods”) in order to segregate any non-stationary effects in the
recording. For the tuning curves and choice weights, separate
weights were fit to trials when the stimulus inside a unit’s

receptive field was relevant versus irrelevant, while the same time-
varying drift term was applied to all trials.

The best model predictions were accomplished without
additional nonlinear mappings (e.g. no need for a spiking
nonlinearity link function in the GLM, see “Methods”). There-
fore, the model terms that reflect how much each unit was driven
by the stimulus and choice are in units of firing rate, and thus can
be directly compared across units. This allowed us to examine the
degree to which the changes in activity with choice or stimulus
were aligned at the level of the population. Specifically, each
pattern was represented by a population vector in an M-
dimensional space, where M is the number of simultaneously
recorded units in a given experimental session, and each axis
corresponds to the response of one neuron (Fig. 4b). Thus,
similar patterns of activity correspond to similar “directions” in
population space (relative to the origin) and there would be a
correspondingly small angle between them.

Stimulus-choice (mis)alignments are similar across relevance.
We considered four population response vectors for the changes
between the near signal disparity and far signal disparity in the
stimulus (see “Methods” for details) when it was relevant (Fig. 4b, v-
stimr), irrelevant (v-stimi), and for the changes in the population
response with choice when a relevant (v-choicer), or irrelevant (v-
choicei), stimulus was inside the receptive field of the population.
We then computed the angles between these population vectors as a
measure of the extent to which the population responses were
aligned between the conditions. Across sessions the angles between
relevant and irrelevant stimulus vectors (Θstim r-i) were small,
demonstrating that they were well aligned both in V2 (Fig. 4c, top)
and V3/V3a (Fig. 4d, top). This is consistent with previously
described gain changes associated with spatial attention41,42 and
suggests a roughly uniform effect of spatial attention across the
population. But the choice vectors were less well aligned with that of
the relevant stimulus (Θstim r-choice r, Θstim r-choice i) in a number of
sessions, consistent with recent findings for population recordings
in area MT43.
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term to fit any non-stationarity in the recording over time (right). b The stimulus- or choice-driven patterns of neural activity across the recorded neurons
can be represented as population vector, with each dimension corresponding to a given neuron’s stimulus- or choice-driven weight estimated from the
encoding model. The patterns of activity can then be compared as an angle between the population vectors. c, d Results for populations in V2 and V3/V3a.
Top: The population vectors for the relevant and irrelevant stimulus are well aligned across sessions. Middle: the population vectors for the choices when
the stimulus was relevant or irrelevant are broadly aligned. Bottom: The angles between the population vectors for the relevant stimulus (v-stimr) and
choice (v-choicer or v-choicei) are correlated (r= 0.86, p= 10−10, n= 37 sessions for V2; r= 0.51, p= 0.01, n= 23 sessions for V3/V3a, two-sided
Spearman’s rank correlation; error bars are 90% confidence intervals around the median angle, by resampling).
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Interestingly, these misalignments between the choice vectors
and the relevant stimulus vector were consistent between the
relevant and irrelevant choice vectors (Fig. 4c, d, bottom: r= 0.86,
p= 10−10, n= 37 for V2; r= 0.51, p= 0.01, n= 23 for V3/V3a).
Moreover, the choice vectors (Θchoice r-i) were broadly aligned
(Fig. 4c, d, middle). This suggests that the decision-related signal
affected the population in visual cortex in a similar way, whether
this population represented a relevant or irrelevant stimulus, and
that this decision-related signal can be misaligned with the
stimulus representation. If sensory and non-sensory signals are
multiplexed at the level of the sensory population, as previously
suggested, e.g. ref. 43, such consistency in the representation of
the non-sensory decision signals may facilitate their use by
downstream processing.

Additionally, the angles between choice vectors (Θchoice r-i)
were not correlated with the angles between the relevant versus
irrelevant stimulus vectors (Θstim r-i) (r= 0.15, p= 0.37, n= 37
for V2; r=−0.35, p= 0.11, n= 23 for V3/V3a), consistent with
the weak (V3/V3a), or absent (V2) correlation between the
modulation by spatial attention and choice correlation. This also
suggests that the modulation by spatial attention and choice were
not prominently coupled in this task.

Discussion
In summary, we observed substantial choice correlations for
neurons representing a task-irrelevant, ignored stimulus, which
could not be explained by task-independent covariates or feed-
forward sensory noise. Rather, these choice correlations require
feedback interactions that are roughly similar whether or not the
stimulus inside a neuron’s receptive field is relevant. From the
perspective of the decision-process in this task this is remarkable.
Our task was designed to eliminate uncertainty as to which sti-
mulus was task-relevant and analyzing the animals’ behavior
verified their negligible use of the irrelevant stimulus. Neurons
representing this irrelevant sensory information were nearly as
correlated with choice as were neurons representing the sensory
information that the animals measurably relied on. These findings
appear to call into question previously observed systematic links
—even if they reflect feedback interactions- between sensory
neurons with choice correlations, and the perceptual decision-
process, e.g. refs. 17,44–46. Conversely, the choice correlations for
neurons are expected for a mechanism engaging feature-based
attention, as previously hypothesized. Our findings here therefore
provide support for the hypothesis that the decision-related
feedback is linked to the spatially global mechanism engaged in
feature-based attention3,4,23.

However, while a spatially unselective mechanism is beneficial
in search or detection tasks that target feature-based attention
mechanisms and typically contain spatial uncertainty24,25, the
task used here involved no uncertainty about which location was
relevant. Indeed, the measured behavior was highly spatially
selective. Any lack of spatial selectivity of the decision-related
feedback observed here is therefore not attributable to the
demands of the task.

Our findings here extend beyond previous reports (e.g.
refs. 47–49) of unselective task- or decision-related feedback. First,
we verified behaviorally that the irrelevant information was
ignored by the animals. Second, our task was designed to
uncouple the decision-formation from the motor-plan to report
the decision.

In this study we explored the selectivity of the feedback once
the animals were fully trained on the task. Our results therefore
leave open the possibility that the feedback was spatially selective
during earlier phases of the training, e.g., to support the animals’
learning of the task.

A lack of spatial selectivity of the decision-related feedback
could have implications for downstream processing5,12,20. It
suggests a common mechanism across tasks that is independent
of the spatial selectivity that those tasks demand. It also chal-
lenges theoretical accounts for the computational role of feedback
that require selectivity. The lack of selectivity may result from
biological constraints. Assume that the selectivity of the feedback
could be increased to target an arbitrary number of stimulus
dimensions, and this selectivity is mediated by selective wiring.
This would require the number of connections to grow expo-
nentially with each additional stimulus or task dimension.
Restricting the selectivity of the modulation by feedback, as
observed here, reduces the wiring required for the feedback, and
may also facilitate generalization across tasks50. Such biological
constraints may be key to solving the longstanding puzzle of the
computational role of feedback51 and its implementation.

Methods
Animals. Two adult male rhesus monkeys (Macaca mulatta; A, 7 kg; B, 9 kg, both
13 years old; housed in pairs) were implanted with a titanium head-post and two
titanium chambers over the operculum of V1 in both hemispheres under general
anesthesia. All experimental procedures were approved by the relevant local
authority, the Regierungspräsidium Tübingen, Germany.

Behavioral task. The monkeys performed a coarse disparity discrimination task on
one of two stimuli presented on the screen (Fig. 1j). The task-relevant hemifield
was cued at the beginning of each block (50 trials) by three trials during which a
single stimulus was presented on the task-relevant side. Once the animal fixated on
a fixation point, two dynamic random-dot stereograms (each analogous to ref. 19)
were presented simultaneously (2 s duration), one in each hemifield. Both stimuli
were statistically identical but independently varied, and only the task-relevant
stimulus was informative about the correct choice. The task was to report whether
the central disk of the cued stimulus was protruding (“near”) or receding (“far”)
with respect to its surround. After the stimulus presentation two choice icons (one
indicating a “near”, one a “far” choice, both at 100% disparity signal and typically
horizontally offset towards the cued side by ~1–3°) appeared, whose vertical
position (typically 3°–4° above and below the fixation point, held constant within a
session) was randomized from trial to trial. This ensured that during the stimulus
presentation the motor-command-to-choice mapping was unknown to the animal.
The monkeys reported their decision with a saccade to one of the choice icons.
Correct choices were rewarded52 with a liquid reward.

Electrophysiological recordings. We recorded extracellular single and multi-unit
activity in areas V2 and V3/V3a using multi-channel laminar probes (Plexon, TX,
USA; V/S Probes, 24/32 channels, 50–100 μm inter-contact spacing). The position
of the probe was changed between sessions, reducing the probability that the same
units were sampled across sessions. Eye movements were tracked binocularly using
the Eyelink 1000 (SR Research, OTT, Canada) at a sampling frequency of 500 Hz.
Neuronal signals were collected using Trellis (Ripple Neuro, UT, USA) interfacing
with Matlab (R2014b, Mathworks) via Xippmex (v1.2.1), amplified, digitized, and
filtered (250 Hz to 5 kHz) with the Ripple Grapevine System (Ripple Neuro,
UT, USA).

Procedure. Recording sites were initially mapped using single tungsten in glass
electrodes (Alpha Omega, Nazareth, Israel), and selected based on their disparity
selectivity and receptive field position.

Probes were inserted into V2 and/or V3/V3a via the operculum of V1,
approximately orthonormal to the surface, guided by anatomical MRI scans of the
animals’ brains, using a microdrive system (NaN Instruments, Israel) with custom-
made mounts. V2 was identified as previously described31 and verified offline based
on a shift in a receptive field position and size compared to those in V1. After
characterization of the V2 receptive field positions the probes were advanced
further and V3/V3a was identified on the basis of shifted and larger receptive fields
with respect to those in V2 and clustering for binocular disparity, cf. ref. 32. Given
the previously reported similarity between the disparity selectivity in V3 and V3a53

we collapsed across recordings in V3 and V3a. Trial-by-trial responses across
channels for example sessions in each animal in V2 and V3/V3a are shown in
Supplementary Fig. 5.

Stimuli. Visual stimuli were back-projected on a screen using a DLP LED Propixx
projector (VPixx, Saint-Bruno, Canada; 1920 × 1080 pixels resolution; 30 cd/m2

mean luminance; linearized gray values; run at 100 Hz or 60 Hz for each eye)
combined with an active circular polarizer (DepthQ, Lightspeed Design Inc., WA,
USA; run at 200 or 120 Hz). The monkeys viewed the screen (viewing distance:
103.0 and 97.5 cm in monkeys A and B, respectively) binocularly through passive
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circular polarizing filters. Visual stimuli were generated in Matlab (Mathworks)
using custom written code based on ref. 54 using the Psychophysics toolbox55.

Stimuli were circular dynamic random-dot stereograms (RDS, 50% black, 50%
white dots, typically 0.08° radius, 50% dot density). They consisted of a disparity
varying center (updated at the frame rate of the display, i.e. at 100 or 60 Hz) and a
surrounding annulus (1° width, shown at 0° disparity), the size and position of
which was determined by the aggregate receptive field of the recorded units (mean
RDS center size: 3.6°; mean stimulus eccentricity: 6.3°). On a given stimulus frame,
the center dots all had the same disparity, but the disparity could change from
frame to frame. Signal disparities (always one near and one far disparity value in
each session) were selected to approximately match the disparity selectivity of the
majority of the recorded units. Signal frames were interleaved randomly with
“noise” frames. The disparity of these noise frames was drawn from a uniform
distribution of typically nine values of discrete, equally spaced disparities
(symmetrical about 0° disparity, typical values were −0.4°, −0.3°, −0.2°, −0.1°, 0°,
0.1°, 0.2°, 0.3°, 0.4°), encompassing the near and far signal disparity. Signal strength
(measured in % signal, signed, where negative values refer to near signal trials, and
positive to far signal trials) in a given trial was determined by the proportion of
signal to noise frames, and was used to manipulate task-difficulty. For example,
−10% signal refers to a trial on which for 10% of the stimulus frames (randomized
over time) the central region of the stimulus had the near signal disparity, while the
disparity on the remaining 90% of the frames was drawn from the noise
distribution. On 0% signal (“no-signal”) trials, all frames were drawn from the
noise distribution, the correct choice was undefined, and the animal was rewarded
randomly on 50% of the trials. The target icons were also RDS but slightly smaller
than the stimuli, and always presented at 100% near and far signal.

In a subset of sessions, the random seed used to generate the stimuli was fixed
on half of the trials to produce identical stimuli (“frozen noise”, see Supplementary
Fig. 3).

Disparity tuning curves were measured prior to the behavioral task using
identical RDS as used for the task but shown for 450 ms each at 100% signal at
changing disparities (typically −1° to 1° in 0.1° increments).

For the control experiments (Fig. 3), identical RDS stimuli as for the task were
used with fixed random seeds for a range of signal disparities encompassing the
preferred and null disparity of the recorded units.

Analysis. Single and multi-unit activity (collectively referred to as units) was sorted
offline using the Plexon Offline Sorter (v3.3.5).

Inclusion criteria. Only successfully completed trials were included for further
analysis. For each unit periods of pronounced non-stationarity were removed. To
do so we computed a running 20-trial average spike count, calculated separately for
each attention condition. Periods for which this running average decreased below
20% its peak were removed, and the longest continuous segment of included trials
was used for further analysis. This resulted in the removal of 8 (0.6%) of the V2
units and 24 (2%) of the V3/V3a units because the remaining data after removing
periods of non-stationarity did not meet the minimum number of trials to compute
choice correlations (at least five trials with near and far choices, respectively, for the
0% signal stimulus). Only units for which the mean response to the 0% signal
stimulus exceeded 4 spikes/s, and for which the d-prime to discriminate the stimuli
with the highest signal strength was >0.5 were included. Additionally, the following
behavioral criteria had to be met for each unit: the animal’s performance had to
exceed 70% for the highest % signal stimuli and the bias for 0% signal trials had to
be below 75%. For the V2 dataset, out of 1301 units 152 (12%), 266 (20%), and 172
(13%) were excluded because the criteria for minimum firing rate, d-prime or
behavior, respectively, were not met. For V3/V3a, out of 1035 units, 123 (12%), 298
(29%), and 104 (10%) were removed for these reasons. Of the included 703 V2 (486
V3/V3a) units 5.5% (3.5%) of trials were excluded due to non-stationarities. Of the
included units 18/703 (15/486) were single units in V2 (V3/V3a). The main
findings for the single units were qualitatively similar to those for the multi-unit
activity (p > 0.35 for all two-sided Wilcoxon rank-sum tests on differences in
medians for the choice correlations for the relevant and irrelevant stimulus in
either area and across areas), and we therefore collapsed all analyses across single
units and multi-units. Non-parametric statistical tests were typically used to avoid
relying on assumptions of normality of the data, except for the control analyses in
Fig. 3c, d, but the conclusions were unchanged when using non-parametric tests
instead.

Receptive field positions. For each unit we measured a horizontal and vertical
response profile (as described in ref. 56). These reflect the one-dimensional
receptive fields examined along the horizontal axis (using an elongated vertical
stimulus, typically a low-spatial frequency sinusoidal luminance grating 0.3–0.5° by
3–5°) or vertical axis (using a horizontally elongated stimulus). These were fit
separately with Gaussian functions, and fits were required to explain at least 70% of
the variance. The average receptive field position for each area and session (Sup-
plementary Fig. 4) was computed as the average mean of all included fits to the
horizontal (x) and vertical (y) response profiles.

Behavior. Performance was measured as percent far choices as a function of the
relevant or irrelevant stimulus’ signed signal strength. Cumulative Gaussians were

fit to the session-averaged performance for the relevant stimulus. Psychophysical
thresholds and bias were defined as the standard deviation and mean of these
cumulative Gaussians.

Psychophysical reverse correlation. Time-resolved psychophysical kernels57 were
computed for 0% signal trials (see also refs. 19,58) for the relevant and irrelevant
stimuli separately. For each of four non-overlapping consecutive time bins (500 ms
each), the stimulus was converted to an n ×m matrix (n, number of discrete
disparity values used for the stimulus; m, number of trials). Each entry of this
matrix contained the proportion of frames on which a given disparity was pre-
sented in this time-bin and trial. The kernel for each time-bin was computed as the
difference between the mean matrix across near-choice trials and the mean matrix
across far-choice trials. The kernels were averaged across sessions, adjusted for the
frame-rate and weighted by the number of trials per session.

GLM analysis of behavior. To examine the degree to which the relevant or irre-
levant stimulus or their interaction influenced the animals’ choices (a far choice is
defined as 1) we fit a GLM to the animals’ behavior in each session:

Pðchoice ¼ 1Þ ¼ β0 þ β1srel þ β2sirrel þ β3srelsirrel ð1Þ

where Φ() is the cumulative distribution function of the normal distribution, srel,
sirrel, and srelsirrel correspond to the relevant and irrelevant stimulus on each trial (in
signed percept signal strength) and their interaction, respectively. We fit weights
(β1, β2, β3) to account for the contribution to the animals’ choices of each of these
covariates as well as the animals’ bias (β0). To ensure comparability of the resulting
weights we normalized (z-scored) the covariates prior to fitting. We used lasso
regularization (function lassoglm in Matlab; 10-fold cross-validation; see ref. 59) to
avoid overfitting.

Modulation by spatial attention. To measure the modulation by spatial attention we
compared the mean responses (R, in spikes/sec during the 2 s stimulus presenta-
tion) to the 0% signal stimulus when it was relevant versus irrelevant. We quan-
tified the modulation by a contrast (cf.26) as a spatial attention index, AI=
(Rrelevant – Rirrelevant)/(Rrelevant+ Rirrelevant).

Choice correlations. CPs (signed according to the tuning for disparity of each unit,
measured during the fixation tasks outside of the discrimination task) were com-
puted based on the average firing rates for the 0% signal trials. The mean responses,
corrected for stimulus-induced effects as described below, for each trial were
grouped according to the choice the animal made on a that trial. From the dis-
tribution of firing rates when the animal chose a neuron’s preferred and null
disparity, we computed the aROC, which was defined as CP17. CPs can be con-
verted to a Pearson’s correlation coefficient “choice correlations”, cchoice, between
the neuronal response and a continuous decision variable as derived previously, i.e.
Eq. (S1.6) in ref. 35 and Eq. (8) in ref. 18:

CP ¼ 1
2
þ 2

π
tan�1 cchoice

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� c2choice
p ð2Þ

Based on this relationship we converted CPs to choice correlations as done in
ref. 60. Note that Pitkow et al. (2015) used a linear approximation to this quantity:

CP � 1
2 þ

ffiffi

2
p
π cchoice � 0:45cchoice þ 0:5. Because we define the preferred and null

disparity based on each unit’s disparity tuning, choice correlations are signed with
respect to each unit’s tuning. That is, positive cchoice values mean that a unit has a
higher firing rate on trials when the animal chooses a unit’s preferred disparity.
Conversely, negative cchoice values imply lower firing rates on trials when the
animal chooses the unit’s preferred disparity.

To compute choice correlations we first corrected the mean neuronal responses
for each trial for fluctuations induced by the stimulus. This is necessary because the
psychophysical reverse correlation approach relies on systematic differences on
average with choice in the stimulus sequences (Fig. 1l, n). The correction involved
two steps. First, we computed a subspace map s (for all 0% signal trials, not
separated by choice)19: s is a k-dimensional vector giving the total number of spikes
(s) elicited by one frame of a given disparity x. A separate subspace map was
computed for trials when the stimulus in the receptive field was relevant or
irrelevant. Then we summarized the stimulus for each trial by a histogram nðrÞt ðxÞ,
or nðiÞt ðxÞ (see also below under “Statistical modeling for population analysis”)
corresponding to the number of frames that the disparity x was presented within
the receptive field of the neuron over the trial when the stimulus was relevant or
irrelevant, respectively. Second, we calculated the inner product between s and the
stimulus histogram n for each trial, which yields the spike count for each trial
predicted from the stimulus histogram of that trial. This predicted spike count was
subsequently subtracted from the measured spike count on a given trial, which
removes the predicted trial-by-trial stimulus-induced fluctuations but not random
fluctuations with choice.

The time-courses of the choice correlations were computed analogously but for
the firing rate in a sliding (10 ms steps) 300 ms wide window, and corrected for the
latency-adjusted stimulus-induced effect.
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Exploring the effect of the stimulus in the opposite hemifield on firing rate. Units
were only included if they exhibited significant disparity tuning (p < 0.05 in a one-
way ANOVA). We tested for differences in mean firing rate during each 450 ms
stimulus presentation for each unit during a fixation task as a function of the
stimulus disparity inside the receptive field and in the opposite hemifield using
two-way ANOVAs.

Pair-wise interneuronal covariability. Pairs of simultaneously recorded units were
included if the units were separated by at least 100 μm. Spike-count correlations
(“noise correlations”) were computed for the average response during the stimulus
presentation as the Pearson correlation coefficient between the responses of each
pair to an identical stimulus. We required a minimum of 20 presentations per
stimulus condition to be included in this computation and then used the average
correlation coefficient across stimuli for each pair. Tuning similarity was quantified
as “signal correlations”61 by computing the Pearson correlation coefficient between
the tuning curves along the stimulus dimension used for the task (i.e. the mean
response to each stimulus as a function of % signed disparity signal) for each pair
of units. We quantified the relationship between noise and signal correlation by
type II linear regression and significance by resampling (1000 repeats). Our results
in Fig. 3f, g were similar when noise correlations were instead computed by first
converting the spike counts for each stimulus condition into z-scores and then
calculated as the Pearson correlation coefficient across z-scores.

Statistical modeling for population analysis. To distinguish the pattern of activation
of the recorded neural populations driven by stimulus and choice—despite their
correlation across trials—we used a GLM with an identity link function to predict
each neuron’s spike count in each trial. The GLM predicted the spike count on a
given trial t based on: (1) the number frames nt(x) that each disparity x was
presented in the neuron’s receptive field, nðrÞt ðxÞ or nðiÞt ðxÞ depending on whether
the stimulus inside the receptive field was relevant or irrelevant, (2) the animal’s
choice on that trial cðrÞt or cðiÞt , again depending on whether the stimulus inside the
receptive field was relevant or irrelevant (3) whether the relevant stimulus was in
the receptive field or in the opposite hemisphere (see above distinctions between r
and i); (4) an estimate of the drift d(t) in the firing rates over the recording. An
identity link function resulted in the best fits, and as a result each weight has units
of firing rate modulation. More complex, nonlinear models62 had no better model
performance than the GLM for predicting the whole-trial spike count:

RðtÞ ¼ ∑
x
frðxÞnðrÞt ðxÞ þ∑

x
fiðxÞnðiÞt ðxÞ þ wrc

ðrÞ
t þ wic

ðiÞ
t þ dðtÞ ð3Þ

where d(t) is the model’s drift term estimated using a set of tent-basis functions
fξjðtÞg63 that span all trials (see below) and allow a smooth set of linear model
terms, {dj}, as follows:

dðtÞ ¼ ∑
j
djξjðtÞ ð4Þ

Thus, the predictors of the model are defined as follows (for trial t):
nðrÞt ðxÞ: the histogram of disparities on trials when the stimulus inside the

receptive field was relevant, corresponding to the number of frames that the
disparity x was presented within the receptive field of the neuron over the trial.
Thus, for trials on which the relevant stimulus was presented outside the unit’s
receptive field, all entries of this vector are set to 0.

nðiÞt ðxÞ: the histogram of disparities presented on trials when the stimulus inside
the receptive field was irrelevant, corresponding to the number of frames that the
disparity x was presented outside the receptive field of the neuron over the trial.
Thus, for trials on which the irrelevant stimulus was presented outside the unit’s
receptive field, all entries of this vector are set to 0.

cðrÞt : the choice on trials where the stimulus inside the receptive field was
relevant (near=−1, far=+1). If the stimulus inside the receptive field was
irrelevant this predictor was set to 0.

cðiÞt : the choice on trials where the stimulus inside the receptive field was
irrelevant (near=−1, far=+1). If the stimulus inside the receptive field was
relevant this predictor was set to 0.

fξjðtÞg : a tent basis (also known as b0-splines) that allows for a smoothly
varying drift term (fittable with linear model components) to capture non-
stationary aspects of the recording of each neuron not tied to any of the other
predictors. There is a basis function for each anchor point j, with anchor points
chosen with one per cycle of relevant–irrelevant stimulus blocks. The basis function
is equal to 1 at the anchor point, and linearly descends to hit zero at the previous (j
−1) and next (j+ 1) anchor points and is zero everywhere else. Thus, the
corresponding model weight dj gives the value of the offset for the model d(t) at the
anchor point, and linearly interpolates at intermediate trials between the values at
the anchor points.

Considering the model predictors, the model terms were constrained as follows.
For a given trial, linear weights f(x) acting on the histogram of the number of video
frames for which the central disc was shown at each disparity nð:Þt ðxÞ yields the
average number of spikes evoked by that disparity within the trial. Smoothness of
the resulting tuning curve was enforced through regularization using a penalty
term on the Laplacian of the weights (e.g., ref. 64). Choice effects were fit with a

single linear weight (one predictor each when the stimulus inside the receptive field
was relevant or irrelevant, respectively) acting on a value corresponding to the
animal’s choice (−1= near, 1= far), and thus the model weights w reflected the
difference in firing rate resulting from the animal’s choice on that trial, again
separately for trials when the stimulus was relevant wr and irrelevant wi. These
model terms were fit simultaneously with the “drift term”, which captures slow
non-stationarities in the firing rate over the recording. As described above, it is fit
using parameters that specify the value of the firing rate offset at each anchor point
dj, and through the use of tent-basis functions, the value of the offset linearly
interpolates between “anchor points” spaced at every period of relevant/irrelevant
blocks (roughly every 94 trials; one anchor point per period).

The model parameters were fit simultaneously using gradient descent of the mean-
squared error, using custom Python code. By fitting these terms all at once, the GLM
could attribute the sources of the modulation to each of these factors, even though
some were correlated. Such an encoding approach provides weights for stimulus and
choice modulation in units [spikes per trial] that are directly comparable.

Analysis of stimulus- and choice-driven population activity. The population vectors
were calculated for each recording separately, from the weights of the model fits,
with each dimension corresponding to a different neuron. The stimulus vector was
based on the difference in weights in response to the near and far signal disparities.
That is, for each neuron we computed fr(x= near signal)−fr(x= far signal), which
(across neurons) defined a vector in the neuronal population space (Fig. 4b). The
population vectors for the irrelevant stimulus were computed analogously from the
weights for the irrelevant stimulus. The angles, Θ, between a given pair of popu-
lation vectors was calculated based on the vector dot-product:

Θ ¼ cos�1 v1 � v2
jv1jjv2j ð5Þ

This can be visualized as the angle between lines drawn between the points in
population space and the origin (e.g., Fig. 4b).

In addition to the inclusion criteria applied to the main dataset, the population
vector analysis excluded units that had a majority of their response (>50%)
explained by the drift term in its encoding model. Following this additional
screening, only recordings with five or more valid units per area were included in
the resulting measurements of population vectors. For the included units the GLM
accounted for an average of 52% (V2) and 50% (V3/V3a) of the variance (fivefold
cross-validation).

Citation diversity statement. Recent work in neuroscience and other fields has
identified citation biases suggesting that women and minorities are undercited65,66.
To increase transparency67 we here report the citation statistics based on the
inferred gender65 of the first/last authors. Excluding self-citations to the authors of
this paper, the references in this paper are 58.6% man/man, 19.0% woman/man,
12.1% man/woman, and 10.3% woman/woman. For comparison, the respective
proportions in top neuroscience journals recently reported66 are 58.6% man/man,
25.3% woman/man, 9.4% man/woman, and 6.7% woman/woman.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as an Excel file (*.xlsx). A portion of the data is
deposited here: https://github.com/NienborgLab/Quinn_et_al_2021/Data. The full data
reported in this study can be obtained upon reasonable request from the corresponding
author.

Code availability
The custom analysis code is available here: https://github.com/NienborgLab/
Quinn_et_al_2021/.
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