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SUMMARY

Making successful decisions under uncertainty due
to noisy sensory signals is thought to benefit from
previous experience. However, the human brain
mechanisms that mediate flexible decisions through
learning remain largely unknown. Comparing behav-
ioral choices of human observers with those of a
pattern classifier based on multivoxel single-trial
fMRI signals, we show that category learning shapes
processes related to decision variables in frontal and
higher occipitotemporal regions rather than signal
detection or response execution in primary visual or
motor areas. In particular, fMRI signals in prefrontal
regions reflect the observers’ behavioral choice ac-
cording to the learned decision criterion only in the
context of the categorization task. In contrast, higher
occipitotemporal areas show learning-dependent
changes in the representation of perceived cate-
gories that are sustained after training independent
of the task. These findings demonstrate that learning
shapes selective representations of sensory readout
signals in accordance with the decision criterion to
support flexible decisions.

INTRODUCTION

Successful everyday actions rely on the brain making informed

choices based on an assessment of the demands of the environ-

ment and the costs and benefits associated with different behav-

iors. In selecting the best choice of action, the brain has to deal

with information that is inherently uncertain at different stages of

the decision process: from extracting a robust estimate of the

current state of the environment given noisy sensory signals to

judging the rewards and risks associated with a particular deci-

sion (Platt and Huettel, 2008; Rushworth and Behrens, 2008;

Schultz et al., 2008; Yu and Dayan, 2005). Recent theoretical

work suggests ways that the primate brain meets this challenge

by taking into account knowledge from previous experience

(Daw and Doya, 2006; Sutton and Barto, 1998). However, a

thorough understanding of the human brain plasticity mecha-

nisms that mediate learning to support efficient and flexible deci-

sions remains a considerable open challenge (Dayan and Niv,

2008; O’Doherty et al., 2007).
Computational models (Smith and Ratcliff, 2004) and experi-

mental studies (for reviews, Glimcher, 2003; Gold and Shadlen,

2007; Heekeren et al., 2008; Schall, 2001) suggest that decision

making comprises a set of interacting processes. First, sensory

signals are detected and decision variables (i.e., quantities that

relate to the likelihood of an event occurring) are computed by

comparing and accumulating sensory evidence toward a

threshold or criterion (i.e., the internal representation of a

comparison quantity) for response. A second process monitors

uncertainty in the sensory signals and the probable outcome of

a choice as well as task demands. Further, performance during

a task is monitored for errors and the need to adjust strategies

for optimizing decisions. Recent neurophysiology and brain

imaging studies have identified the neural circuits involved in

these processes. However, the role of learning in shaping these

processes and the human brain circuits involved in decision

making remain largely unknown.

Here, we investigate how category learning shapes decision

making processes in the human brain by combining psycho-

physical measurements and advanced fMRI analysis methods

(multivoxel pattern analysis, MVPA) that are sensitive to neural

information encoded at a finer-scale than the standard resolu-

tion of fMRI measurements (Cox and Savoy, 2003; Haynes and

Rees, 2006; Norman et al., 2006). We employed a categoriza-

tion task in which observers were presented with stimuli from

a morphing space generated by varying the spiral angle

between radial and concentric patterns (Figure 1A). Observers

were asked to decide whether the viewed stimulus was radial

or concentric. This task required observers to compare the

sensory input (i.e., the stimulus on each trial) to an internal deci-

sion criterion that was defined as the categorical boundary in

the stimulus space. Uncertainty in this task increased as stimuli

approached the boundary between the stimulus categories (45�

spiral angle based on physical stimulus properties). We investi-

gated how learning shapes the observers’ behavioral choice in

two separate experiments. In the first experiment, observers

were trained to use different decision criteria (i.e., category

boundaries) when performing categorical decisions in each of

two sessions. In the second experiment, we measured the

observers’ performance before and after training on a given

decision criterion. In both experiments, we were able to shift

the observers’ categorical boundary after training with feed-

back, thereby dissociating the physical stimuli from their cate-

gorical interpretation.

Using fMRI, we asked which cortical regions carry the neural

signature of this learning-dependent flexibility in categorical
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decisions. We reasoned that such regions would show trial-

by-trial variations that correspond to the behavioral choice of

the observers and change to reflect the shift in the decision crite-

rion (i.e., category boundary). As the learning manipulation we

employed changed the decision criterion and uncertainty during

the categorization task, we predicted that frontal circuits previ-

ously implicated in these decision processes would show expe-

rience-dependent changes in neural processing with learning.

Consistent with this prediction, we show that ventral prefrontal

and premotor regions contain information that allows us to

reliably decode (1) the observers’ choice on single trials and (2)

learning-dependent changes on the decision criterion used by

the observers for classifying sensory input. Interestingly, these

learning-dependent changes in decision processes were also

evident in higher occipitotemporal regions that are known to

be involved in the encoding of global form patterns. Importantly,

the learned categories were represented in occipitotemporal

regions independent of the task performed by observers during

scanning suggesting learning-dependent changes in the re-

presentation of the perceived categories rather than simply

task-related modulations. In contrast, no changes were observed

in primary visual or motor areas indicating that learning

did not change signal detection or response execution

A

B

Figure 1. Stimulus and Behavioral Data

(A) Stimuli: four example Glass pattern stimuli

(100% signal) at spiral angles of 0�, 30�, 60�, and

90�. The two boundaries and spiral angles tested

are shown (black bar, stimuli that resemble radial;

gray bar, stimuli that resemble concentric) that

indicate the categorical membership of the stimuli

for each boundary.

(B) Behavioral data from the lab (circles) and

the scanner (squares) for each boundary. Lines

indicate the cumulative Gaussian fits of the

behavioral data from the lab. Error bars indicate

the 95% confidence interval at 50% concentric

threshold.

related processes. These findings provide

evidence that category learning shapes

neural representations to reflect the

observers’ behavioral choice during

categorical decisions. In particular, in

prefrontal circuits learning shapes the

estimation of the decision criterion and

task uncertainty, while in higher occipito-

temporal regions the representations

of perceived categories that may serve

as selective readout signals for optimal

decisions.

RESULTS

Behavioral Data: Learning-
Dependent Changes
on the Decision Criterion
We tested observers’ ability to categorize

global form patterns as radial or concen-

tric (Figure 1A) and plotted their performance (proportion

concentric) as a function of stimulus spiral angle (psychometric

function). Before training (pretraining test), the mean categoriza-

tion boundary (50% point on the psychometric function) was

48.96� (±3.57�) spiral angle, matching closely the mean of the

physical stimulus space (45� spiral angle). We then trained the

observers with feedback to assign stimuli into categories based

on two different category boundaries: 30�, 60� spiral angle (see

Experimental Procedures for details). Observers were first

trained on one of the two boundaries and then retrained on the

other. Testing the observers without feedback after training

demonstrated that training had shifted the observers’ criteria

for categorization to 31.4� (±3.15�) for the 30� boundary and

63.5� (±3.24�) for the 60� boundary (Figure 1B). Fitting the behav-

ioral data with a cumulative Gaussian (see Supplemental Data

available online) showed a significant shift (bootstrapped 95%

confidence intervals) in the threshold of the psychometric

function when observers were trained with different categoriza-

tion boundaries. Similar effects were observed during the

scanning sessions (30� boundary, 34.4� ± 0.84�; 60� boundary,

64.1� ± 0.87�), indicating that the training procedure successfully

modified the observers’ decision criterion (i.e., categorization

boundary).
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Predicting Categorical Decisions from Activation
Patterns across the Whole Brain
We first investigated which cortical areas contain information

that is diagnostic of the observer’s categorical decision (radial

versus concentric) on each trial. Using a multivoxel searchlight

approach (Kriegeskorte et al., 2006), we tested the accuracy of

a linear support vector machine (SVM) in classifying fMRI

signals based on each observer’s behavioral choice (radial

versus concentric) per trial. We performed this classification

analysis on fMRI data when observers performed the categori-

zation task based on the 30� or 60� boundary conditions. We

defined an aperture (9 mm radius) that was moved serially

throughout the entire cortex to assess the information content

of voxel patterns in different brain regions. This analysis (Figures

2A and S1A) revealed voxel patterns with classification accuracy

significantly higher than chance (p < 0.0001, between-observers,

cluster threshold estimation 5 mm2) in occipitotemporal

areas (V1, KO/LOS, LO), parietal regions along the IPS (VIPS,

POIPS, DIPS), and frontal regions in the motor cortex (CS,

PMd, PMv), ventral (IFG/insula) and dorsal prefrontal (MFG,

SFG) cortex. These findings suggest that activation patterns in

frontoparietal and occipitotemporal regions afford the reliable

prediction of observers’ categorical decisions from single trial

fMRI data.

In contrast, a standard GLM analysis (Figure 3A) on the univar-

iate signals showed weak activations in a subset of these areas.

Further, analysis of the average fMRI response across voxels per

area did not show any significant differences between concen-

tric and radial trials (Figure 3B). These results show that MVPA

capitalizes on these small biases, to discern statistically reliable

differences related to the behavioral choice. This is consistent

with the higher sensitivity of multivariate methods in detecting

neural preferences encoded at a finer spatial resolution than

that of typical fMRI measurements.

A

B

Figure 2. Activation Patterns Based on the

Observers’ Behavioral Choice

(A) Searchlight map (data across observers and

task on the two boundaries) showing areas with

significantly higher accuracy than chance (50%

correct) (p < 0.0001, cluster threshold estimation

5 mm2) for the classification of fMRI signals based

on the observers’ behavioral choice.

(B) Group map (data across observers and task on

the two boundaries) based on covariance analysis.

t value maps are superimposed on flattened

cortical surfaces of both hemispheres (Table S1:

Talairach coordinates).

To constrain our analysis and select

regions of interest, we tested for interac-

tions between areas in the identified

cortical network based on the hypothesis

that higher-level areas may pool the

output of neural populations in sensory

areas to form decisions (Heekeren et al.,

2004; Kim and Shadlen, 1999; Newsome

et al., 1989; Romo and Salinas, 2003;

Shadlen and Newsome, 2001). In particular, we performed

MVPA based on the observers’ behavioral choice (radial versus

concentric) on voxel patterns in KO/LOS and LO (pattern size of

200 voxels) that are known to be involved in the selective repre-

sentation of visual forms (Ostwald et al., 2008). We then corre-

lated the output of the MVPA classifier across trials with the

time course from each voxel across the whole brain. Significant

correlations were identified in areas IFG/Insula, PMd, and SEF in

which the fMRI signal covaried with the difference in the

response for radial versus concentric stimuli in sensory areas

(Figure 2B; Supplemental Data).

Learning-Dependent Plasticity: Comparing fMR-Metric
and Psychometric Functions
We tested how learning shapes the neural processing in frontal

and occipitotemporal regions involved in the representation of

categorical choices. We asked which of these cortical regions

show changes in fMRI activation patterns that relate to the

behavioral changes in the observers’ decision criterion after

training as shown by the shift in the observers’ psychometric

functions (Figure 1B). For each observer, we identified activation

patterns based on the searchlight multivariate analysis (Figure 2).

We focused on activation patterns in extrastriate visual areas

(KO/LOS, LO) that showed strong preferential response for radial

versus concentric stimulus choices, higher frontal areas (IFG,

PMd, SEF) that were shown to covary with stimulus bias in

sensory areas (KO/LOS, LO) and primary visual (V1) and motor

(CS) cortex that are involved in the analysis of the physical input

and the execution of the response, respectively. We trained

a linear SVM to classify fMRI signals in these areas based on

the observer’s behavioral choice (radial versus concentric) on

each trial and tested for accuracy in predicting the observers’

choice for an independent dataset. For each observer, we calcu-

lated the mean performance of the classifier (proportion of trials
Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc. 443
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classified as concentric for each stimulus condition) across

cross-validations. We calculated the mean classifier perfor-

mance across observers and plotted the data after linear scaling

(i.e., for each fMR-metric function we scaled each prediction

by subtracting the minimum value across conditions and dividing

by the difference between maximum and minimum prediction

values) to allow comparison between cortical areas. We fitted

the data (Figure 4, scaled data; Figure S2, nonscaled data) using

a cumulative Gaussian, just as we had done for the behavioral

data. We refer to these functions as fMR-metric functions.

In line with changes in psychophysical performance based on

training, fMR-metric functions in frontal (IFG, PMd) and extrastri-

ate visual (KO/LOS, LO) areas showed significant shifts (non-

overlapping bootstrapped confidence intervals) that matched

training-induced shifts in the category boundary (Figure 4A).

We quantified this using the 50% threshold for fMR-metric func-

tions obtained when observers performed the categorization

task on the two different boundaries (30� versus 60�; Figure 4B).

We observed significant changes in the 50% threshold of the

psychometric (F(1,7) = 70.82, p < 0.001) and fMR-metric (F(1,7) =

5.4, p < 0.05) functions related to the categorization task on

the 30� versus 60� boundary. However, the slopes of the psycho-

metric (F(1,7) < 1, p = 0.86) and fMR-metric (F(1,7) = 1.9, p = 0.21)

functions did not change significantly, suggesting behavioral and

neural changes in the criterion for categorization rather than

sensitivity to the stimuli. Importantly, these effects were not

universal. In particular, the 50% thresholds for fMR-metric func-

tions in primary visual (V1) and motor (CS) cortex were not shifted

significantly between sessions, suggesting that training did not

change processing in these regions. This result was confirmed

by an additional analysis (Supplemental Data) based on the

A

B

Figure 3. Univariate Analysis

(A) Random effect GLM analysis (across observers

and task on the two boundaries) based on the

observers’ behavioral choices (radial versus

concentric) (p < 0.01, cluster threshold estimation

28 mm2).

(B) Analysis of fMRI time courses: for each ROI, we

extracted fMRI responses to radial versus concen-

tric trials based on the observers’ responses. fMRI

signals are shown for stimuli at the category

boundary (30� and 60�) for each session and the

same stimuli when they were not assigned as the

category boundary. Proportion signal change

from fixation baseline is plotted for radial versus

concentric choices for each stimulus condition

(at the boundary or not). Error bars indicate the

standard error of the mean across observers.

common stimulus conditions (0�, 30�,

60�, and 90� spiral angles) between the

two sessions showing significant correla-

tions between behavioral and classifier

performance within the same session but

not across sessions with different cate-

gory boundaries for KO/LOS (F(1,7) =

8.46, p < 0.05), LO (F(1,7) = 12.99, p <

0.01), PMd (F(1,7) = 7.39, p < 0.05), IFG

(F(1,7) = 17.25, p < 0.01), but not SEF ((F(1,7) < 1, p = 0.97), V1

(F(1,7) < 1, p = 0.79) or CS (F(1,7) < 1, p = 0.81). Interestingly,

for V1 the 50% thresholds of fMR-metric functions for both

sessions were close to the mean (45�) of the physical stimulus

space rather than the learned category boundary, suggesting

a physical based representation of the stimuli that remained

unaffected by learning induced changes in categorization. This

result in V1 suggests that the shift in the fMR-metric functions

in frontal and higher occipitotemporal areas could not be simply

due to low-level differences between the stimulus categories

presented in the two sessions. Further, it is possible that the

results observed in the motor cortex reflect a small bias in the

mapping between behavioral choices and button presses

(Figure S3A). To decouple the observers’ decision (radial versus

concentric choice) from the motor response (button press) we

introduced a cue that switched across trials indicating two

different mappings between behavioral choice and button

presses. The behavioral psychometric functions (Figure 1B) re-

vealed that observers were very good at changing their button

press behavior according to the cue. However, analysis of the

distribution of button presses across conditions showed that

observers had a small idiosyncratic preference for one of the

mappings. This resulted in a small bias in the distribution of

button presses across trials that may drive the BOLD signal in

the primary motor cortex and be discriminated by the classifier.

The idiosyncratic nature of the button press preferences means

that there is no significant shift in the fMR-metric functions

between the two sessions in CS. This result suggests that the

shifts in the fMR-metric functions for prefrontal and higher occi-

pitotemporal areas could not be explained simply on the basis of

motor responses.
444 Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc.
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As an extension of this analysis, we tested the performance of

the SVM classifier when it was trained only on fMRI data ob-

tained when observers viewed the radial (0�) and concentric

(90�) stimuli. Having trained the classifier at the extremes of the

stimulus classes, we then tested its performance for interme-

diate stimuli (i.e., stimulus spiral angles between 0� and 90�).

We observed consistent shifts in the fMR-metric functions in

prefrontal and higher occipitotemporal areas (Figure 5). More-

over, fitting the fMRI data using a scaled version of the

psychometric function obtained during scanning showed that

fMR-metric functions in frontal (IFG, PMd) and extrastriate visual

(KO/LOS, LO) areas (but not SEF, V1 or CS) were shifted in corre-

spondence with the learned categorization boundary (Figure 6A).

To control for the possibility that these results are due to random
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Figure 4. fMR-Metric Curves Based on the

Observers’ Behavioral Choice

(A) fMR-metric curves based on the observers’

behavioral choice for each task (30� and 60�

boundary) and ROI. Average classifier prediction

data across observers are scaled from 0 to 1 and

fitted with cumulative Gaussian functions. Error

bars indicate the 95% confidence interval at

50% concentric threshold. Significant fits were

obtained across ROIs and task on the two bound-

aries (lowest Pearson correlation coefficient R =

0.838, p = 0.018).

(B) Mean 50% concentric thresholds across

observers are shown for the psychometric and

fMR-metric data collected in the scanner for

each ROI. Error bars indicate the 95% confidence

interval at 50% concentric threshold.

correlations in the data, we correlated

the psychometric data with an fMR-

metric function computed from randomly

permuted fMRI patterns (i.e., we random-

ized the correspondence between fMRI

data and training labels and estimated

the classifier prediction for each stimulus

condition). The lack of significant correla-

tions (Figure 6B) in this control analysis

supports our interpretation for a link

between task-relevant behavioral perfor-

mance and neural preferences.

Further, we used a trial-by-trial analysis

borrowing techniques from physiological

studies (e.g., Britten et al., 1996; Uka and

DeAngelis, 2003). We used choice proba-

bility analysis to quantify the relationship

between the observers’ choice and

fMRI responses. We used voxel pattern

responses (i.e., classification accuracy)

evoked by stimuli near threshold perfor-

mance (i.e., stimuli at the boundary and

±5� of spiral angle), as observers’ perfor-

mance included a useful number of errors

for these stimuli. To avoid circularity in the

analysis, we trained the classifier based

on one dataset and estimated choice probabilities based on an

independent data set. In particular, for each observer, we labeled

all trials based on the observer’s behavioral choice and tested the

classifier’s performance in predicting the observer’s choice using

a leave-one-run-out cross-validation procedure. We compared

the output (i.e., discriminant function value) of the classifier for

trials associated with a radial choice against trials associated

with a concentric choice. We then plotted the probability with

which the classifier predicted the behavioral choice per stimulus

trial on an independent data set (ROC: receiver operator charac-

teristic curve). The area under the ROC curve signified the choice

probability for each observer and cortical region. We evaluated

the significance of choice probabilities per observer using a boot-

strap procedure (1000 random permutations of the trial labels). As
Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc. 445
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the stimuli at or nearby the boundary were ambiguous, we

reasoned that significant (p < 0.05, based on permutation test)

choice probabilities would indicate activity associated with the

observers’ perceptual interpretation of the stimuli. Significant

choice probabilities (values outside the 95% confidence intervals

of the random distributions) were observed in 7/8 observers in

frontal areas (IFG, mean = 0.56; max = 0.6; PMd, mean = 0.55;

max = 0.61), 5/8 observers in occipitotemporal areas (KO/LOS,

mean = 0.55, max = 0.62; LO, mean = 0.56, max = 0.61) while

only in 3/8 observers in V1, CS, and SEF. These choice probability

values are comparable to those reported by previous fMRI (e.g.,

Hampton and O’Doherty, 2007; Pessoa and Padmala, 2007)

and physiology (e.g., Britten et al., 1996; Uka and DeAngelis,

2003) studies using similar methods to decode the observers’

choice from single trial signals. These rather low but significant

values could be due to lower fMRI signals recorded when event-

related designs are used for investigating trial-by-trial responses

and the weak response biases at the resolution of fMRI voxels

exploited by the MVPA. Finally, choice probabilities in frontal

and occipitotemporal areas were significantly higher than in

primary visual and motor areas (F(1,80) = 4.9, p < 0.05). Thus,

this analysis is in good agreement with our preceding results in

suggesting that pattern-based fMRI responses primarily in

prefrontal and occipitotemporal areas account for the behavioral

choice of the observers.

The design of our study allowed us to rule out a number of less

likely interpretations of our results. First, our design ensured that

the observers were not biased in their responses by equating the

number of conditions and stimuli across categories. As a result,

the stimulus set tested in the two sessions could not remain iden-

tical when the category boundary changed across sessions.

However, our design allowed us to directly compare between

critical stimulus conditions (0�, 90�, 30�, 60�) that were common

in the two sessions. Analysis of the univariate fMRI signals

(Figure 3B) showed similar fMRI responses across stimulus

conditions (i.e., when the stimuli were interpreted as the category

boundary or not) suggesting that differences in the MVPA perfor-

mance reflect the observers’ behavioral choice rather than

differences in the stimulus statistics across conditions. Second,
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Figure 5. fMR-Metric Curves Based on the

Classification of Stimuli 0� versus 90�

fMR-metric curves based on the classification of

stimuli 0� versus 90� for each task (30� and 60�

boundary) and ROI. Average classifier prediction

data across observers are scaled from 0 to 1

and fitted with cumulative Gaussian functions.

Error bars indicate the 95% confidence interval

at 50% concentric threshold. Significant fits

were obtained across ROIs and task on the two

boundaries (lowest Pearson correlation coeffi-

cient R = 0.912, p = 0.004).

the learning-dependent changes we

observed in the representation of cate-

gorical decisions could not be due to

differences in task difficulty across

conditions, as the classification analysis

compared trials associated with different behavioral responses

(radial versus concentric) for each stimulus condition. Third,

the cued-delay paradigm we used controlled for differences in

the observers’ response time. That is, observers made their

decision during the delay after stimulus offset and waited for

the cue before they could select the correct motor response,

resulting in similar response times across stimulus conditions.

As the stimulus-response association was randomized across

trials, the motor response could not be anticipated on a given

trial. As an additional control, we used the searchlight approach

to search for brain patterns that contained reliable information

with which to classify the finger (i.e., button press) used by the

observers to indicate their behavioral choice. No significant

accuracies for this classification were observed in occipitotem-

poral (KO/LOS, LO) or the IFG/insula regions (Figures S3B and

S3C), suggesting that results in these areas can not be simply

explained on the basis of motor responses. Finally, eye move-

ment recordings during scanning showed that there were no

significant differences in the eye position, number and amplitude

of saccades across stimulus conditions and categorization on

the two boundaries (Figure S4). This analysis suggests that it is

unlikely that the learning-dependent changes we observed

were significantly confounded by eye movements.

Control Experiment: Task-Related Learning Changes
Our results show that frontal and higher occipitotemporal

regions contain information about the behavioral choice of the

observers and change their processing with learning to reflect

the observers’ criterion (i.e., categorical boundary) in making

categorical judgments. Next, we investigated whether these

learning-related changes depend on the task performed by the

observers during scanning.

We tested two groups of observers for two sessions. In the first

session, observers were instructed to categorize the stimuli as

radial versus concentric (same task as in main experiment)

without feedback, allowing us to determine the categorical

boundary per observer before training. In the second session,

observers were trained with feedback to categorize the stimuli

based on a predefined boundary (30� or 60� spiral angle).
446 Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc.
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However, during scanning observers performed a target detec-

tion task (i.e., pressed a button to indicate the presence of

a square stimulus pattern rendered by dot pairs similar to the

radial and concentric stimuli). The observers’ performance

ranged from 56.8% to 83.2% correct for response times between

839 ms (mean response time) and 1000 ms from stimulus onset,

ensuring that the observers engaged fully with the task. Training

shifted the observers’ criterion from 43.74� (±1.55�) for the 45�

boundary to 31.4� (±1.66�) for the 30� boundary, and to 57.2�

(±2.36�) for the 60� boundary (Figure 7A). Fitting the behavioral

data with a cumulative Gaussian (Supplemental Data) showed

a significant shift in the observers’ criterion (i.e., 45� versus 30�,

F(1,6) = 16.1, p < 0.01; 45� versus 60�, F(1,4) = 20.44, p < 0.05).

A searchlight analysis showed significant accuracies for the

classification of radial versus concentric stimuli primarily in

KO/LOS but not frontal areas (Figure S1B). We then trained an

SVM to discriminate between the two extreme stimulus condi-

A

B

Figure 6. Correlating Psychometric and

fMR-Metric Functions

(A) Fitting of fMR-metric curves based on the clas-

sification of stimuli 0� versus 90� with the scaled

psychometric function obtained from the behav-

ioral data (Supplemental Data). Significant fits

were obtained across ROIs and task on the two

boundaries (lowest Pearson correlation coefficient

R = 0.841, p = 0.018).

(B) Fitting of fMR-metric curves based on the clas-

sification of stimuli 0� versus 90� when the data

labels were permuted with the scaled psycho-

metric function. No significant fits were observed.

tions (radial versus concentric) stimuli,

tested the classifier’s prediction (radial

versus concentric) for each stimulus

condition and generated fMR-metric

functions as before. This analysis showed

that fMR-metric functions in KO/LOS for

the trained categories (30�, 60� boundary)

were shifted significantly (F(1,10) = 25.89,

p < 0.001) against each other (Figure 7B).

In contrast, fMR-metric functions were

not significantly fitted in the IFG/insula

region. These results suggest that

higher occipitotemporal regions contain

information related to the learned stim-

ulus categories even when observers

are not engaged in a categorization

task. However, frontal circuits show

learning-dependent changes that reflect

the observers’ behavioral choice when

observers are engaged in a categorization

task. Thus, learning in higher occipitotem-

poral regions shapes the selective repre-

sentation of perceived categories that

are sustained independent of the task,

whereas task-related changes in frontal

areas reflect changes in the decision

criterion that the observers use when
comparing sensory evidence in the context of the categorization

task.

DISCUSSION

Our findings provide insights into the learning brain processes

that are important for making decisions under uncertainty. First,

using advanced mutlivoxel pattern classification methods, we

identify the neural decision processes that are shaped by cate-

gory learning. We show that learning shapes neural processing

related to selecting the appropriate criterion (i.e., categorical

boundary) in frontal and higher occipitotemporal regions rather

than signal detection or response execution in primary visual

or motor areas. Second, we discern differential mechanisms of

learning-dependent plasticity in frontal versus occipitotemporal

areas. In particular, learning shapes selective readout signals

in higher occipitotemporal regions that reflect the perceived
Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc. 447
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stimulus category independent of task context and may

contribute to the estimation of the decision criterion specific to

the task in prefrontal circuits. Thus, our findings provide novel

evidence for distributed experience-dependent plasticity mech-

anisms that shape the estimation of decision variables in the

human brain.

Our work advances our understanding of adaptive decision

making mechanisms beyond previous physiology and imaging

studies in three main respects. First, previous studies have

provided a detailed roadmap of the cortical circuits involved in

decision making. In particular, previous studies have investi-

gated the neural circuits involved in categorical decisions under

uncertainty related to stimulus detection (i.e., due to external

noise applied to the stimulus) or criterion selection (i.e., distance

from the categorical boundary). Dorsolateral prefrontal and intra-

parietal regions have been suggested to accumulate information

about noisy signals in order to make a decision (Grinband et al.,

2006; Heekeren et al., 2004, 2006; Kim and Shadlen, 1999;

Newsome et al., 1989; Romo and Salinas, 2003; Shadlen and

Newsome, 2001). Ventrolateral prefrontal regions including

insular cortex have been suggested to monitor uncertainty in

stimulus detection, discriminability, and probability of reward.

In the context of categorical decisions (for reviews, Ashby and

Maddox, 2005; Keri, 2003), these areas are suggested to main-

tain information in short term memory for comparative stimulus

judgments (Philiastides and Sajda, 2007) relative to the category

boundary (Grinband et al., 2006). Further, motor areas are

A

B

Figure 7. Control Experiment

(A) Average behavioral data across observers from the lab

(circles) are shown for each boundary. Lines indicate the

cumulative Gaussian fits. Error bars indicate the 95% confi-

dence interval at 50% concentric threshold.

(B) fMR-metric curves for each task (45�, 30�, and 60�

boundary) and ROI. Average classifier prediction data across

observers are scaled from 0 to 1 and fitted with cumulative

Gaussian functions. Error bars indicate the 95% confidence

interval at 50% concentric threshold.

thought to be involved in both computing the deci-

sion variables as well as the planning and execution

of the response (Gold and Shadlen, 2003), while

supplementary eye field (Corbetta and Shulman,

2002) and cingulate (Rushworth and Behrens,

2008) regions are suggested to engage in error-

monitoring and performance adjustment through

the allocation of attentional resources. Extending

beyond this previous work, our study demonstrates

that learning shapes neural processing in these

circuits in accordance with changes in behavioral

decisions after training.

Second, we investigate how learning shapes

the link between behavioral and neural choices

and supports adaptive decision making. Previous

physiology studies have shown that sensory (Brit-

ten et al., 1996; Uka and DeAngelis, 2003) and

prefrontal regions (e.g., Kim and Shadlen, 1999)

reflect the animals’ behavioral choice in perceptual

decision tasks (e.g., motion direction discrimination). Previous

imaging studies have successfully decoded decisions and inten-

tions in the human brain (Hampton and O’Doherty, 2007; Haynes

et al., 2007; Pessoa and Padmala, 2005, 2007; Philiastides et al.,

2006; Philiastides and Sajda, 2006; Serences and Boynton,

2007; Williams et al., 2007). Here, we show that distributed

signals across voxel patterns in ventral prefrontal (IFG/insula),

and premotor (PMd) cortex contain information that allows us

to decode the observers’ behavioral choice as shaped by

previous experience. We develop a methodology adapting es-

tablished psychophysical and physiological procedures to

fMRI data collection and multivariate analysis. In particular, we

collect single-trial fMRI data for stimuli that vary parametrically

in their physical similarity. We then compute psychometric func-

tions based on the observers’ behavioral choice on each stim-

ulus trial and fMR-metric functions based on the classifier’s

choice on single-trial fMRI signals. Comparing the classifier’s

choices with the observer’s choices shows that fMR-metric

functions resemble psychometric functions and have similar

thresholds, suggesting a link between behavioral and neural

responses. More importantly, we show that learning-dependent

changes in the behavioral decision criterion (i.e., categorical

boundary) are reflected by changes in the threshold (50% point)

of the fMR-metric functions in ventrolateral prefrontal (IFG/in-

sula) and premotor regions. An analysis of the slopes of the

psychometric and fMR-metric functions suggest that learning

changes processes related to decision variables (criterion for
448 Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc.
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stimulus comparison, stimulus uncertainty relative to criterion)

rather than signal detection (i.e., sensitivity in detecting stimuli

from noise). This is supported by the lack of a significant shift

in the fMR-metric functions in V1, CS, or SEF suggesting that

learning a new criterion for categorization does not affect the

physical stimulus- or response-related representations in these

regions that may support signal detection and motor execution

respectively.

Third, in contrast to the prediction that learning-dependent

changes in decision variables should only engage higher frontal

circuits involved in reading out and comparing sensory evidence,

we observed shifts in the fMR-metric functions in higher occipito-

temporal regions (KO/LOS, LO) that are known to be involved in

the representation of visual forms (Ostwald et al., 2008). Recent

work has suggested that these areas accumulate information

to the time of recognition (Ploran et al., 2007), support the

persistence of a percept (Philiastides and Sajda, 2007), and

therefore may contribute to the comparison of sensory evidence

during decision making. Our findings demonstrate the learning

shapes this comparison process and the neural representation

of visual categories in occipitotemporal areas. Importantly, these

neural changes were evident without observers performing

the categorization task, suggesting learning-dependent changes

in the representation of the perceived categories rather than

simply task-related modulations. The lack of learning-dependent

changes in prefrontal regions when observers did not perform the

categorization task is in agreement with a recent imaging study

(Jiang et al., 2007) and the proposed role of these areas in

adaptive coding for complex cognitive tasks (Duncan, 2001;

Koechlin and Summerfield, 2007; Miller, 2000). It is unlikely that

the learning-induced changes we observed in occipitotemporal

areas resulted from learning specific category exemplars or

stimulus-response associations. In particular, the stimuli tested

during scanning differed in their visual properties (i.e., signal level

and spiral angle) from the stimuli presented during training,

suggesting that observers performed the categorization task

based on the learned boundary rather than specific exemplars.

Finally, we controlled for the possibility that the results could

be due to memorized stimulus-response associations by

randomizing the motor responses based on the cue in the

main experiment, and introducing a task requiring a motor

response orthogonal to the stimulus categories in the control

experiment.

These findings provide insights in the contested role of

temporal areas in visual categorization. Previous studies have

proposed that the temporal cortex represents primarily the visual

similarity between stimuli and their identity (Freedman et al.,

2003; Jiang et al., 2007; Op de Beeck et al., 2001) while other

studies show that it represents the critical stimulus dimensions

for categorization (Li et al., 2007; Mirabella et al., 2007; Sigala

and Logothetis, 2002) and is modulated by task demands (Koida

and Komatsu, 2007) as well as experience (e.g., Gauthier et al.,

1997; Op de Beeck et al., 2006; Op de Beeck et al., 2008). Our

findings provide evidence for flexible neural representations of

visual stimuli that reflect the learned categorical similarity rather

than the physical similarity between stimuli. It is possible that

these flexible representations are formed based on recurrent

processes that integrate bottom-up selectivity based on feature
similarity in occipitotemporal areas and top-down influences

based on the perceptual interpretation of the stimuli in prefrontal

circuits. However, our findings suggest that such top-down influ-

ences during learning shape the neural representations in occipi-

totemporal areas to reflect the perceived categories even when

observers are not engaged in a visual categorization task.

The limited resolution of fMRI does not allow us to discern

whether these learning-dependent changes in the neural repre-

sentations reflect changes in the selectivity of single neurons,

correlations across local neural populations, or connectivity

across frontoparietal areas engaged in computing decision

variables and sensory-driven occipitotemporal regions. Recent

neurophysiological studies show that small neural populations

in the temporal cortex contain information about abstract

categories that are established through training (Meyers et al.,

2008). Further, learning is shown to establish and refine

sensory-motor associations (Boettiger and D’Esposito, 2005;

Toni et al., 2001) that provide a more selective readout of highly

sensitive signals in sensory areas (Law and Gold, 2008). Our

findings provide evidence that once such sensory-motor associ-

ations have been established through training on a visual catego-

rization task, neural representations in occipitotemporal areas

remain sensitive to the learned stimulus categories even

when the observers are not engaged in a complex cognitive

task that entails selective information readout by higher fronto-

parietal circuits. Such representations may further support iden-

tification of individual category members, generalization to new

stimuli similar to the category members, and expertise in familiar

abstract categories.

In summary, our findings provide evidence that category

learning shapes decision processes in the human brain related

to the choice of the behaviorally relevant criterion for assigning

sensory input into meaningful categories. Using multivoxel

pattern analysis on single-trial fMRI data, we compare fMR-

metric functions that reflect the choices of an MVPA classifier

to psychometric functions that reflect the observers’ choices.

MVPA allows us to evaluate whether small biases across

voxels related to the stimulus preference of the underlying

neural populations are statistically reliable. However, cautious

interpretation of the results is necessary due to the complex

nature of the BOLD signal. MVPA on fMRI signals allows us

to reliably extract information about the sensitivity of neural

populations at a finer spatial resolution than that of typical

fMRI measurements by pooling small biases across voxels,

but it does not enable us to discern the nature of the signals

that determine this sensitivity. In the context of our study,

learning-dependent changes in the classifier’s choice may

reflect changes in the selectivity of single neurons, correlations

across local neural populations, or input from local or distant

neural circuits. Our findings suggest that learning may shape

selective readout signals from neurons in higher occipito-

temporal areas that support adaptive coding in frontal neural

populations for complex cognitive tasks. Future work employ-

ing the methodology that we employed here for the analysis

of both fMRI and electrophysiology signals will provide further

insights into the neural mechanisms that mediate learning-

dependent changes for adaptive decision making in humans

and monkeys.
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EXPERIMENTAL PROCEDURES

Observers

Eight observers (four male, four female) participated in the main experiment,

and fourteen observers (seven male, seven female) participated in the control

experiment. Two observers were excluded from the data analysis in the control

experiment due to excessive head movement during scanning. All observers

were from the University of Birmingham, had normal or corrected to normal

vision, and gave written informed consent. The study was approved by the

local ethics committee.

Stimuli

We used Glass pattern stimuli (Glass, 1969) defined by white dot pairs (dipoles)

displayed within a square aperture (7.7� 3 7.7�) on a black background (100%

contrast). The dot density was 3% and the Glass shift (i.e., the distance

between two dots in a dipole) was 16.2 arc min. The size of each dot was

2.3 3 2.3 arc min2. These parameters were chosen based on pilot psycho-

physical studies and in accordance with previous studies (e.g., Wilson and

Wilkinson, 1998) showing that coherent form patterns are reliably perceived

for these parameters. We generated concentric and radial Glass patterns by

placing dipoles tangentially (concentric stimuli) or orthogonally (radial stimuli)

to the circumference of a circle centered on the fixation dot. Further, we gener-

ated intermediate patterns between these two Glass pattern types by para-

metrically varying the spiral angle of the pattern from 0� (radial pattern) to

90� (concentric pattern) (Figure 1A). For each dot dipole, the spiral angle

was defined as the angle between the dot dipole orientation and the radius

from the center of the dipole to the center of the stimulus aperture. Each stim-

ulus comprised dot dipoles that were aligned according to the specified spiral

angle (signal dipoles) for a given stimulus, and noise dipoles for which the spiral

angle was randomly selected. Half of the observers were presented with clock-

wise spiral patterns (0� to 90� spiral angle) and half with counterclockwise

spiral patterns (0� to �90� spiral angle). A new pattern was generated for

each stimulus presented in a trial, resulting in stimuli that were locally jittered

in their position.

To control for stimulus-specific training effects and ensure generalization of

learning, we trained the observers with 60% signal stimuli but tested (pre- and

posttraining test) and scanned on 40% signal stimuli. These values were

selected based on behavioral pilot experiments showing that degrading the

Glass patterns with noise resulted in gradual changes in the observers’ cate-

gorization performance across conditions. This procedure ensured that

learning could not be due to similar local cues between the stimuli used for

training, tests and scanning, but rather global features (i.e., spiral angle)

used by the observers for stimulus categorization.

Design

For the main experiment (see Supplemental Data for details on control exper-

iment), all observers participated in two fMRI sessions. Each session was

preceded by psychophysical training outside the scanner, and the observers’

behavioral performance was matched before the two fMRI sessions (85%

correct performance).

Psychophysical Training

First, observers were familiarized with the task and stimuli in a short practice

session. Observers were shown the 100% signal Glass patterns and were in-

structed to categorize each stimulus into one of two categories: similar to

a radial Glass pattern (0� spiral angle) versus similar to a concentric Glass

pattern (90� spiral angle). Then, during the pretraining test observers were

presented with 40% signal Glass patterns and were instructed to perform

the same categorization task. This pretraining test allowed us to identify the

categorical boundary between radial and concentric for each observer before

training.

Following the pretraining test, observers were presented with 60% signal

stimuli and were trained (self-paced procedure with audio error feedback) to

shift this boundary to either 30� (training runs, 4.1 ± 2.36) or 60� (training

runs, 3.8 ± 1.67) of spiral angle. In the first training session, half of the observers

(group 1) were trained to categorize the stimuli based on a boundary at 30�

spiral angle, whereas the other half (group 2) were trained to categorize the
450 Neuron 62, 441–452, May 14, 2009 ª2009 Elsevier Inc.
stimuli based on 60� boundary. In the second training session, observers

from group 1 were trained on the 60� boundary, while observers from group

2 were trained on the 30� boundary. For the 30� boundary session observers

were trained at steps: 5�, 10�, 20�, 25�, 35�, 40�, 50�, and 55� of spiral angle

while for the 60� boundary at the following steps: 35�, 40�, 50�, 55�, 65�,

70�, 80�, and 85� of spiral angle. Each training session comprised multiple

runs (ranging from 2 to 9 runs) with 144 trials per run. For each trial during

training, the stimulus was presented for 300 ms. A white fixation square

(7.7 3 7.7 arc min2) was presented at the center of each stimulus. Observers

were instructed to indicate which category the stimulus belonged to by

pressing one of two keys. Observers were trained until their performance

reached a stable criterion level (85% correct) twice. This training procedure

ensured that the performance of the observers was similar for both boundaries

before scanning.

After training, observers were tested in a posttraining test (420 trials) during

which stimuli (40% signal level) were presented for 200 ms. For the 30�

boundary session observers were tested at steps 0�, 5�, 10�, 15�, 20�, 25�,

30�, 35�, 40�, 45�, 50�, 55�, 60�, and 90� of spiral angle, while for the 60�

boundary at steps 0�, 30�, 35�, 40�, 45�, 50�, 55�, 60�, 65�, 70�, 75�, 80�,

85�, and 90� of spiral angle. To assess the result of training, no feedback

was given during this posttraining test.

fMRI Measurements

For the main experiment (see Supplemental Data for control experiment), all

observers participated in two scanning sessions during which they performed

the categorization task on the Glass pattern stimuli after training on each of the

two boundaries (30� and 60� spiral angles).

For each observer, we collected data from seven to eight event-related runs

in each session. The order of trials was matched for history (one trial back)

such that each trial was equally likely to be preceded by any of the conditions.

The order of the trials differed across runs and observers. Eight conditions

(seven stimulus conditions and one fixation condition during which only the

fixation point was displayed at the center of the screen) with 16 trials per condi-

tion were presented in each run. Each run comprised 129 trials (128 trials

across conditions and one initial trial for balancing the history of the second

trial) and two 9 s fixation periods (one in the beginning and one at the end of

the run). For the 30� boundary, the stimulus conditions comprised Glass

patterns of 0�, 15�, 25�, 30�, 35�, 60�, and 90� spiral angles. For the 60�

boundary, the stimulus conditions comprised Glass patterns of 0�, 30�, 55�,

60�, 65�, 75�, and 90� spiral angles. Four stimulus conditions (0�, 30�, 60�,

and 90� spiral angle) were common between sessions. The choice of the

rest of the stimuli was constrained by two factors. (1) We equated the number

of conditions and stimuli across categories while avoiding stimulus repetition

to ensure that observers were not biased in their responses due to uneven

number of conditions (stimuli) in one of the two categories. (2) We aimed to

sample representative points on the psychometric function while selecting

a limited but adequate number of conditions to ensure that enough trials

were recorded per condition, and high-quality signals were measured within

the time constraints of fMRI scanning.

For fixation trials, the fixation square was displayed for 3 s. For experimental

trials (3 s long), each trial started with 200 ms stimulus presentation followed by

1300 ms delay during which a white fixation square was displayed at the center

of the screen. After this fixed delay, the fixation dot changed color to either

green or red. This change in fixation color served as a cue for the motor

response using one of two buttons. If the color cue was green observers

used the same finger-key matching as during training (i.e., index finger for

radial), while if the color cue was red, observers switched finger-key matching

(i.e., index finger for concentric). The fixation color was changed back to

white 300 ms before the next trial onset. This procedure aimed to dissociate

the motor response (button press) from the learned stimulus categories.

Observers were familiarized with this procedure before scanning.

fMRI Data Acquisition

The experiments were conducted at the Birmingham University Imaging Center

(3TAchieva scanner; Philips,Eindhoven, TheNetherlands). EPI andT1-weighted

anatomical (1 3 1 3 1 mm)data was collected with an eightchannel SENSE head

coil. For the main experiment, EPI data (Gradient echo-pulse sequences) were

acquired from 24 slices (whole-brain coverage, TR, 1500 ms; TE, 35 ms;
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flip-angle, 73 degrees; 2.5 3 2.5 3 4 mm resolution). For the control experiment

EPI data were acquired from 32 slices (whole-brain coverage, TR, 2000 ms; TE,

35 ms; flip-angle, 80 degrees; 2.5 3 2.5 3 3 mm resolution).

fMRI Data Analysis

MRI data was processed using Brain Voyager QX (Brain Innovations, Maas-

tricht, The Netherlands). Anatomical data was used for 3D cortex reconstruc-

tion, inflation and flattening. Preprocessing of functional data included slice-

scan time correction, head movement correction, temporal high-pass filtering

(3 cycles) and removal of linear trends. Trials with head motion larger than

1 mm of translation, or 1� of rotation were excluded from the analysis. Spatial

smoothing (Gaussian filter; full-width at half maximum, 6 mm) was performed

only for group random effect analysis (Figure 3A) but not for data used for the

multivoxel pattern classification analysis. The functional images were aligned

to anatomical data and the complete data were transformed into Talairach

space. For each observer, the functional imaging data between the two

sessions were coaligned registering all volumes of each observer to the first

functional volume of the first run and session. This procedure ensured

a cautious registration across sessions. To avoid confounds from any remain-

ing registration errors we compared fMRI signals between stimulus conditions

within each session rather than across sessions. A gray-matter mask was

generated for each observer in Talairach space from the anatomical data for

selecting only gray-matter voxels for further analyses.

Multivariate Mapping of Regions Based on the Observer’s Response

For each observer, we identified cortical regions whose activations correlated

with the observers’ response in the categorization task by performing a multi-

voxel searchlight analysis (Kriegeskorte et al., 2006) on the data for each cate-

gorization boundary. In particular, we defined a spherical aperture with radius of

9 mm and moved this aperture voxel by voxel across the whole brain (only gray-

matter voxels were included). For voxels within the aperture (98 voxels per aper-

ture on average), we used a linear support vector machine pattern classifier to

classify fMRI signals across all stimulus conditions based on the observers’

behavioral choice (radial versus concentric). That is, we trained the classifier

to associate the fMRI signal from each trial with a label (radial versus concentric)

that was determined by the observer’s interpretation of the stimulus in the

context of the categorization task rather than by the stimulus condition. To

control for the unequal numbers of trials categorized by the observers as radial

versus concentric in each stimulus condition, we weighed the classification by

the ratio of concentric over radial fMRI patterns (Supplemental Data).

We performed this pattern classification on individual trials by averaging

the two volumes from each trial (trial duration = 3 s, TR = 1.5 s) to generate

one training pattern. Modeling of the hemodynamic response function (HRF)

with a double Gaussian function for all data across conditions and observers

showed that the average peak response across areas was at 4.71 s

(±0.37 s) after stimulus onset. To account for this hemodynamic delay, we

shifted the fMRI time series by 3 volumes (4.5 s). To ensure generalization of

the classification, we used a leave-one-run-out cross-validation procedure.

For each cross-validation, one run was left out as an independent test dataset

and the data from the rest of the runs was used as the training set. The classi-

fication accuracy for each aperture was obtained by averaging the prediction

accuracy across cross-validations. The accuracy value for each voxel was

obtained by averaging the accuracy values from all apertures in which this

voxel was included. To identify voxels with accuracy significantly higher than

chance across observers we conducted a second level statistical analysis

(t test, p < 0.0001, cluster threshold estimation 5 mm2).

SUPPLEMENTAL DATA

The Supplemental Data include four figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://

www.neuron.org/supplemental/S0896-6273(09)00239-6.
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