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Abstract

Deep neural networks (DNNs) are machine learning algorithms that have
revolutionized computer vision due to their remarkable successes in tasks
like object classification and segmentation. The success of DNNs as com-
puter vision algorithms has led to the suggestion that DNNs may also be
good models of human visual perception. In this article, we review evidence
regarding current DNNs as adequate behavioral models of human core ob-
ject recognition. To this end, we argue that it is important to distinguish
between statistical tools and computational models and to understandmodel
quality as a multidimensional concept in which clarity about modeling goals
is key. Reviewing a large number of psychophysical and computational ex-
plorations of core object recognition performance in humans and DNNs,
we argue that DNNs are highly valuable scientific tools but that, as of
today,DNNs should only be regarded as promising—but not yet adequate—
computational models of human core object recognition behavior. On the
way, we dispel several myths surrounding DNNs in vision science.
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1. INTRODUCTION

Computational modeling in vision science has a long and rich history dating back at least to
Schade’s photoelectric analog of the visual system and Reichardt’s motion detector (see Schade
1956, Hassenstein & Reichardt 1956, Reichardt 1957). Computational models are useful because,
first, a thorough quantitative understanding of an aspect of human visual perception implies that
we should be able to build a computational model of it. Second, a computational model can serve
as a concrete, testable hypothesis of a theory and deepen our understanding through an iterative
process of experimentation, model assessment, and model improvement.

Models in vision science come in many flavors, some borrowing computational elements such
as filters or gain control from engineering, some using information theory to motivate or derive
model properties, and others using Bayesian statistics to optimally read out the activity within a
model to derive the model decision. There is substantial diversity of models in vision science, and
these models typically use whichever method or algorithm promises to be most helpful in a given
context (Cichy & Kaiser 2019).

In computer vision, a new class of algorithms from machine learning (ML), so-called deep
neural networks (DNNs), have revolutionized the field. DNNs were explicitly developed to solve
complex, real-world pattern recognition problems and are now capable of identifying objects
in typical real-world photographs. DNNs entered center stage in 2012, when a DNN named
AlexNet, designed and trained by Krizhevsky et al. (2012), comprehensively won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC).Having been trained on 1.2 million images,
it was able to classify a large set of hitherto unseen images into 1,000 classes with an error rate of
16.4%—down from 25.8% in the previous year. Ever since 2012, the ILSVRC has been won each
year by a DNN, and DNNs are the de facto standard for pattern recognition in machine learning
and computer vision.1

In essence, a DNN is a nonlinear function approximator implemented as a very large collection
of simple units that are connected to other units by variable connection strengths, the so-called
weights. The function of the DNN arises from the collective action of units; their connectivity,
as specified by the DNN architecture; the weights connecting units; and the nonlinear activation
function of the units, i.e., how inputs to a unit are transformed into its output passed to other units.
DNNs are sometimes said to be based on neuroscience, with units (neurons) connected to each
other via variable weights (axons and dendrites with synapses of varying strength). The initial
inspiration for neural networks did indeed come from neuroscience, but DNNs only embody
a highly simplified version of real neurons and their rich dynamics, intricate connectivity, and
dendritic processing complexity. The term neural network in the name of DNNs should thus be
taken with more than a grain of salt (see Douglas & Martin 1991).

In a somewhat simplified historical account, DNNs (with four or more layers) could be re-
garded as the children of (three-layer) connectionism popular from the mid-1980s to the late
1990s (Rumelhart et al. 1986, McClelland et al. 1986) and as the grandchildren of the (two-layer)
perceptron popular from the late 1950s to the late 1960s (McCulloch & Pitts 1943, Rosenblatt
1958).2 A comprehensive overview of themore complex andmultistranded historical development

1The ILSVRC has not been run since 2017, given that DNNs have basically solved the challenge: State-of-
the-art (SOTA) top-5 performance has less than 1.0% error (top-5 error rates indicate whether the ground
truth label was contained in the top five model predictions). However, the ImageNet data set still serves as a
benchmark and is widely used as such.
2As we state, this is an oversimplified DNN history; we are aware of some of the other DNN milestones like
the Neocognitron (Fukushima 1980), LeNet (LeCun et al. 1989), or HMax (Riesenhuber & Poggio 1999),
which cannot be placed conveniently in the family history presented above.

502 Wichmann • Geirhos

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

02
3.

9:
50

1-
52

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

2a
02

:8
07

0:
8e

80
:1

a8
0:

f9
37

:1
fe

f:
b9

4e
:7

a7
a 

on
 0

9/
26

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



VS09CH23_Wichmann ARjats.cls August 18, 2023 15:25

TOOLS VERSUS MODELS

■ Tool: algorithm or statistical method that plays an important role in the scientific process but is not, in itself,
of scientific interest; a means to an end

■ Model: a concrete instance of a theory that is itself of scientific interest; different types of models exist, such
as statistical or mechanistic models, as well as different modeling goals (see Section 3)

of deep learning is provided by Schmidhuber (2015). Accessible introductions to DNNs are pro-
vided, for example, by LeCun et al. (2015) and Kriegeskorte (2015). A comprehensive treatment
of DNNs is provided by Goodfellow et al. (2016).

2. DEEP NEURAL NETWORKS AS TOOLS IN SCIENCE

DNNs are able to perform highly nonlinear mappings from potentially very high-dimensional
inputs—such as images with tens of thousands of pixels—to potentially high-dimensional
outputs—such as the 1,000 categories of ImageNet.3 DNNs learn the nonlinear and high-
dimensional input–output mapping from massive amounts of training data alone: They learn
which features and dimensions of the input, and which of their nonlinear transformations and
combinations, are relevant to solving a task.

This ability to find nonlinear, high-dimensional mappings makes DNNs a powerful tool
in the sciences in general. In this review, we draw a distinction between tools and models—
acknowledging that the distinction is somewhat blurry at its boundary (see the sidebar titled Tools
versus Models). Tools are a means to an end and play an important role in the scientific process
but are not, in themselves, of scientific interest. In general, a model, in contrast, is a concrete in-
stance of a theory and is itself of scientific interest. Many statistical algorithms or methods and
tests are tools. For example, we use linear regression or analysis of variance (ANOVA) for scien-
tific inference but, typically, do not take them to be scientific models of the phenomenon under
investigation.

As tools, DNNs excel in science. For example, DNNs have helped to speed up and improve
single-molecule localization microscopy (Speiser et al. 2021), make fast and accurate 3D protein
folding predictions (Senior et al. 2020), and substantially accelerate climate science simulations
(Ramadhan et al. 2022). In applied mathematics, deep reinforcement learning was recently used
to find faster matrix multiplication algorithms (Fawzi et al. 2022).

In the neurosciences and vision science, DNNs as tools have led to clear improvements of
methods: DeepLabCut allows markerless pose estimation of single (Mathis et al. 2018) and multi-
ple (Lauer et al. 2022) animals, helping in video-based observation and analysis of freely behaving
animals. Simulation-based inference allows parameter inference in computational models that,
without deep learning, would remain computationally intractable and has begun to be success-
fully applied to cognitive neuroscience (Gonçalves et al. 2020, Boelts et al. 2022). Goetschalckx
et al. (2021) argue that so-called generative adversarial networks can be used to generate visual
stimuli that are, on the one hand, complex and realistic but, on the other hand, offer much more
control than stock images.

3In theory, shallow, three-layer networks are already universal function approximators (Hornik et al. 1989). In
practice, however, given their finite number of hidden units and finite data sets and computing power, shallow
networks did not succeed in solving many interesting, large-scale, or real-world problems.
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However, the success of DNNs as tools goes beyond method improvements. An important
additional role for DNNs is in exploration, as was clearly and convincingly argued for by Cichy &
Kaiser (2019).4 One aspect of exploration involves proof-of-concept or proof-of-principle demon-
strations. Piloto et al. (2022), for example, showed that important aspects of intuitive physics can be
acquired entirely through visual, bottom-up learning. In a similar vein in the domain of gloss per-
ception, Storrs et al. (2021) used unsupervised DNNs to demonstrate how perceptual dimensions
like gloss—only imperfectly corresponding to distal physical properties—can be learned from the
entangled proximal stimulus without the need for (Bayesian) prior knowledge or generative mod-
els. DNNs can thus be used to explore how richly structured our visual environment is and how
much about the (distal) 3D world could in principle be extracted from (proximal) 2D sensors in
a purely discriminative fashion (see, e.g., Storrs & Fleming 2021).5 Another exploratory aspect
of DNNs is the generation of new hypotheses: In beautiful work, Rideaux et al. (2021) used a
neural network to find a causal role for neurons in the macaque medial superior temporal area,
whose tuning properties had hitherto been regarded as puzzling. Their neural network analysis
suggests that these neurons may play a role in the decision of whether or not certain motion sig-
nals arise from the same source—and should thus be either combined or analyzed separately by
downstream neurons, respectively. The usefulness of DNNs as tools in vision science is beyond
doubt; their immense predictive power in high-dimensional input–output mappings is crucial for
method development, for stimulus generation, and for exploration, as well as for proof-of-principle
demonstrations and the generation and testing of new computational hypotheses.

It is sometimes tempting to turn successful statistical and computational tools into theories—
the tools-to-theory heuristic (Gigerenzer 1991). Scientists often use the tools that they employ
as metaphors for phenomena. An example mentioned by Gigerenzer is the idea of the mind as a
statistician put forward by Brunswik after Pearson had developed inferential statistics. An example
in vision science, where Bayesian statistics are often used as a tool to analyze experimental data, is
the well-known Bayesian brain hypothesis, asserting that the visual system itself applies Bayesian
probability calculus to sensory input (see Zednik & Jäkel 2016). Given the immense usefulness of
DNNs as tools, and their success in object recognition in computer vision in particular, it is thus
not surprising that they have also been proposed as computational models of human (core) object
recognition in vision science (e.g., Yamins et al. 2014, Kriegeskorte 2015, Kubilius et al. 2019).6

We evaluate DNNs as models of human core object recognition in Section 4, after discussing
properties of good models.

3. WHAT MAKES A GOOD MODEL A GOOD MODEL?

As stated in Section 1, computational models are useful because, first, they force scientists to make
assumptions explicit and specify dependencies within amodel more precisely than is possible using

4We should note that we differ from Cichy & Kaiser (2019) in terminology but not in substance: We refer
to DNNs for exploration as tools rather than models because they are typically used as a means to explore,
similar to, e.g., a clustering algorithm or principal component analysis.
5One may speculate about howmuch Gibson would have appreciated DNNs as proof-of-principle tools, as he
argued that the visual input alone—the optic array—is sufficiently rich to allow visual behavior (Gibson 1950),
whereas many Bayesian or predictive coding accounts of vision stress the—allegedly—impoverished nature
of the visual input, requiring prior knowledge and/or generative processes to accomplish visual perception.
DNNs have clearly demonstrated that much more visual information can be obtained from images or videos
alone than some vision scientists presume.
6In the case of DNNs, the tools-to-theories heuristic may even be a theory-to-tools-to-theory heuristic, as
neural networks were initially inspired by the visual brain, and now DNNs are reimported into vision science
(F. Jäkel, personal communication, Feb. 11, 2022).
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Mechanistic model:
attempts to find a
mechanistic, causal
relationship between
inputs and outputs that
predicts the data;
typically uses
domain-specific
components,
processes, or
transformations

Statistical model:
probabilistic,
general-purpose
model concerned with
fitting or predicting
data and correct
input–output mapping
and describing the
relationship between
the independent
(input) and dependent
(output) variables

language alone (see Brick et al. 2021). Second, based on prior knowledge and previous insights,
they serve as concrete, experimentally testable hypotheses of theories and should explain data,
processes, or how processes interact.

To model visual behavior, we traditionally employ mechanistic models, which capture human
behavior in terms of inputs and outputs and whose computational ingredients are domain specific,
i.e., informed by, or derived from, basic principles known and established in vision science.Typical
mechanistic models of spatial vision, for example, employ spatial filters and divisive contrast gain
control as some of their computational and causal building blocks (e.g., Goris et al. 2013, Schütt
& Wichmann 2017). Mechanistic models in vision science can be classified into different types
depending on how much they focus on behavior versus neurophysiological realism. Mechanistic
models of psychophysics are abstracted away from the details of the biological implementation—
without, hopefully, being outright neurally implausible. If neural plausibility or realism is one
of the goals of modeling, then the models’ ingredients or computational building blocks closely
mimic the neuronal hardware and are linked to behavior by linking propositions (Teller 1984).

Statistical models, in contrast, are only concerned with fitting and predicting data, that is, with
the correct mapping from inputs to outputs. Typically, they are generic and can be used in many
different domains.DNNs used as tools, as described in Section 2, are a prime example of statistical
models used as a means to an end only. However, some authors additionally claim DNNs to be
(statistical) models of core object recognition (the ventral stream). Importantly, in the absence of
any concrete computational domain knowledge, statistical models are often the only models that
one could possibly use, and they thus often precede mechanistic models.

Different scientific goals lead to the use of different types of models, and there are also multiple
modeling desiderata. For models of behavior, the following aspects are of particular importance:
how well the model fits the data (predictivity) and howmuch the model aids understanding (expla-
nation). In this section, we expand on these modeling desiderata and discuss how well, in general,
DNNs as models fulfil them.

3.1. Predictivity

Traditionally, goodness of fit, i.e., how well the (already collected) data are described by the model,
was assessed when modeling. Furthermore, if several models were compared, then model selec-
tion was applied to select the model offering the best trade-off between fitting the data and model
complexity. With the advent of modern and highly adaptable ML classification algorithms, the
focus shifted from explaining past data (goodness of fit) to a more stringent test, namely, pre-
dicting new data (often termed generalization in ML). DNNs are trained—their parameters are
optimized—on training data, but their performance is assessed by how well they predict the pre-
viously unseen test data. DNN prediction performance is often spectacularly good, which is the
reason why DNNs are currently so popular. Predictivity can be measured at different levels: at
an aggregate level (e.g., whether models achieve human-level accuracy) but also at a more fine-
grained level, for instance, asking whether models predict human response and error patterns at
an individual stimulus or image level, which is a much stricter requirement (see Green 1964). In
the case of classification data, predictivity at a fine-grained level can be measured by error consis-
tency (Geirhos et al. 2020b), an image-level metric to assess the degree of similarity between, for
instance, human and machine error patterns, i.e., whether humans and machines agree on which
images are easy or difficult to classify (see also Rajalingham et al. 2018).

Good prediction performance, ideally at both the coarse- and the fine-grained level, is
undoubtedly an important desideratum of a good model. However, we argue below that it is only
one aspect of a good model. Using prediction performance on a specific task as a benchmark is
exceedingly popular in computer vision and ML, and benchmarks are also gaining traction in
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vision science. While benchmarks have fuelled a lot of progress, an overreliance on benchmarks
to measure progress can be problematic if model quality is erroneously thought of as a single
dimension along which models can be ranked, turning science into a spectator sport; as we argue
in this review, model assessment is multidimensional, and a single number or rank does not do
good models justice. Furthermore, benchmarks and rankings encourage small and short-term
gains and discourage fundamental rethinking and the exploration of novel directions that,
typically, are initially accompanied by worse performance on a benchmark.

3.2. Explanation

Beyond predictivity, an important desideratum of a good model is that it helps to explain the
data and how a model’s building blocks are causally linked to the observed behavior. Thus, a good
model helps explain a scientific phenomenon,or at least aids in its interpretation.Oneway inwhich
models can act as an explanation and aid in understanding is by being simple, i.e., having a limited
number of parameters and containing building blocks or modules with identifiable subfunctions.
Many of the mechanistic models in vision science are of this type; prime examples are the local
motion-energy model (Adelson & Bergen 1985) and its extension to a global, medial-temporal,
motion-processing model (Simoncelli & Heeger 1998). Such interpretable mechanistic models
follow the adage of George Box:

Since all models are wrong the scientist cannot obtain a “correct” one by excessive elaboration. On the
contrary following William of Occam he should seek an economical description of natural phenom-
ena. Just as the ability to devise simple but evocative models is the signature of the great scientist so
overelaboration and overparameterization is often the mark of mediocrity. (Box 1976, p. 792)

DNNs are made up of simple, well-understood computational units, but their decisions re-
sult from the interplay of hundreds of thousands of units and millions of connections. To date,
DNN decisions remain largely opaque because the post hoc methods developed to understand
DNNs—and thus provide an explanation for their behavior that is useful to a scientist—have not
yet matured enough: Neither visualizing maximally activating features (Gale et al. 2020, Borowski
et al. 2021, Zimmermann et al. 2021) nor heatmap or saliency methods (Kindermans et al. 2017,
Montavon et al. 2017, Adebayo et al. 2018) sufficiently explain the functions learned by DNNs.
While the methods may still mature, and there also exist promising novel approaches that may
help in the future (e.g., Cohen et al. 2020, Chung & Abbott 2021), for now, DNNs do not pro-
vide as much of an explanation and do not aid in understanding as much as we would like them
to—they should thus, at best, be regarded as statistical models in vision science.

It should not be left unmentioned, however, that it is not inconceivable that models of an organ
as complex as the brain, and behaviors as complex as, for example, object recognition, cannot be
modeled using a simple model—at least not with adequate prediction performance. Highly non-
linear systems may require highly nonlinear (statistical or mechanistic) models, and both types of
models are notoriously difficult to understand and analyze. For successful models of visual per-
ception, there may not be a dichotomy between understandable traditional (mechanistic) models
on the one hand and impenetrable (statistical) DNNs on the other: Whether a model is under-
standable also depends on the complexity of the behavior that our model should predict. Thus,
however much we like simplicity, it may well be that, if we want computational models of complex
visual behavior, we have to come to terms with Santiago Ramón y Cajal’s (1967, p. 240) insight:
“Unfortunately, nature seems unaware of our intellectual need for convenience and unity, and very
often takes delight in complication and diversity.”

Ideally, models should be highly predictive, show human-like error patterns, and aid in under-
standing. In practice, all of these desiderata appear difficult to achieve when modeling complex
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human visual behavior. Different models may be preferable in different situations depending on
the modeling purpose: DNNs are preferable if a highly predictive model is desirable even if it
does not provide much of an explanation. At other times, a simple, easy to understand mechanistic
model that is not nearly as predictive may still be preferable. Thus, a model may be not only either
good or bad, but also both: Depending on the purpose, models can simultaneously be great and
poor or useful and futile. Model assessment is multidimensional.

4. ADEQUATELY MODELING VISUAL CORE OBJECT RECOGNITION

How adequate are current DNNs as models of human perception? We restrict ourselves to core
object recognition (DiCarlo et al. 2012): our fast and effortless ability to classify objects in the
real world or images (photographs) of objects as belonging to a particular class or category at
the entry level—a cat, elephant, car, or house, etc. Clearly, human object recognition does more
than classification (and thus more than core object recognition): We are also able to recognize
individual exemplars, most obviously in face recognition (O’Toole & Castillo 2021) but also when
recognizing our cat among a dozen other cats in the garden or our car in a parking lot (for a review,
see, e.g., Logothetis & Sheinberg 1996).Obviously, there is also more to human vision than object
recognition: We use vision to estimate properties of materials and scenes, assessing, for example,
distances and surface angles, or to guide behavior and to navigate. However, notwithstanding
how much else there is to vision, (core) object recognition is undoubtedly very important for
perception:

At a functional level, visual object recognition is at the center of understanding how we think about
what we see. Object identification is a primary end state of visual processing and a critical precursor to
interacting with and reasoning about the world. (Peissig & Tarr 2007, p. 76)

When assessing the adequacy of DNNs as models of human perception, it is fair and appropri-
ate to use not only a task that is important for humans and computationally complex, but also one
at which DNNs excel. In computer vision, object recognition is continuing to set the standards
for DNN performance. The combination of these factors—the importance of object recognition
for human perception, the central role of object recognition within computer vision, and the fact
that DNNs trained on object recognition are being proposed as models for primate ventral stream
core object recognition—renders visual core object recognition perhaps the best task for compar-
ing human against machine behavior and thus assessing the adequacy of DNNs as models of a
particularly important aspect of human visual perception.

What needs to be successfully modeled in core object recognition are the following central,
often replicated, and most important findings (Biederman 1987): the (rapid) recognition of ob-
jects under changes in orientation and illumination, under partial occlusion, and if distorted by
(moderate levels of ) visual noise.

4.1. Robustness to 3D Viewpoints

Yamins et al. (2014) performed an impressive and influential set of experiments in which they
optimized the architecture of their DNNs with respect to the performance of the DNN on an
object recognition task. One of their main findings—not central to our discussion in this review—
was a correlation between the performance of the DNNs on their object recognition tasks and
the DNNs’ ability to also predict neuronal firing patterns in the monkey inferior temporal cortex.
What is central to the current discussion is that Yamins et al. varied the object views: from easy,
canonical views in the low-variation condition to strong changes of the orientation of the objects
in the high-variation condition. Human observers performed reasonably well across conditions
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Real image from
natural viewpoint

School bus: 64.76% Harmonica: 99.57% Harmonica: 68.62% Harmonica: 53.71% Harmonica: 39.37% Harmonica: 43.03%

Pineapple: 99.10% Plate: 39.63% Plate: 42.12% Plate: 42.91% Plate: 52.02% Harmonica: 51.48%

Keyboard: 63.49% Crossword: 47.85% Crossword: 52.95% Crossword: 45.77% Crossword: 44.94% Space bar: 60.48%

Warplane: 60.55% Pinwheel: 36.82% Chime: 31.28% Mower: 24.81% Mower: 29.59% Go-kart: 11.63%

Rendered image from
adversarial viewpoint

Real images from adversarial viewpoint

Figure 1

Visualization of 3D viewpoint dependence of deep neural network (DNN) object categorization. Column 1 shows the real images from
natural viewpoints (correct classification; green label below images). Column 2 shows the rendered images from a viewpoint optimized
to lead to wrong classification (adversarial viewpoints). Columns 3 to 6 show real images that approximate the adversarial viewpoints of
column 2 (wrong classification; red or orange labels depending on DNN confidence in classification). Figure adapted with permission
from Dong et al. (2023, figure 5).

(Yamins et al. 2014, figure 2b, p. 8621), since one of the strengths of human object recognition
is its ability to cope with changes in orientation. Interestingly, their best DNN (resulting from
hierarchical modular optimization) performed nearly as well, suggesting that DNNs may thus be
on par with humans in their robustness to viewpoint or orientation changes.

However, the stimuli used by Yamins et al. (2014) were, first, comparatively few (eight exem-
plars from each of eight categories) and, second, not embedded in a natural background but instead
superimposed. Dong et al. (2023) elegantly explored the viewpoint dependence of DNN object
recognition systematically for several modern DNNs. For all of them, they found classification
accuracy to be highly 3D view dependent: While classification accuracy was typically between
70% and 80% for standard ImageNet images, performance dropped dramatically with slightly
unusual viewpoints to below 20% for most DNNs, with the best-performing DNN still below
50% accuracy.7 Note that none of the viewpoints that are problematic for DNNs pose any dif-
ficulty for human observers: The images that are difficult for DNNs are quickly and effortlessly
recognizable for us—at least in the examples shown in the paper (see Figure 1).

Similar results were obtained in related studies by Alcorn et al. (2019), Abbas & Deny (2022),
and Ibrahim et al. (2022). Alcorn et al. concluded that their work “revealed how DNNs’ under-
standing of objects like ‘school bus’ and ‘fire truck’ is quite naive—they can correctly label only a

7Dong et al. (2023) did not simply search for unusual viewpoints, but instead optimized them to find views
that are difficult for DNNs, a procedure similar to how adversarial images are generated (see Section 4.4). For
this reason, they call the viewpoints used adversarial viewpoints.
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small subset of the entire pose space for 3D objects” (p. 4852). It is important to note that the im-
ages used by all of the studies cited above do not contain occlusions; the tested DNNs sometimes
generalize poorly to novel 3D viewpoints despite seeing all of the relevant objects in full view. In
this regard, a 3D viewpoint robustness gap between humans and machines remains.

4.2. Robustness to Image Distortions

Core object recognition performance should be not only (largely) viewpoint invariant, but also ro-
bust against other image distortions such as moderate levels of visual noise. Geirhos et al. (2018)
systematically explored this issue for three DNNs (ResNet-152, VGG-19, and GoogLeNet) us-
ing 13 different image distortions or degradations. To several of the image distortions, DNNs
were clearly much less robust than the psychophysically tested human observers; the discrepancy
was particularly pronounced for uniform noise, low-pass and high-pass filtering, and the so-called
Eidolon distortions (Koenderink et al. 2017) (see Figure 2a). In the case of uniform noise, for
example, human observers were still approximately 50–60% correct at a noise variance for which
all tested DNNs were essentially at chance performance (6.25% in a 16-fold identification task).
Including the image distortions in DNN training led to superhuman performance on the distor-
tion included in the training, but there was little to no generalization to other distortions: Even
training on undistorted images alongside seven different distortions did not help the DNNs to
cope with previously unseen uniform noise. Thus, Geirhos et al. (2018) concluded that there is a
large robustness gap between DNNs and human observers in their core object recognition ability
in the face of image distortions, a conclusion that is corroborated by many other robustness stud-
ies (e.g., Berardino et al. 2017, Wichmann et al. 2017, Hendrycks & Dietterich 2019, Koh et al.
2021, Hendrycks et al. 2021a, Idrissi et al. 2022).

However, progress in deep learning is sometimes remarkably swift; thus, Geirhos et al. (2021)
reassessed robustness to image distortions—termed out-of-distribution (OOD) robustness in
ML—in 52 classic and SOTA DNNs in 2021 using a total of 17 OOD data sets and more than
85,000 psychophysical trials in the laboratory. Overall, different DNN architectures and training

Low-pass image Shape and texture bias

Figure 2

(a) Low-pass images are one of the remaining distortion types in which humans are currently still better than
all 52 investigated diverse deep neural networks (DNNs) (Geirhos et al. 2021). Shown is a “dog” image at
blur std = 7 pixels; human accuracy was 50–60%, and DNN accuracy was 10–40% averaged across many
images at this blur level. Panel adapted with permission from Geirhos et al. (2018). (b) Shape bias is the
tendency to classify images according to their global shape (“cat” in the example). Texture bias is the
tendency to classify images according to their local texture-like characteristics (“elephant” in the example).
Panel adapted with permission from Geirhos et al. (2019).
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regimes appear to have little systematic influence on DNN robustness, but the sheer amount of
training data did matter: DNNs trained on at least 14 million images showed near-human OOD
robustness, with twomodels even surpassing humans in an aggregate measure of OOD robustness
across the 17 data sets.However, none of the DNNs comes close to human robustness to low-pass
filtering (see Geirhos et al. 2021, figure 2, p. 23891). We should also add that most of the DNN
architectures popular in vision science—for example, AlexNet, VGG, ResNets, and Inception—
showed poor and clearly subhuman OOD robustness if only trained on ImageNet. The lack of
OOD robustness of these DNNs should be kept in mind if one compares one or some of them to
human performance or uses them to derive neural similarity measures.

Furthermore, while increased OOD robustness through training on large-scale data sets is in-
deed an impressive achievement, we require more than just similar overall prediction performance
if we want to assess DNNs as adequate models of human behavior: We also require error consis-
tency even for only statistical models, as we argue in Section 3.1.With respect to error consistency,
there remains a large gap between all of the 52 DNNs and human behavior: Whilst the 90 human
observers showed large agreement in which images they felt were easy or difficult to recognize,
human–machine error consistency is only at approximately half the value of human-to-human
consistency even for the best DNNs (see Geirhos et al. 2021, figure 1d, p. 23890). Given the large
remaining gap in error consistency between SOTA DNNs and human observers, it appears safe
to conclude that even the highly OOD robust DNNs appear to process images differently from
human observers.

4.3. Image Features Underlying Object Recognition

Initially, it was widely believed that DNNs recognize objects based on their shape—similar to
how we believe humans recognize objects: “[T]he network acquires complex knowledge about the
kinds of shapes associated with each category. . . .High-level units appear to learn representations
of shapes occurring in natural images” (Kriegeskorte 2015, p. 429)—or that intermediate DNN
layers recognize “parts of familiar objects, and subsequent layers. . .detect objects as combinations
of these parts” (LeCun et al. 2015, p. 436).

However, systematic investigations now seriously challenge this view that DNNs, like humans,
recognize objects via their shape. Baker et al. (2018) conducted a series of experiments in which
DNNs (AlexNet and VGG-19) had to classify silhouettes of objects, silhouettes filled with the
texture of another object, glass figurines, and outline figures. For all stimulus variations, DNNs
performed poorly, suggesting that DNNs rely much more on surface characteristics like texture
than do human observers and lack global shape sensitivity (see Figure 2b). Similar results were
obtained by Brendel & Bethge (2019), who successfully trained a ResNet variant they termed Bag-
Net on ImageNet. BagNet exclusively relies on a bag of local features—with no shape encoding
possible—but still performed similarly to several standard DNNs in terms of interactions between
parts of the images, sensitivity to features, and errors.

While the two studies above assessed only DNN performance—either in response to changed
stimuli or for a DNN architecture only capable of using local image patches for classification—
Geirhos et al. (2019) compared human behavior directly with DNN classifications (DNN
behavior) on cue-conflict stimuli created via style-transfer algorithms (Gatys et al. 2016), com-
bining the shape of one object with the local surface characteristics (texture) of another, e.g., the
shape of a cat with the texture (or skin) of an elephant.Human observers classified the cue-conflict
stimuli almost exclusively according to their shape, whereas ImageNet-trained DNNs showed a
strong texture bias, indicating that they do not classify objects according to their shape as hu-
mans do. Importantly, human–machine comparisons need to be careful and fair: To ensure a core
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object recognition comparison, presentation time was limited to 200 ms (a single fixation), and
all images were immediately followed by a high-contrast 1/f noise mask to minimize, as much as
psychophysically possible, feedback influences on perception. Finally, observers had to respond
quickly to ensure, again as much as possible, perceptual rather than cognitive responses, i.e., core
object recognition.

The above result still held in 2021, when Geirhos et al. (2021) reassessed, among other
performance measures, the shape and texture bias of 52 DNNs, including adversarial train-
ing, self-supervision, and image-text training [contrastive language-image pre-training (CLIP)].
Some modern DNNs—adversarially trained, CLIP—exhibited a stronger shape bias than previ-
ousDNNs,but even they remain substantiallymore texture biased than human observers (Geirhos
et al. 2021, figure 3). A recent study by Malhotra et al. (2022) again confirms that humans, but not
the DNNs investigated, have a shape bias even when learning novel stimuli for which texture is
more predictive. Malhotra et al. argue that the human shape bias likely results from an inductive
bias for shape (see Mitchell 1980, Zador 2019). Hermann et al. (2020) identified data augmenta-
tion as an important factor in increasing shape bias. Furthermore, Feather et al. (2019) generated
synthetic DNNmetamers: stimuli that are physically different but have indistinguishable activity
at a certain layer of a DNN. While metamers for the early layers were recognizable by human
observers, the activity of later-layer DNN metamers were not metameric for humans, indicating
the existence of different representations of objects in DNNs and humans.

Given these results, it is safe to conclude that current DNNs typically do not use the same
image features as humans do when recognizing objects. One particularly striking difference is
that DNNs rely on local surface- or texture-like characteristics, whereas humans predominantly
use shape.

4.4. Susceptibility to Adversarial Attacks

Szegedy et al. (2013) showed that, for standard DNNs, any image of category A can be made to
be misclassified to belong to any arbitary category B through a tiny perturbation, often so small
that it is invisible to the human eye.

4.4.1. Why are adversarial attacks problematic? Despite a decade of enormous research ef-
forts to make DNNs robust against adversarial attacks, no principled defense mechanism has been
found to date. The current best defense is brute-force adversarial training (Madry et al. 2017),
which increases the perturbation needed to fool a DNN (an approach that may or may not achieve
human-level robustness in the future). Adversarial examples are arguably among the most pressing
open problems of deep learning research, and researchers have started to ask whether adversarial
examples exist for human perception, too. Typical methods to find adversarials for DNNs cannot
be applied to human perception, which is stochastic, is sequence dependent, and does not provide
gradients. Despite these practical challenges, answering the question of whether there are adver-
sarial examples for humans is highly relevant to the debate around DNNs as models of human
visual perception (e.g., Dujmović et al. 2020), since their existence would indicate important sim-
ilarities, whereas their absence would indicate important differences (see the sidebar titled Myth:
Humans Suffer from Adversarial Vulnerability).

4.4.2. The crocodile conjecture: Humans don’t suffer from adversarial examples. Do ad-
versarial examples for humans exist? Strictly speaking, the answer is unknown, but we believe it to
be exceedingly unlikely that proper adversarial examples exist for humans. Unfortunately, while
adversarial examples do have a precise definition, other types of images have in recent years been
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MYTH: HUMANS SUFFER FROM ADVERSARIAL VULNERABILITY

As explained in detail in Section 4.4, there are no known adversarial examples for the human visual system, at least
not according to the proper definition used in ML. Of course, the visual system—like DNNs—is not error free:
It can be shown to make wrong classifications if faced with hard images, ambiguous images, or visual illusions.
However, such images are not adversarial images—they are hard, ambiguous, or visual-illusion images. All three
kinds of images and their influence on human recognition are certainly worthy of study.However, progress in vision
science is hindered by confusing such images with (proper) adversarial images and, even worse, claiming that there
are deep similarities between DNNs and human vision because both allegedly suffer from adversarial vulnerability.
The opposite is true: Precisely because only DNNs are known to be vulnerable to adversarial examples, there are
substantial and important differences between DNNs and the human visual system in terms of how they process
visual information.

described in some way or another as adversarial. In this section, we first precisely define what a
convincing adversarial example for humans would be, applying the same definition that is used to
define machine adversarials for a DNN f. Starting from an arbitrary image i with ground truth
label l for which f (i) = l holds (i.e., the original image is correctly classified by the model), an
untargeted ϵ-adversarial image is an image i + δ such that f (i + δ) ̸= l and ||δ||p ≤ ϵ. This adver-
sarial example is untargeted, since the perturbation δ (which is small according to some Lp norm,
typically p � {0, 1, 2, ∞}) just needs to fool the model into classifying i + δ as belonging to any
class except the original one. In the case of a targeted adversarial, in contrast, a target class l ′ with
l ′ ̸= l is chosen beforehand, and then any image i + δ such that f (i + δ) = l ′ is called a targeted
adversarial example [subject to the same constraints as above, i.e., f (i) = l and ||δ||p ≤ ϵ].

Applying this to human visual perception would indicate that, if humans are indeed susceptible
to ϵ-targeted adversarial examples, then for an arbitrary image i, such as the bananas in Figure 3,
there would be a small perturbation δ (||δ||p ≤ ϵ) such that a human observer would classify i + δ

as an arbitrary but prespecified other class, such as a crocodile. If ϵ is large enough, then this is
trivially possible: We simply replace the banana image with a crocodile image. Thus, crucially,
the perturbation bounded by ϵ needs to be small. A standard ResNet-50 model, for example, can
be fooled into classifying the banana image into a baseball, power drill, or crocodile image with

Banana (original) Baseball Power drill African crocodile

Figure 3

The crocodile conjecture: There are no adversarial examples for humans, i.e., it is impossible to make humans classify the bananas in
the left image as a crocodile with a tiny perturbation. The original banana image (left) is adversarially modified (by adding tiny
perturbations) such that a ResNet-50 then classifies the resulting perturbed adversarial images as a baseball, a power drill, or an African
crocodile (depending on the perturbation). Results are based on the pretrained torchvision (Marcel & Rodriguez 2010) ResNet-50
implementation and the targeted L∞ projected gradient descent attack with ϵ = 0.01 implemented by Foolbox (Rauber et al. 2017).
The original banana image taken from a photo by Rodrigo dos Reis on Unsplash, licensed under the Unsplash license
(https://unsplash.com/license).
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ϵ = 0.01 (using the L∞ norm and the [0, 1] image range), as shown in Figure 3. This means
that, while every pixel may be changed, the maximum allowed perturbation is 0.01/1 or 1% for
each pixel. For humans, we believe that it is impossible to find a perturbation δ subject to ||δ||∞
≤ 0.01 that yields a crocodile classification for the banana image. We call this the crocodile
conjecture (no adversarial examples for humans).8 Given the many other types of images that
have been termed adversarial, we believe that it is important to be precise when considering what
a convincing adversarial example for human visual perception would constitute. In the following
sections, we attempt to explain what adversarial examples are not: They are not hard images, nor
ambiguous images, nor visual illusions.

4.4.3. What adversarial examples are not: hard images. To err is human, and making errors
is a part of perception, whether biological or artificial. A popular image data set refers to natural,
unmodified images that are particularly hard, i.e., images on which making errors is likely, as
natural adversarial examples (Hendrycks et al. 2021b).While the data set is great, the name is not:
These hard images have nothing to do with adversarial examples.

4.4.4. What adversarial examples are not: ambiguous images. Just as the existence of
hard images is normal, so is the existence of ambiguous images. Examples include the famous
rabbit-duck image ( Jastrow 1899); hybrid images consisting of conflicting high and low spatial
frequencies (Oliva et al. 2006); images that resemble both a cat and a dog, as in the work of El-
sayed et al. (2018, figure 1 in versions 1 and 2, supplemental figure 1 in version 3); and multistable
images (e.g., Safavi & Dayan 2022). Convincing adversarial examples are not tied to inherently
ambiguous images—in fact, adversarial examples are problematic for DNNs precisely because
they can be found for arbitrary images.

4.4.5. What adversarial examples are not: visual illusions. While the precise definition of
visual illusions is subject to debate (Todorović 2020), it commonly involves a discrepancy between
perception and reality. According to this definition, adversarial examples—if humans were sus-
ceptible to them—might be considered a new type of visual illusion. Importantly, however, the
reverse is not true: None of the visual illusions that we know of are adversarial examples. Like
ambiguous images, known visual illusions are nongeneral: Illusions are very particular stimuli or
images, such as a particular configuration of shapes, as in the case of the Kanisza triangle; a partic-
ular configuration of luminances (reflectances), as in the case of lightness and brightness illusions;
or a particular viewing angle, as in the case of the Necker cube.No (known) visual illusion matches
the definition of an adversarial example.

4.4.6. Relevance of machine adversarials for humans. While no proper adversarials for hu-
mans are known, several studies investigated whether machine adversarials contain patterns that
have relevance to humans, too. Zhou & Firestone (2019) showed that humans can sometimes
anticipate the predictions of deep learning models in response to adversarial patterns—which
is very different from being susceptible to adversarial patterns (for control experiments, see
Dujmović et al. 2020). Furthermore, Elsayed et al. (2018) showed that human classification
decisions at short presentation times (63–71 ms)9 are influenced, to a certain degree, by

8Wewould love to be proven wrong; for anyone attempting to achieve this, a convincing demonstration would
consist of a forced-choice paradigm where the choices are either banana or crocodile, with viewing times of
at least 100–200 ms, foveal presentation, ϵ = 0.01, and p = ∞.
9In addition, images were not shown in the central fovea (approximately 2 degrees of visual angle), but they
were rather large, extending to 14.2 degrees of visual angle and thus into the periphery.

www.annualreviews.org • Deep Networks and Human Vision 513

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

02
3.

9:
50

1-
52

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

2a
02

:8
07

0:
8e

80
:1

a8
0:

f9
37

:1
fe

f:
b9

4e
:7

a7
a 

on
 0

9/
26

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



VS09CH23_Wichmann ARjats.cls August 18, 2023 15:25

intermediate-size perturbations that are adversarial to deep learning models. Thus, intermediate-
size (rather than small-size) adversarial perturbations are more than just arbitrary noise to humans.
Unfortunately, this study is often erroneously interpreted as showing that there are adversarial
examples for humans. The study’s design choices purposefully target a regime where humans are
highly prone to making errors (baseline classification performance for the choice between two
classes is at approximately 75%, where 50% is chance level), and the study only used semantically
related classes (dog/cat, cabbage/broccoli, spider/snake), not arbitrary ones. These are sensible
choices for studying small effects under extreme conditions, but this is different from human core
object recognition (DiCarlo et al. 2012). Elsayed et al. (2018) studied edge cases, using a paradigm
that cannot test general perception for arbitrary classes (e.g., banana/crocodile) under conditions
where the original image can be categorized with high accuracy.

Taken together, we believe that this evidence shows that humans do not have adversarials that
can turn any arbitrary image (such as a banana) into an arbitrary other category (such as a crocodile)
with only a tiny perturbation—i.e., the crocodile conjecture. Humans rely heavily on shape when
recognizing objects, and object shape and boundaries cannot be significantly changed using tiny
perturbations only. Adversarial examples are a profound problem for DNNs, but not for humans.

5. DISCUSSION AND OPEN ISSUES

5.1. Status Quo: Not Adequate, but Promising

As described in Section 4, in spite of their excellent prediction performance on standard image
data sets like ImageNet, current DNNs see the world differently from human observers. Above,
we review evidence that DNNs still lack robustness to changes in object pose (Section 4.1) and
image distortions (Section 4.2); make nonhuman-like errors, as assessed by error consistency
(Section 4.2); exhibit a lack of human-level shape bias (Section 4.3); and show a nonhuman sus-
ceptibility to adversarial images (Section 4.4). These behavioral differences can be exemplified in
the following thought experiment: We could generate a data set containing only adversarial im-
ages and images with slightly different 3D viewpoints. While human classification performance
would be largely unaffected, DNN performance, in contrast, could be driven to 0% correct.
Conversely, given the low error consistency between DNNs and humans, we could select a sub-
set of nonadversarially distorted images for which human performance is consistently poor but
DNN performance is excellent. In effect, we could (almost) create a double dissociation between
DNNs and human observers in terms of core object recognition performance—which would be
impossible if both DNNs and humans recognized images similarly.

These profound behavioral differences indicate that current DNNs are not yet adequate be-
havioral models of human core object recognition. Nonetheless, we would like to stress that an
assessment of the (in)adequacy of DNNs as models of human core object recognition behavior
can only be a snapshot in time—it is true as of today. This does not mean that DNNs are forever,
or for theoretical reasons, incapable of becoming adequate models of human core object recogni-
tion. In fact, for all of the current challenges, the tremendous progress in deep learning will very
likely lead to improvements. In just over a decade, DNNs have come a long way from AlexNet,
and they are likely to go much further still (see the sidebar titled Myth: Certain Tasks Cannot
Ever Be Solved with Deep Neural Networks).

5.2. Excitement Versus Disappointment

Deep learning is often described as a revolution, and just as with any revolution, there is tremen-
dous excitement and, simultaneously, profound disappointment. Vision science is no different:
On the one hand, the ability of DNNs to fit neural data has led to the assessment that “deep
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MYTH: CERTAIN TASKS CANNOT EVER BE SOLVED WITH DEEP NEURAL
NETWORKS

Even though DNNs are getting better and better, there are still many tasks on which humans outperform them. It
is therefore tempting to empirically investigate whether certain tasks cannot ever be solved with DNNs.We believe
that such efforts are unlikely to succeed, for two reasons. First, DNNs are theoretically capable of solving (almost)
any task, i.e., representing (almost) any input–output mapping, as they are universal approximators (Hornik et al.
1989). Second, training a specific network (or a handful of them) can never serve as a proof of nonexistence. This
error is not infrequently witnessed when claims are made that a certain task cannot be solved by DNNs because a
specific model cannot solve the task (given a certain data set, training regime, and objective function and a particular
researcher’s technical prowess). When investigating the question of whether a task cannot be solved by specific
networks through a set of experiments, the results need to be contextualized, highlighting the necessarily restricted
set of explorations and thus the necessarily restricted set of conclusions (context that often appears to be challenging
to fit into a crisp paper title, abstract, or general summary). In contrast, theoretical proofs can sometimes allow very
general statements to be made about a class of models. Thus, successfully training a specific DNN on some task
can serve at least as a proof of concept. Failure to train a few specific DNNs on some task, in contrast, has limited
implications.

hierarchical neural networks are beginning to transform neuroscientists’ ability to produce
quantitatively accurate computational models of the sensory systems” (Yamins & DiCarlo 2016,
p. 364) or claims beyond core object recognition that “[d]eep neural networks provide the current
best models of visual information processing in the primate brain” (Mehrer et al. 2021). On
the other hand, behavioral shortcomings have also led to the assessment that there are “deep
problems with neural network models of human vision” (Bowers et al. 2022). We believe that
both of those perspectives are understandable, and that some—but not all—of these seemingly
contradictory accounts can be reconciled through greater clarity about the goal of a particular
model. Model quality is not a one-dimensional construct: Some models are good in some regards
and poor in others. On the one hand, DNNs are the best predictive models in the history of core
object recognition models—at least on standard computer vision benchmarks like ImageNet. On
the other hand, currently, DNNs are also probably among the most inscrutable models, which
constitutes a challenge to achieving the modeling goal of explanation.

5.3. Future Direction: Vision Science for Deep Learning

In Section 2,we discuss deep learning as a tool in science in general and vision science in particular.
In Sections 4 and 5,we provide numerous examples of the value of vision science for deep learning:
to understand how DNNs work, where they fail, and how they see the world. Psychophysical
studies have revealed the current limitations of DNNs, which are of interest to those attempting
to build not only better behavioral models, but also better deep learningmodels in general.Careful
and fair comparisons (see Funke et al. 2021) are the hallmark of vision science, and the field, with
its strong scientific foundation, has much to offer deep learning, which is still a predominantly
engineering-driven area. In return, we may hope to develop better behavioral models of human
visual perception, benefiting from rapid advances in deep learning and the field’s engineering
ingenuity (Ma & Peters 2020, Peters & Kriegeskorte 2021).

Interesting developments in the direction of better vision science–inspired methods for scru-
tinizing deep learning include generating controversial stimuli (Golan et al. 2020) to distinguish
between candidate models (related to the idea of maximum differentiation competition; seeWang
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MYTH: MORE (OF THE SAME) DATA IS ALL WE NEED

DNNs typically require in excess of one million images; one of the latest SWAG models by Singh et al. (2022)
was trained on 3.6 billion images. While vision scientists recognize the crucial role of carefully controlled stimuli
in experiments, large sets of images are impossible to curate on an image-by-image basis, and image data sets are
harvested from the internet—with the hope that there is enough variation in scenes, objects, illuminations, poses,
viewpoints, etc., such that there are, first, no systematic biases and, second, appropriately distributed (recognition)
difficulties of the individual images.

Neither belief may be warranted, however: Meding et al. (2022) found image difficulty levels in ImageNet to
be highly unbalanced, containing far too many trivial (and impossible) images. Furthermore, systematic biases in
computer vision data sets typically do not disappear with data set scale, and ML models often exploit those biases.
Examples include the spectral bias resulting from large-aperture portrait-style photos with shallow depth of field
in rapid animal detection (Wichmann et al. 2010), as well as other cases of data set bias (Torralba & Efros 2011).
Exploiting shortcuts in the data (Geirhos et al. 2020a) can lead to various generalization failures. One striking
example is the 10–12% classification accuracy drop of DNNs when tested on a new ImageNet 2.0 data set created
by Recht et al. (2019), who faithfully mimicked the original curation process: “This suggests that the accuracy
scores of even the best image classifiers are still highly sensitive to minutiae of the data cleaning process. . . . It also
shows that current classifiers still do not generalize reliably even in the benign environment of a carefully controlled
reproducibility experiment” (Recht et al. 2019, p. 5389).

MLmethods typically assume training and test sets to be independent and identically distributed (IID). For real-
world natural images, what exactly constitute IID images is still an unresolved issue. Is a photograph of the same
scene during a different season an independent image? Is one taken under different lighting, or one taken with the
camera moved a little to one side or up or down? Are photos of a group of people taken from a different vantage
point with different facial expressions independent images? Progress toward understanding these issues will likely
help in making DNNs behave more like humans.

& Simoncelli 2008), using crowding measures to assess the importance of local versus global fea-
tures (Doerig et al. 2020), and using a comparative biology approach when comparing human and
machine visual perception (Lonnqvist et al. 2021), just to name a few.We are convinced that deep
learning can benefit from vision science just as much as vision science can benefit from deep learn-
ing methods. This will be particularly true if we move beyond core object recognition to visual
perception in general. Some of the challenges ahead are well articulated by Lake et al. (2017); a
more sceptical position regarding DNNs as (only) models of perception and cognition is provided
by Marcus (2018) [see the sidebar titled Myth: More (of the Same) Data Is All We Need].

5.4. Future Direction: Understanding Inductive Biases

In ML, the necessity of making assumptions to learn anything useful has been formalized by the
no free lunch theorem (Wolpert & Macready 1997). However, understanding the inductive bias
of a particular deep learning model—i.e., the set of assumptions that the model makes ahead of
being exposed to data—is often incredibly challenging, and there are many complex interactions
between, for instance, model architecture and data set. Nonetheless, we believe that it will be
very important to improve our understanding of the assumptions that perceptual systems make.
Humans are far from being a tabula rasa at birth (Zador 2019); we have a highly structured brain
with appropriate inductive bias to help us learn rapidly and robustly from comparatively little
data. In contrast, current DNNs still sometimes require more data than a human can possibly be
exposed to during a lifetime (Huber et al. 2022).

516 Wichmann • Geirhos

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

02
3.

9:
50

1-
52

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

2a
02

:8
07

0:
8e

80
:1

a8
0:

f9
37

:1
fe

f:
b9

4e
:7

a7
a 

on
 0

9/
26

/2
3.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



VS09CH23_Wichmann ARjats.cls August 18, 2023 15:25

There is much that remains to be understood. How do models and tasks interact with data
sets? What are the inductive biases of biologically inspired filters (Dapello et al. 2020, Evans et al.
2022)? We observe that “recent work in AI. . .increasingly favoured computational architectures
(for example, graph nets and tranformers) that implement an inductive bias towards relational,
compositional processing” (Piloto et al. 2022, p. 1263), while standard convolutional networks are
becoming less relevant. In a similar direction, Sabour et al. (2017) introduced capsule networks
arguing that DNNs should have an inductive bias for explicit representation of geometric rela-
tionships of objects. As a final question, we should ask whether we require an explicit mid-level
representation, the presemantic experience of the world (Nakayama et al. 1995, Anderson 2020).
Currently,DNNs are trained end to end, from pixels to semantics in onemodel using one objective
function. Should we explicitly train DNNs on psychologically inspired mid-level representations
and then go from them to semantics? Building more adequate models of visual perception will
likely require increasing attention to the various explicit and implicit assumptions, or inductive
biases, made by different models (see the sidebar titled Myth: Recurrence Is Necessary to Solve
Certain Tasks).

MYTH: RECURRENCE IS NECESSARY TO SOLVE CERTAIN TASKS

Given the important behavioral differences between DNNs and biological vision, one may wonder where these
differences originate. One clear difference between brains and standard DNNs is that brains have recurrent con-
nections, unlike standard feedforward DNNs. In line with this, several papers argue for the importance of recurrent
processing for both biological and artificial systems (e.g., Serre 2019, Kietzmann et al. 2019, Kubilius et al. 2019,
Kreiman & Serre 2020, van Bergen & Kriegeskorte 2020). Going beyond importance, however, the argument is
sometimes made that recurrent DNNs are necessary to solve certain—challenging—tasks. In contrast, we do not
think that recurrence is the key missing ingredient, since any algorithm that can be implemented by a recurrent
DNN can also be implemented by a computationally equivalent feedforward DNN.

Since recurrent networks “once unfolded in time. . . , can be seen as very deep feedforward networks in which
all the layers share the same weights” (LeCun et al. 2015, p. 442), there is no difference whatsoever between a finite
time recurrent network and its unrolled feedforward counterpart in terms of what the model can compute (see
also Liao & Poggio 2016). Any finite time recurrent network can be represented by a computationally equivalent
finite depth feedforward network (e.g., via unrolling), and any infinite time recurrent network can be represented
by a computationally equivalent infinitely deep feedforward network (keeping in mind that neither infinite time
nor infinite depth would be particularly biologically plausible). Thus, there is no task that can only be solved with
recurrence. For certain tasks, reusing weights may be useful—but this can be equivalently achieved by feedforward
networks with weight sharing and by recurrent networks. In fact, in current DNN software libraries,most recurrent
networks are trained as unfolded or unrolled feedforward networks with an algorithm called, tellingly, backprop-
agation through time—an implementational aspect well known by the researchers cited above and in the machine
learning community in general.Any claim that recurrent networks have a computational advantage over feedforward
networks—that is, that they can solve tasks that feedforward networks cannot solve—thus appears to be mistaken.

We believe thatmuch of the debate around recurrence can be clarified when distinguishing between computation
and implementation. As described above, any recurrent network can be unfolded into a (potentially very or even
impractically deep) computationally equivalent feedforward network. At the implementational level, however, there
are clear and important differences even between computationally equivalent recurrent and feedforward networks.
For instance, artificial recurrent networks need less space to fit intomemory, and biological ones need fewer neurons
to fit into a brain and have obvious advantages in terms of energy efficiency and flexibility of processing. Whether
one cares more about implementation or computation depends on the investigated question—but what is important
is to distinguish between the two.
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6. CONCLUSION

A decade ago, no researcher in vision science would have foreseen the phenomenal progress made
by ML researchers in the field of neural networks. DNNs are spectacularly successful tools for
(vision) science but also promising (statistical) models of core object recognition in terms of their
prediction performance on standard computer vision image data sets.However, it is also fair to say
that few researchers foresaw the substantial problems remaining for DNNs, despite their excellent
prediction performance on standard computer vision image data sets: their lack of robustness to
object pose and image distortions; their nonhuman-like errors, as assessed by error consistency;
their still ill-understood dependence on the minutiae of the training images; their lack of human-
like shape encoding; and their susceptibility to adversarial images. Last but not least, we are still
lacking reliable tools to turn well-predicting but complex and nontransparent DNNs into human-
understandable explanations—a desideratum of a scientificmodel.We argue, thus, that, as of today,
DNNs should be regarded as promising—but not yet adequate—models of human core object
recognition performance.

SUMMARY POINTS

1. Deep neural networks (DNNs) are powerful machine learning (ML) algorithms that
have revolutionized computer vision and are increasingly important in vision research.

2. To assess their usefulness, it is important to be clear about goals and to distinguish
between statistical tools and computational models. DNNs are great tools, but their
usefulness as computational models in vision science is still subject to debate.

3. To become adequate computational models of human core object recognition, DNNs
must use the same features as humans do and be able to robustly recognize objects despite
variation in 3D viewpoints and image distortions, of which they are not yet capable.

4. Adversarial examples are images that have been carefully modified to fool a DNN into
making a wrong prediction. No adversarial examples are known for humans; thus, the
possibility of adversarial attacks on DNNs remains a major discrepancy between human
and DNN visual perception.

5. It is unlikely that empirical investigations will be able to prove that certain tasks cannot
ever be solved with DNNs because training a specific network can never serve as a proof
of nonexistence.

6. There are no problems or tasks that can only be solved with recurrent DNNs, as any
algorithm that can be implemented by a recurrent DNN can also be implemented by a
computationally equivalent feedforward DNN.

7. Current DNNs should only be regarded as promising, but not yet adequate, computa-
tional models of human core object recognition behavior.

FUTURE ISSUES

1. The assumptions that DNNsmake to learn, known as inductive biases, are often difficult
to understand. It will be important to improve our understanding of these assumptions
alongside the interactions among model architectures, tasks, and data sets to build more
accurate models of human visual perception.
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2. We are convinced that deep learning can benefit from vision science just as much as
vision science can benefit from deep learning methods. Careful and fair comparisons are
the hallmark of vision science, and the field, with its strong scientific foundation, has
much to offer to deep learning, which is still a predominantly engineering-driven field.

3. Data sets—stimuli—matter enormously in vision science, andwe have not yet sufficiently
understood what makes natural images more or less similar to each other or more or
less difficult to recognize, or what constitutes truly independent image sets required for
training and testing in ML. Progress toward resolving these issues will likely lead to
better DNN models of human visual perception, and data sets deserve at least as much
attention as novel architectures.
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