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SUMMARY

When we look at an image, its features are represented in our visual system in a highly distributed manner,
calling for a mechanism that binds them into coherent object representations. There have been different pro-
posals for the neuronal mechanisms that can mediate binding. One hypothesis is that binding is achieved by
oscillations that synchronize neurons representing features of the same perceptual object. This view allows
separate communication channels between different brain areas. Another hypothesis is that binding of fea-
tures that are represented in different brain regions occurs when the neurons in these areas that respond to
the same object simultaneously enhance their firing rate, which would correspond to directing object-based
attention to these features. This review summarizes evidence in favor of and against these two hypotheses,
examining the neuronal correlates of binding and assessing the time course of perceptual grouping. I
conclude that enhanced neuronal firing rates bind features into coherent object representations, whereas
oscillations and synchrony are unrelated to binding.
INTRODUCTION

When we open our eyes, we immediately see what is there. The

efficiency of our vision is a remarkable achievement of evolution.

The introspective ease with which we perceive our visual sur-

roundings masks the sophisticated machinery in our brain that

supports visual perception. The image that we see is rapidly

analyzed by a complex hierarchy of cortical and subcortical brain

regions. Neurons in low-level brain regions extract basic features

such as line orientation, depth, and the color of local image ele-

ments.1 They send the information to several mid-level brain

areas. For example, neurons in area MT code for motion direc-

tion,2 and neurons in area V4 code for color and shape frag-

ments.3–6 Neurons in mid-level areas send the information to yet

higher levels for an even more abstract analysis of the visual

scene.7 Neurons at these higher levels code for the category of

objects andeven for the identity of specific individuals.8–10Hence,

every visual object activates a complex representation that is car-

ried by a large set of neurons across many brain regions.

An important question is how the distributed and fragmented

representations of objects across many areas of the visual brain

can lead to a unified perception of objects against a background

(Figures 1A and 1B). I focus here on this so-called ‘‘binding prob-

lem.’’ The binding problem occurs if there are multiple objects.

Each of the objects activates a pattern of neurons across

many brain regions, and in such a representation it may not be

evident which features belong to one of the objects and which
ones belong to the others. Which process glues the features

into coherent object representations? Neuronal mechanisms

for binding have been controversial. Initially, researchers pro-

posed binding by synchrony (BBS), which holds that the binding

problem is solved by synchronous oscillations.11,12 A related hy-

pothesis, known as communication through coherence (CTC),

holds that synchrony and oscillations permit separate channels

of communication between different brain regions.13,14 I will re-

view evidence that casts doubt on oscillations and synchrony

as the code for binding and communication. Instead, the binding

problem appears to be solved by a coordination of neuronal

firing rate levels across brain regions. The representations of fea-

tures of an object become linked when the neurons coding for

them enhance their firing rates (binding by firing rate enhance-

ment [BBRE]).15,16 There is a close correspondence between

the firing rate enhancement and object-based attention, a

concept from perceptual psychology.17,18 Later sections will

discuss how the propagation of firing rate enhancements in the

visual brain corresponds to the spread of object-based attention

throughout an object’s representation until all of its elements are

attended to and thereby bound in perception.

I will first outline why there is a binding problem. I will then eval-

uate BBS and BBRE based on the experimental evidence in

favor of and against these two binding mechanisms. Toward

the end of the review, I will also briefly touch upon the role of

feature binding for motor programming, cognitive routines, and

its relation to workspace theories of conscious perception.
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Figure 1. Two phases of visual processing
(A) Image generated byOpenAI’s image-generation
network DALL,E2 using the prompt ‘‘a zebra and a
giraffe and a tree, realistic.’’
(B) Schematic indicating how visual features
are represented in a distributed manner, with
features like motion and texture in different brain
regions. A macaque brain is illustrated, but
distributed representations are present in many
species. Neurons (colored circles) are positioned
at approximate locations of feature
representations.
(C) Visual processing starts with a feedforward
sweep during which low-level brain regions
encode simple features and propagate the activity
to higher regions, which extract more complex
features up to the level of object categories.
(D) In a later, recurrent response phase, feedback
(green arrows) and horizontal connections (yellow
arrows) come into play. Perceptual grouping
operations link distributed representations into
coherent object representations.
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HARD-CODED FEATURE CONJUNCTIONS AND
FLEXIBLE CODES FOR BINDING

The processing of a new image starts with a phase during

which feedforward connections propagate information from

lower to higher cortical areas so that increasingly abstract fea-

tures are extracted.19 During the early phase of neuronal re-

sponses, information is propagated from lower to higher visual

brain regions that encode increasingly complex features

(Figure 1C). Deep neural network models20 provide insight

into how neuronal networks, including the visual system, can

create meaning out of retinal inputs.21,22 Although many deep

neural network studies focus on object categorization, other

feature hierarchies exist in the brain, for example for the anal-

ysis of complex motion patterns and for the coordinate trans-

formations that are required to control body movements during

actions like navigation and grasping.7,23,24 If the task is object

recognition, feedforward processing may suffice for simpler

scenes, and perceptual grouping operations may not be

required.25,26 However, there are many tasks in which it is

essential to determine which of the lower- and higher-level fea-

tures are part of the same object.

There are at least two solutions for this binding problem.

The first is that groupings are hard coded during feedforward

processing. Many neurons in visual cortex code for feature

conjunctions, which have been called ‘‘base groupings.’’16 A

neuron might respond, for example, only to red vertical lines,

thereby coding that these features belong together.27 Neurons
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in higher brain areas coding for con-

cepts, like zebras and giraffes, also

code for feature conjunctions. A neuron

that represents zebras, for example, co-

des for feature constellations that

include a zebra head, legs, trunk, and

stripes. Hence, such a neuron codes for

a perceptual group, although it can be

activated by many zebra pictures. How-

ever, note that the specific zebra
of Figure 1A is unique, and it is unlikely that there is a neuron

that responds only to this specific configuration of features.

Establishing which low-level contours belong to the zebra re-

quires a second form of perceptual grouping that is flexible

and is called ‘‘incremental grouping.’’ Furthermore, there is a

limit to the total number of feature conjunctions that can be

hardwired in the visual brain. There is a ‘‘combinatorial explo-

sion’’11 as more feature conjunctions are possible than the

number of neurons in the visual brain. Both BBS and BBRE

propose that these additional conjunctions are formed by an

incremental grouping process, which tags features of one ob-

ject and segregates them from features of other objects. This

incremental grouping process can occur for feature constella-

tions that were never seen before and is thought to rely on

feedback connections from higher to lower visual areas and

horizontal connection between neurons in the same area

(Figure 1D).16,19

Incremental grouping works for unfamiliar shapes, which are

not represented as base groupings and can hence only be rep-

resented in a distributed manner. For example, in Figure 2A,

one can see that the two parts indicated by red arrows belong

to the same object, whereas the green arrow points to a different

one. Unfamiliar shapes are represented by an assembly of neu-

rons responding to features that are linked by lower-level

grouping cues, such as the collinearity of image elements, their

connectedness, and similarity of color and texture. These low-

level grouping cues were described by Gestalt psycholo-

gists28–30 and explain why we can see where one unfamiliar
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Figure 2. Perceptual grouping of unfamiliar objects and semantic segmentation
(A) Superimposition of unfamiliar objects. One can see that the two red arrows point to the same object, whereas the green arrow points to a different one.
(B) Semantic segmentation labels pixels that belong to object categories, here, people and bicycles.
(C) Example ‘‘pyramid attention network’’ for semantic segmentation. Processing starts with a feedforward pass (using a ResNet) where increasingly abstract
features are extracted up to the level of object categories. This is followed by a feedback pass in which the features and pixels that belong to object classes are
labeled differently. GAU, global attention upsample; FPA, feature pyramid attention.
(D) Erroneous binding by DALL,E2. Cuedwith the prompt ‘‘a blue zebra, a green tree, and a red giraffe,’’ the network created a blue giraffe and a red zebra. (B) and
(C) are reproduced from Li et al.31
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object ends and another one starts. Incremental grouping is flex-

ible because one can choose to focus on any of the objects and

segregate it from the others.

In themachine vision field, the problem of image segmentation

has received a lot of interest in recent years. Figure 2B illustrates

the output of an example neural network that performs semantic

segmentation. This means that it identifies pixels belonging to

different object categories.31 The example network labeled the

pixels that are part of humans with one color and the pixels of bi-

cycles with another color. There are interesting similarities be-

tween semantic segmentation by neural networks and the

perceptual grouping operations that take place in the human

brain. The artificial neural network of Li et al.31 starts with a for-

ward pass in which the units extract increasingly abstract feature

constellations in higher layers up to semantic categories

(Figure 2C). This is followed by a feedback pass that labels the

pixels that belong to specific object categories.Whereas seman-

tic segmentation gives the same label to pixels of all objects if

there are multiple instances of a class, there exist related

‘‘instance segmentation’’ networks.32 These networks give

different labels to separate objects of the same category and

would segregate the three cyclists in Figure 2B as different ob-

jects. The deep neural networks for image segmentation may
provide crucial insights into the mechanisms for image parsing

in human vision, and I will point out correspondences and differ-

ences in later sections.

Incremental grouping can go awry in both humans and neural

networks. In humans, illusory conjunctions between features of

different objects can occur if there is not enough time for recur-

rent processing. In a classic study, Treisman and Schmidt33

asked participants to report two digits in a briefly presented

display. A few colored letters were placed between the digits,

and the subjects also reported the identity and color of the let-

ters as a secondary task. The subjects sometimes reported a

letter with the color of a different letter. For example, the sub-

ject might report a brown T, although a blue T and a brown R

had been presented, suggesting that these features were

correctly registered but not bound. Interestingly, such binding

errors are also produced by neural networks, such as

OpenAI’s deep network DALL,E2, which generates images

from text. The network sometimes produced a red zebra and

a blue giraffe when cued to produce the opposite combination

of colors and shapes (Figure 2D). These illusory conjunctions

illustrate the fundamental nature of the binding problem caused

by the distributed and overlapping representation of multiple

objects.
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mechanism for binding
(A) Distributed representation of visual features.
(B) BBS permits multiple incremental groups.
Oscillatory synchrony labels features of the zebra
and the giraffe, which are both segregated from
the background (gray).
(C) Neurons representing features of the same
object fire action potentials in synchrony.
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OSCILLATIONS AND SYNCHRONY DO NOT BIND

More than thirty-five years ago, von der Malsburg and

Schneider34 proposed that neuronal synchronization binds fea-

tures into coherent object representations. The BBS hypothesis

holds that neurons coding for features of the same object fire in

synchrony, whereas neurons coding for features of different ob-

jects do not.12,35 Neurons coding for features of one object (e.g.,

the zebra in Figure 3) would fire action potentials in synchrony

and out of sync with spikes fired by neurons coding for other ob-

jects such as the giraffe (green vs. yellow spikes in Figure 3C). An

important feature of BBS is that the representations of objects of

interest carry their own temporal tag so that multiple incremental

groups can coexist in perception (green and yellow in Figure 3B).

An additional advantage of BBS is that synchrony provides a

coding dimension in addition to the firing rate, enhancing the

expressiveness of the representation.

A study in the primary visual cortex of cats by Gray et al.36 pro-

vided initial evidence that gamma oscillations (30–80 Hz) might

provide a rhythm for binding. Neurons in area V1 of cats ex-

hibited stronger synchronywhen they coded for features of a sin-

gle, elongated bar of light than if they responded to two distinct

and shorter bars. A related study in support of BBS recorded

neuronal activity in areas 18 and postero-medial bank of the

lateral suprasylvian sulcus (PMLS) of the cat and revealed that

synchrony increased for neurons encoding features of the

same surface compared with when they responded to different
1006 Neuron 111, April 5, 2023
surfaces.37 Fries et al.38 measured syn-

chrony in V1 in cats during binocular ri-

valry. In this paradigm, different stimuli

are presented to the two eyes, and the

stimulus that is perceived alternates be-

tween the eyes. Synchrony was stronger

for V1 neurons coding for the stimulus

that dominated perception, suggesting a

link between gamma synchrony and

conscious perception. Gamma oscilla-

tions also increase when stimuli are at-

tended,39–41 although these increases

are not always restricted to the gamma

band.42 It has been argued, however,

that these increases in gamma may be

related to the firing rate increases that

accompany attention shifts given the

coupling between gamma power and

neuronal firing rates.43 The BBS hypothe-

sis quickly gained popularity in neural

network modeling studies,44,45 and the
ideas were also extrapolated to functions outside vision, such

as reading.46

However, there are now several findings that seem incompat-

ible with BBS (for earlier criticisms, see Shadlen and Movshon

and Reynolds and Desimone, respectively47,48). First, gamma

synchrony is a local phenomenon. Its strength quickly decays

to zero for neurons separated by distances larger than a few

mm.49–51 Gamma synchrony can therefore not group image ele-

ments that are represented by neurons with a larger separation.

For example, neurons in human V1 representing the legs and

head of the giraffe in Figure 3B can be separated by centimeters,

depending on the gaze position and the size of the picture on the

retina. Therefore, gamma oscillations cannot be used as a code

for semantic segmentation. The same holds for the binding of

features across brain regions. Interregional gamma synchroniza-

tion between brain regions is relatively weak.52 To enhance

sensitivity for the detection of synchrony, researchers often

resort to analyzing local field potentials (i.e., the local electroen-

cephalogram [EEG]) in one or both areas.41,53,54 Only a few

studies analyzed the gamma synchronization between spikes

between different areas. One of these studies by Jia et al.55 re-

corded spikes in area V1 and in layer IV of area V2, which re-

ceives the feedforward input from V1. Spikes in the areas only

exhibited weak synchronization if the neurons had overlapping

receptive fields. The spikes in V2 were not in synchrony but

lagged those in V1 by approximately 3 ms, which is consistent

with the feedforward propagation delay between V1 and layer
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IV of V2.56 If neurons in successive stages would exhibit similar

delays, they fire out of phase with the V1 neurons, which is prob-

lematic for BBS. The weak interareal gamma synchronization is

problematic for setting up independent communication chan-

nels between brain regions, as is proposed by CTC.13,14 Further-

more, the delays are prohibitive if brain regions are farther

apart13 or if they communicate through multiple routes with

different numbers of intermediate stages.

A study by Siegel et al.57 may appear to provide evidence for

CTC. The authors requiredmonkeys tomemorize two itemsduring

adelay.During this task, they recordedneuronal activity in the pre-

frontal cortex and compared decoding accuracy for the items in

memoryacrosssuccessivephasesof thegammaoscillation. Inter-

estingly, decoding accuracy was �7% better during the optimal

phase than during the worst phase of the oscillation. The authors

also observed a phase difference (corresponding to �5 ms) be-

tween the twomemory items and suggested that different phases

might permit the readout of specific object information. At the

same time, decoding with more than 90% of the maximum accu-

racy was possible for both items during all phases, which is not in

line with the phase-specific signals proposed by CTC.

Recent results suggests that gamma coherence between

brain areas might be the result of communication rather than a

prerequisite.58 Furthermore, the gamma oscillations exhibit a

dependence on the nature of the visual stimulus that is not yet

fully understood. Some stimuli, such as grating patterns and

red stimuli, elicit strong gamma in the EEG of humans and mon-

keys, whereas other stimuli do not.59–63 If gamma oscillations

matter for perception, one would predict that stimuli eliciting

strong gamma oscillations have a special status, but such find-

ings have, to my knowledge, not been described.

Studies investigating neuronal synchrony in the visual cortex

of monkeys that reported about perceptual grouping provided

a direct test of BBS51,64–66 but did not support it. In an example

study,51 monkeys had to mentally trace a target curve that was

connected to a fixation point to identify a larger red circle at its

other end as a target for eye movement (Figure 4A). There was

also a second distracting curve that the monkeys had to ignore.

The curve-tracing task requires the grouping of contour ele-

ments of the target curve and their segregation from the distrac-

tor. Recordings weremade from V1 neurons with receptive fields

at different positions on the curves. A first observation was that

gamma synchronization did not occur. The V1 neurons did syn-

chronize their responses, but the width of the peaks in the cross-

correlation functions was �100 ms (Figure 4A), indicative of a

brain rhythm with a frequency lower than gamma. Synchroniza-

tion was weak, with correlation coefficients around 0.01, and,

surprisingly, did not occur at all in one of the monkeys

(Figure 4B). Finally, the strength of synchronization was similar,

regardless of whether the V1 receptive fields fell on the same

or on different curves (Figures 4A and 4B). Synchrony could

even be dissociated from binding by creating stimuli for which

grouping decreased synchrony. These results indicate that bind-

ing does not require synchronicity in area V1.

Given that gamma synchrony is a local phenomenon, re-

searchers proposed that binding could result from lower-fre-

quency alpha oscillations (8–12 Hz), which synchronize neurons

that are farther apart.69 However, there are several reasons why
it is unlikely that alpha oscillations play a role in binding. The

first was discussed above: the strength of synchrony in V1 at

lower frequencies does not reflect the grouping of contours

(Figures 4A and 4B). Second, there is substantial variability in the

strength and frequency of alpha oscillations across individuals.

This variability partially reflects genetic factors, because the EEG

of monozygotic twins is more similar than that of dizygotic twins

(Figure 4C).67,70 Importantly, some humans do not have an alpha

peak in the power spectrum (e.g., the upper-left twin in

Figure 4C; also see Haegens et al.71), a finding that is presumably

related to the results in one of themonkeys in Figure 4B,which did

not exhibit synchrony at all. Althoughhumanparticipantswithout a

clear alpha rhythm were not described further, it seems unlikely

that they had binding problems, because people with binding

problems have severe symptoms.72 The absence of alpha oscilla-

tions in a fraction of the population is problematic for theories73,74

suggesting that this rhythm is causally involved in any cognitive

function. Furthermore, alpha oscillations are suppressed when vi-

sual stimuli are presented and also when subjects direct their

attention to task-relevant stimuli.42,74,75 Hence, alpha oscillations

are suppressed when scene perception requires attentional

grouping processes, further undermining their role in binding.

COINCIDENCE DETECTION

A cornerstone of BBS and CTC is that synchrony enhances

the influence of neurons on their postsynaptic targets.76 The

efficiency with which synchronous inputs are integrated by a

postsynaptic neuron depends on the distance between the

membrane potential and the firing threshold of a neuron. If the

membrane potential is far from the threshold, synchronous in-

puts help to drive a neuron. However, synchrony is less impor-

tant if the membrane potential is close to the firing threshold or

if the membrane potential fluctuates spontaneously.77 Hence,

whether synchrony matters for the postsynaptic drive is an

empirical question and may differ between brain regions.47,78

Histed and Maunsell68 used optogenetics to test the influence

of synchronicity on the activity of neurons in V1 of mice

(Figure 4D). They compared short and strong optogenetic excit-

atory light pulses with weaker light pulses of longer duration. A

strong light pulse of 3 ms induced a strong, synchronous burst

of activity, whereas a weaker light pulse of 100 ms caused only

a small, asynchronous increase in the firing rate that was main-

tained for the duration of the optogenetic stimulus. Interestingly,

the total number of induced action potentials did not depend

on the duration of the pulse but only on the total light energy

(in mJ/mm2), proportional to the total number of photons reach-

ing the neurons (inset in Figure 4D). The ability of the mouse to

detect highly synchronous bursts of V1 activity, which were

induced by the short pulse, was the same as its ability to detect

the same number of spikes dispersed over 100 ms (Figure 4E).

Although the optogenetic activation of neurons is different from

how the cells are driven by visual stimuli, the result suggests

that synchronicity does not increase the efficiency of postsyn-

aptic integration, at least for intervals up to 100 ms. Apparently,

downstream brain regions can efficiently integrate inputs across

intervals up to 100 ms. In additional experiments, the authors

showed that pulsing light at gamma frequencies was also
Neuron 111, April 5, 2023 1007
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Figure 4. Synchrony, oscillations, and coincidence detection
(A) Monkeys traced a target curve that was connected to a fixation point to locate a larger red circle at the other end of this curve. They had to perceptually group
the contours in the V1 receptive fields 1 and 2 and segregate them from contours of the distractor (receptive field 3) (left). Cross-correlation functions showing
correlation coefficient as function of time lag. Peaks straddling the zero time bin indicate synchrony, whichwas similar for neurons coding for contours of the same
curve (1–2) and neurons coding for different curves (1–3 and 2–3) (right).
(B) On average, the synchrony between neurons coding for contours of the same and different curves was similar. The largest differenceswere observed between
monkeys, because V1 neurons in monkey M3 did not synchronize. Error bars denote S.E.M.
(C) EEG spectra of example monozygotic (left) and dizygotic twins (right).
(D) Optogenetic excitation of V1 neurons. V1 was stimulated with light pulses of different strengths and durations such that the light energy (in mJ) was kept
constant. Inset, the number of elicited spikes was similar across light pulses with different durations. Error bars denote S.E.M.
(E) The ability of mice to detect V1 excitation was similar across light pulses of different durations, indicating that the degree of synchronicity did not matter for
perception.
The data in (C) is from Lykken67 and in (D) and (E) from Histed and Maunsell.68
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inconsequential for perception, suggesting that gamma has little

impact on the information transfer between brain regions.

OBJECT-BASED ATTENTION: LABELING WITH AN
ENHANCED FIRING RATE

Figure 5 illustrates the alternative hypothesis that features are

bound in perception by labeling their representations across
1008 Neuron 111, April 5, 2023
brain regions with an enhanced firing rate (BBRE).15,16 BBRE

proposes a dual role for firing rates. First, the firing rates reflect

the tuning of neurons to features and base groupings during

feedforward processing.16,79 Second, during incremental

grouping, neurons coding for to-be-grouped features enhance

their firing rate above the rate of neurons representing other ob-

jects and the background (Figure 5). At a psychological level of

description, it is this ‘‘incremental representation’’ that receives
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Figure 5. Labeling by firing rates as a mechanism for binding
(A) BBRE predicts that the activity of neurons coding for the features of an attended object is enhanced. Here, incremental groupings form for the zebra, which is
segregated from the other objects and background (gray).
(B) Distributed representation of visual features.
(C) Attended objects elicit more activity than non-attended ones in V4, the pulvinar of the thalamus, area LIP in parietal cortex, andmotion-sensitive area MT. The
data from V4 and the pulvinar are from Zhou et al.,81 and the data from LIP and MT from Herrington and Assad.82

(D) Features are represented across populations of neurons with various activity levels in each brain area (here, 6 neurons per area). Some neurons are influenced
by attention (cylinders), whereas others are not (base representation, parallelepipeds). Yellow cylinders illustrate the response enhancement caused by incre-
mental grouping. A pure attention signal can be extracted (and propagated) by comparing activity levels of neurons that are and are not influenced by incremental
grouping (cylinders and parallelepipeds, next to each other). Yellow arrow, the attentional response enhancement needs to spread between brain regions.
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object-based attention.16,80 The main prediction of BBRE is that

when an object is attended, the representations of its features

are enhanced across brain regions as an assembly and thereby

grouped in perception.

In accordance with this prediction, attention increases the firing

rates of neurons in most, if not all, cortical regions. Response en-

hancements occur in early visual cortex,83,84 mid-level visual

areas such as V4 and MT (Figure 5C),81,85–87 inferotemporal cor-

tex,88,89 parietal cortex,90–92 and frontal cortex93–97 (see

Figure 5C for a few exemplary results). The typical finding is that

the initial response elicited by feedforward processing is similar

for attended and non-attended items and that the responses of at-

tended objects are enhanced later, during a recurrent processing

phase. Attention also increases firing rates in subcortical struc-

tures, including the pulvinar,81,98 the lateral geniculate nucleus

(LGN),99 and the basal ganglia.100 Hence, when an object is at-

tended, the increased neuronal responses elicited by its various

featuresmay integrate them into a coherent object representation.

The co-selection of features of the same object in different brain

regions implies that the distributed representations are linked by

cortico-cortical and cortico-subcortical connections. Recent neu-

ral network models gained insight into the neuronal mechanisms

for perceptual organization by equipping biologically realistic,

deep neural networks with a feedback pathway.101,102 When an

image is presented, the networks start with a feedforward sweep

that detects object categories in the deeper levels of the network.

They then select one of the categories in the upper layers and use

the feedback pathway to enhance the relevant features at lower

network levels (as in Figures 2B and 2C, for one category at a

time). These studies illustrate how feedback connections between

cortical areas could aid in image parsing by labeling relevant

features with enhanced activity.

The co-selection of features of the same object plays a central

role in various cognitive tasks, such as visual search and spatial

cueing.103 For example, during visual search, the target shape is

kept in working memory as a template that enhances the activity

of neurons in visual cortical areas that represent the location of

the target object. The enhanced activity in retinotopic areas

can be read out by other brain regions, linking the target shape

to a location.104,105 Vice versa, in spatial cueing tasks, subjects

look at an array of objects, and one of them is cued. The

response enhancement at the cued location spreads through

the recurrent connections to also enhance the representation

of the shape so that it can be identified. Attentional operations

like search and cueing can be chained flexibly into longer se-

quences to form more complex visual routines.106–109

The idea that attention causes binding has a longer history.

Treisman and her co-workers33,110 considered the role of feature

binding in visual search. They noticed that visual search is slow

when subjects must group features to detect the target of

search, for example when they look for a red vertical line among

green vertical and red horizontal lines. Treisman’s feature inte-

gration theory (FIT) proposed that attention binds features into

coherent object representations for one object at a time. In a

search display, attention shifts serially from one object to the

next to establish the feature conjunctions, which takes time.

FIT’s focus was on spatial attention, binding features at a loca-

tion in space. Other studies demonstrated that it is also possible
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to direct attention to one of two objects that overlap in

space,15,17,18,111 implying that attentional selection can also be

guided by feature dimensions other than space.

Furthermore, objects in images usually occupy larger regions

so that a set of locations needs to be bound in perception

(Figures 2A and 2B). For our interactions with objects, image

segmentation is the process that groups the locations. In accor-

dance with BBRE, image segmentation is associated with

neuronal response enhancements in early visual brain regions,

including the LGN, V1, V2, and V4.112–115 In the curve-tracing

task, introduced above, V1 neurons representing contour ele-

ments of the target curve enhance their activity above the level

elicited by a distractor curve (Figure 6A). The response enhance-

ment thereby binds contour elements of the target curve into a

coherent representation. At a psychological level of description,

object-based attention is directed to the contour elements of the

target curve,116,117 in accordance with BBRE.

V1 response enhancements also occur during figure-ground

segregation, which occurs when the features of a figure differ

from those of the background. In Figure 6B, for example, one

perceives a square figure because the orientation of the image

elements in this region differs from the orientation of the back-

ground elements.112,113,115,125 V1 activity elicited by figures is

stronger than that elicited by the background, an effect known

as figure-ground modulation (FGM). In area V1, the precision of

FGM is high.113,119 The enhanced response is present

throughout the figure, binding texture elements into a larger

shape, but activity immediately drops for V1 neurons with recep-

tive fields just outside the figure. FGM also occurs for more com-

plex texture-defined shapes, as in Figure 6B, where the

response enhancement labels all locations occupied by the

‘‘u’’ but is absent from the background between its legs.115 In

accordance with BBRE, the enhanced neuronal activity spreads

from attended image elements to other ones that group to them

according to the Gestalt rules, such as color similarity, connect-

edness, and good continuation120,121 (Figures 6C and 6D), ex-

plaining the influence of low-level grouping cues on perceptual

organization. Furthermore, BBRE occurs for natural images,

where image elements of foreground objects elicit more activity

than those that are part of the background (Figure 6E).122,123

Kirchberger et al.124 recently used optogenetics inmouse visual

cortex to test the causal involvement of the recurrent labeling pro-

cess in V1 in figure-ground perception. The mice either detected

gratings on a gray background or saw texture-defined figures on

a textured background. When optogenetics was used to block

the entire response of V1 neurons, the mice had difficulties with

both types of displays, as if they were largely blind (Figure 6F).

However, when the optogenetic silencing was postponed to just

after the feedforward response, the mice were able to perceive

gratings on a gray background but unable to segregate figures

from backgrounds. Hence, the late V1 response phase, which ex-

presses FGM, is necessary for figure-ground perception and is

read out by higher areas to plan a motor response.

Because firing rates code for both feature tuning and incre-

mental grouping, there is a need to disentangle these influences.

For example, differences in contrast could interfere with incre-

mental grouping, because objects of high contrast elicit stronger

firing rates than those with lower contrast.15,126 Importantly,
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some neurons are influenced by grouping and others are not (cyl-

inders and parallelopipeds in Figure 5D). During the curve-

tracing task (Figure 6A), for example, the V1 neurons that are little

influenced by attention reliably represent the contrast of a curve.

Other neurons are strongly modulated by attention so that pure

contrast and attentional signals can be simultaneously decoded

from the V1 population.127 Similar results were obtained in mice

performing the texture-segregation task. On average, figures

elicit more activity of V1 pyramidal cells than backgrounds do,

but there are also many pyramidal neurons without FGM.
Some of this variability is caused by differences between the

layers of V1, because the response modulation is strongest in

the superficial and deep layers and weakest in input layer

4.128,129

Intriguingly, FGM also differs between pyramidal neurons

and classes of interneurons (Figure 6G).124 FGM is strongest

for parvalbumin-positive (PV) neurons. This is followed by the

FGM of pyramidal cells and vasoactive intestinal peptide-ex-

pressing (VIP) neurons. The VIP neurons disinhibit the cortical

column,130 and the FGM of pyramidal cells decreases if they
Neuron 111, April 5, 2023 1011
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are silenced.124 Remarkably, FGM is reversed for somatostatin

(SST) cells. Backgrounds elicit more activity of SST neurons

than figures, in agreement with the hypothesis that these

neurons help to suppress the representation of homogeneous

image regions.131 It seems likely that the variations in the

strength of the response enhancement across neurons, layers,

and cell types can be exploited by neurons in other brain re-

gions to separate the incremental grouping signal from other

factors such as their feature tuning and stimulus contrast

(Figure 5D). In accordance with this view, a recent study

demonstrated that the interactions between V1 and V4 differ

between the initial feedforward response and the later recurrent

processing phase, as if there are separate ‘‘communication

channels’’ between these neurons.132 The feedforward phase

activates feature-selective neurons (both populations in

Figure 5D), whereas the later, recurrent phase might corre-

spond to the propagation of enhanced activity for incremental

grouping (only cylinders in Figure 5D).
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PERCEPTUAL GROUPING IS TIME
CONSUMING AND OCCURS FOR
ONE OBJECT AT A TIME

An important difference between BBS and

BBRE is the number of incremental groups

that can coexist in perception (Figure 3B

vs. Figure 5A). BBS permits several simul-

taneous incremental groups, labeled by

unique patterns of synchrony. Because

BBRE labels the incremental group with

an enhanced activity level, a theoretical

possibility is to define multiple firing rate

levels to establish multiple simultaneous

incremental groups. However, it is difficult

to conceive of mechanisms that would

enable the selective routing of the informa-

tion from one of these groups, say, the one
with second firing rate level from the top. Instead, theories of in-

cremental grouping proposed that there is only one incremental

group that is labeled with enhanced activity and thereby segre-

gated from the rest.16,79,108 According to this view, features are

either attended and grouped or they are not. An incremental

group could, of course, be accompanied by several hardcoded

feature conjunctions as base groupings.

To gain insight into the number of incremental groups, Hout-

kamp and Roelfsema79 tested human participants in a curve-

tracing task with multiple curves that they had to trace. Incre-

mental grouping took place for only one curve at a time. Some

intuition about the seriality of incremental grouping can be

gleaned from Figure 7A, where the task is to find the curve con-

necting two circles (related to displays used by Houtkamp and

Roelfsema79).

In a typical curve-tracing task for monkeys illustrated in

Figure 7B, the animal has to make an eye movement to the

larger red circle that is connected by a target curve to a small
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red fixation point. Recordings from area V1 revealed that the

representation of the start of the curve is first enhanced before

the increased activity spreads over contours farther along the

curve.118 Hence, the curve’s contour elements are grouped

incrementally, a process that can be based on the Gestalt

grouping cues of collinearity and connectedness. In human

psychophysics, the processing time also increases with the

length of the to-be-traced curve.134 Interestingly, the tracing

speed depends on the distance between the target curve

and the distractors.135 The speed is highest if there is a large

distance between curves. These findings can be explained if

the response enhancement spreads in multiple areas, like

V1, V2, and V4.108 In higher areas, neurons have larger recep-

tive fields, and horizontal connections bridge large regions in

the visual field so that tracing can make fast progress. How-

ever, if the curves are nearby, low-level areas, like V1, that

represent the target curve at a higher resolution, with smaller

receptive fields, may need to take over. In these lower areas,

the horizontal connections link neurons with nearby receptive

fields, which slows down the curve-tracing speed (see Poor-

esmaeili and Roelfsema118 for a discussion of the relation be-

tween the propagation speed of horizontal connections in the

visual cortex and curve tracing). In accordance with the

relation between the neuronal response enhancements and

object-based attention, experiments in human participants re-

vealed that object-based attention spreads gradually over the

target curve.116

Incremental grouping also occurs when we parse natural im-

ages. The time to determine whether two cues are on the

same object increases if they are farther apart or on different ob-

ject parts.136 Jeurissen et al.133 measured processing delays

while human subjects parsed line drawings (Figures 7C–7F).

The subjects assessed whether two cues were on the same or

different objects for line drawings of recognizable objects and

modified line drawings in which the shapes could not be easily

recognized (compare Figures 7C and 7E). The reaction time of

the participants increased with the distance between the cues.

Grouping was slower in narrow parts of the object and faster in

wider parts, and the reaction time pattern was explained by a

‘‘growth cone’’ incremental grouping process in which the speed

of grouping scales with the size of object parts. Specifically, the

reaction time increased linearly with theminimal number of circu-

lar growth cones (colored circles in Figure 7F) that can be placed

in the interior of the object to connect the two cues so that

growth cone size depends on object width. The hypothesis is

that an enhanced firing rate starts to spread at one of the cues

within the object interior until the second cue is reached

(Figure 7D), grouping labeled image regions. Larger growth

cones could correspond to the receptive fields of neurons in

higher areas and smaller growth cones to those in lower areas.

Interestingly, the growth cone model explained less variance

for recognizable objects than for the modified ones. This differ-

ence is presumably explained by semantic segmentation based

on shape recognition in the inferotemporal cortex, which might

only occur for recognizable objects. Shape-selective neurons

could feed back to the lower areas and link features that are

farther apart, like the head, tail, and legs of an animal (as in

Figures 2B and 2C). Such shortcuts would explain the decrease
in the accuracy of models that only evaluate local, lower-level

cues for incremental grouping.

Humans and monkeys make approximately three saccades

per second. It is conceivable that the delays caused by image

parsing, which can take up to hundreds of milliseconds, play a

role in determining the typical duration of a fixation of 300 ms.

Every visual fixation starts with a wave of feedforward process-

ing lasting �100 ms,19 which is followed by a recurrent process-

ing phase for incremental grouping, lasting 100–300 ms. Studies

that investigated the influence of saccades on image segmenta-

tion reported that they do not disrupt it, despite receptive field

shifts in early visual areas. After every saccade, the response

enhancements are routed back to the new set of neurons that

now code for the contours of the attended object.137,138

LINKING PERCEPTION TO ACTION

Let us now consider the role of incremental grouping in the visual

guidance of actions. We direct our attention to the objects that

we select for action, and some theoreticians argued that the dis-

tribution of visual attention is largely determined by action plan-

ning.139–141 Imagine trying to grasp one of the toys in the box of

Figure 8A. Your fingers should be guided to the edges of one of

the cars, and you should avoid the edges of other cars. Hence,

grasping can rely on the response enhancements caused by in-

cremental grouping, highlighting the shape of the relevant object

in higher areas and its edges in low-level areas. Action selection

in areas of the motor and frontal cortex can utilize the incremen-

tal groups, because they signal visual features that are informa-

tive for the transportation and shaping of the hand. It is a natural

generalization of the incremental grouping process to also

include (pre-)motor neurons coding for the action possibilities

that an object provides, like whether it could be grasped, also

known as affordances.24 In line with the linkage of perception

and action, attention is directed to items that become the target

of an eye or hand movement. This coupling is so strong that ob-

servers are virtually unable to recognize shapes at locations

other than the location that is the target of an upcoming eye

movement.142,143

Several studies measured the simultaneous enhancement of

the representations of a visual object in the visual and frontal cor-

tex.96,97,144 In one of these studies, Pooresmaeili et al.144 re-

corded neuronal activity in areas V1, V4, and the frontal-eye

fields (FEFs), an area involved in the generation of eye move-

ments, during curve tracing (Figures 8B and 8C). The target

curve elicited more activity than the distractor in all cortical

areas, illustrating co-selection in visual and frontal cortex.

Once the visual cortex propagated activity along the representa-

tion of the entire target curve, including the circle at its end, the

frontal cortex can read out the enhanced response to plan the

eye movement. Interestingly, the response enhancements in

the visual and frontal cortex occurred virtually simultaneously.

In a visual search task, Zhou and Desimone96 also observed

co-selection in the visual and frontal cortex but they found that

the response enhancement in the FEFs preceded that in area

V4 of visual cortex. A possible explanation for the delay during

search is that the working memory of the target shape is main-

tained in the frontal cortex and fed back to the visual cortex
Neuron 111, April 5, 2023 1013
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upon presentation of the search display. In contrast, the spread

of the enhanced activity during curve tracing is guided by the

shape of the curve itself, which is represented in visual cortex.

Apparently, the relative timing of incremental grouping signals

in different brain regions depends on the task and provides

insight in the implementation of cognitive operations in the brain.

The precise connectivity patterns that ensure that features of

the same objects are co-selected across brain regions remain

to be fully understood. Moore and Armstrong145 obtained impor-

tant insights by directly testing the linkage of the attentional se-

lection in the visual and frontal cortex. They activated neurons in

the FEFs with electrical microstimulation and observed that this

increased the activity of neurons in area V4 responding to the

same object. Another study used microstimulation in combina-

tionwith fMRI to demonstrate how FEF neurons influence activity

throughout visual cortex.146 Taken together, these experiments

illustrate the strong links between representations in visual and

frontal cortex.

The limitation of BBRE that only one incremental group can

form at a time is expected to restrict the bandwidth of informa-

tion transfer between the visual and frontal cortex. In contrast,

BBS might permit multiple coexisting communication channels

based on different synchronization patterns. Experiments in

which subjects mapmultiple sensory stimuli onto different motor

actions reveal dual-task interference, which is an inability to

carry out two tasks at the same time.147 When two stimuli are

presented in rapid succession, the initial sensory processing of

the two stimuli can proceed in parallel.148 However, later pro-
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cessing stages of the second stimulus must wait until these

stages are freed up by the first stimulus. These results imply

that there is a bottleneck in mapping stimuli into actions. Feed-

forward processing of different sensory stimuli can occur in par-

allel, but the linkage of sensory and motor representations is

limited to one incremental group, thereby causing the bottle-

neck,149 which is in accordance with BBRE but not with BBS.

INCREMENTAL GROUPING AND THE GLOBAL
NEURONAL WORKSPACE FOR CONSCIOUSNESS
ACCESS

BBRE holds that response enhancements cause the co-selec-

tion of features of the same object across brain regions,

providing building blocks for cognitive routines.103,150 This theo-

retical position is related to workspace theories of conscious

perception.151–154 Workspace theories propose that perceptual

objects reach awareness if their representations are amplified

and broadcasted to processors across the brain. A recent study

on the neuronal correlates of conscious access examined activ-

ity elicited by low-contrast visual stimuli in the visual and frontal

cortex of monkeys.155 The stimuli were close to the threshold of

perception so that they were sometimes perceived and some-

time missed. The monkeys reported the stimuli only if they

reached the frontal cortex at a sufficient strength and then eli-

cited a sudden, strong, and sustained activity. This ‘‘ignition’’

process in the frontal cortex caused a top-down enhancement

of activity in the visual cortex. I therefore propose that the global



ll
Perspective
neuronal workspace, in part, maps onto the neuronal mecha-

nisms underlying object-based attention and that ‘‘broad-

casting’’ may correspond to the propagation of enhanced

activity for the co-selection of features of the same perceptual

object across brain regions. This conjecture would explain why

we consciously perceive integrated object representations

rather than disconnected feature sets (recently reviewed by

Mashour et al.151).

Conclusions
In this review, I discussed evidence for BBS and BBRE, mecha-

nisms that have been proposed to create coherent object repre-

sentations from features represented by assemblies of neurons

across different brain regions. Existing evidence does not sup-

port BBS. Gamma synchrony is too weak to bind neurons in

different brain regions and too weak to link neurons in the

same area that are separated by more than a few millimeters.

Synchrony at lower frequencies is variable between subjects

and is not related to binding. Furthermore, optogenetic experi-

ments demonstrated that cortical neurons are equally driven

by input that is coincident and dispersed across time intervals

of up to 100 ms. Instead, the features of objects become bound

in perception when their representations are labeled with an

enhanced firing rate. This labeling process takes time and occurs

for one object at a time. The assemblies of labeled neurons that

form in the brain correspond to object-based attention in psy-

chology. During action planning, the neuronal assemblies

include neurons in frontal cortex representing affordances, ex-

plaining why efficient sensorimotor links form for one stimulus

at a time.

Many questions about the binding problem remain open. For

example, it is not yet clear which connectivity patterns within

and between brain regions support the spread of enhanced ac-

tivity to neurons that should become part of the same assembly.

There also remains much to learn about the role of pyramidal

cells and interneurons in the different layers of the cortex.

Furthermore, many neuroscientists have focused on the cerebral

cortex so that the contributions of interactions with subcortical

structures such as the thalamus, basal ganglia, and the superior

colliculus may not have been fully appreciated. Yet, I am opti-

mistic that new insights are around the corner: the many tools

of modern neuroscience, in combination with the deep-learning

revolution in artificial intelligence, will help us to further shape our

intuitions about what the neuronal networks in our brains are

capable of.
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