A5
Prof. Dr. Drewing (apl.)

Prior information and predictive mechanisms in exploration and perception during active touch

Project A5 investigates how people control natural explorations and use information in active touch. In the next funding period, we want to complete our model of information integration by including efference copy-based predictions and investigate higher-level mechanisms that underlie the previously observed optimal use of predictive and sensory signals: Mid-term mechanisms for making prior information usable for exploratory control and mechanisms that coordinate sequential behavior in complete visuo-haptic sensorimotor routines (in particular the interplay of visual and haptic explorations and their termination).

new project-related publications
Billino, J., & Drewing, K. (2018). Age effects on visuo-haptic length discrimination: Evidence for optimal integration of senses in senior adults. Multisensory Research, 31(3-4), 273-300. find paper DOI
Cavdan, M., Doerschner, K. & Drewing, K. (2021). Task and material properties interactively affect softness explorations along different dimensions. IEEE Transactions on Haptics. find paper
Cavdan, M., Ennis, R., Drewing, K. & Doerschner, K. (2021). Constraining haptic exploration with sensors and gloves hardly changes the multidimensional structure of softness perception. In 2021 IEEE World Haptics Conference (WHC) (pp. 31-36), IEEE. find paper
Cavdan, M., Freund, A., Trieschmann, A. K., Doerschner, K. & Drewing, K. (2020). From Hate to Love: How Learning Can Change Affective Responses to Touched Materials. In: Nisky I., Hartcher-O’Brien J., Wiertlewski M., Smeets J. (eds) "Haptics: Science, Technology, Applications". EuroHaptics 2020. Lecture Notes in Computer Science, vol 12272. Springer, Cham. find paper
Drewing, K. (2018, June). Judged Roughness as a Function of Groove Frequency and Groove Width in 3D-Printed Gratings. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 258-269). Springer, Cham. find paper DOI
Drewing, K. & Lezkan, A. (2021). Masking interferes with haptic texture perception from sequential exploratory movements. Attention, Perception, & Psychophysics, 83(4), 1766-1776. find paper DOI
Drewing, K. & Zoeller R. (2021). Influence of presentation order on force control in softness exploration. In 2021 IEEE World Haptics Conference (WHC) (pp. 19-24), IEEE. find paper
Drewing, K., Hitzel, E., & Scocchia, L. (2018). The haptic and the visual flash-lag effect and the role of flash characteristics. PloS one, 13(1), e0189291. find paper
Drewing, K., Weyel, C., Celebi, H., & Kaya, D. (2018). Systematic relations between affective and sensory material dimensions in touch. IEEE Transactions on Haptics, 11(4), 611-622. find paper
Lezkan, A., & Drewing, K. (2018a). Processing of haptic texture information over sequential exploration movements. Attention, Perception, & Psychophysics, 80(1), 177-192. find paper DOI
Lezkan, A., Drewing, K. (2018b). Interdependences between finger movement direction and haptic perception of oriented textures. PLoS ONE, 13(12): e0208988. find paper DOI
Lezkan, A., Metzger, A., & Drewing, K. (2018). Active Haptic Exploration of Softness: Indentation Force is Systematically Related to Prediction, Sensation and Motivation. Frontiers in Integrative Neuroscience, 12, 59. find paper DOI
Metzger A., Drewing K. (2020). Switching Between Objects Improves Precision in Haptic Perception of Softness. In: Nisky I., Hartcher-O’Brien J., Wiertlewski M., Smeets J. (eds) "Haptics: Science, Technology, Applications". EuroHaptics 2020. Lecture Notes in Computer Science, vol 12272. Springer, Cham. find paper.
Metzger, A. & Drewing, K. (2021). A Kalman filter model for predicting discrimination performance in free and restricted haptic explorations.In 2021 IEEE World Haptics Conference (WHC) (pp. 439-444), IEEE. find paper
Metzger, A., & Drewing, K (2019b). Memory influences haptic perception of softness. Scientific Reports, 9(1), 1-10. find paper DOI
Metzger, A., & Drewing, K. (2019a). Effects of Stimulus Exploration Length and Time on the Integration of Information in Haptic Softness Discrimination. IEEE transactions on haptics, 12(4), 451-460. find paper DOI
Metzger, A., Toscani, M., Akbarinia, A., Valsecchi, M. & Drewing, K. (2021). Deep neural network model of haptic saliency. Scientific Reports, 11(1), 1395. find paper, DATA
Metzger, A., Toscani, M., Valsecchi, M., & Drewing, K. (2018, June). Haptic Saliency Model for Rigid Textured Surfaces. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 389-400). Springer, Cham. find paper DOI
Metzger, A., Toscani, M., Valsecchi, M., & Drewing, K. (2019). Dynamics of exploration in haptic search. In 2019 IEEE World Haptics Conference (WHC) (pp. 277-282). IEEE. find paper
Metzger, A., Toscani, M., Valsecchi, M., & Drewing, K. (2021). Target search and inspection strategies in haptic search. IEEE Transactions on Haptic Perception. find paper
Mueller, S., de Haas, B., Metzger, A., Drewing, K., & Fiehler, K. (2019). Neural correlates of top-down modulation of haptic shape versus roughness perception. Human Brain Mapping, 40(18), 5172-5184. find paper DOI
Wolf, C., & Drewing, K. (2020). The size-weight illusion comes along with improved weight discrimination. PloS one, 15(7), e0236440. find paper DOI
Wolf, C., Tiest, W. M. B., & Drewing, K. (2018). A mass-density model can account for the size-weight illusion. PloS one, 13(2), e0190624. find paper DOI
Zoeller A.C. & Drewing K. A. (2020b). A Systematic Comparison of Perceptual Performance in Softness Discrimination with Different Fingers. Attention, Perception, & Psychophysics, 82(7), 3696-3709. find paper DOI
Zoeller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W., & Drewing, K. (2019). Integration of prior knowledge during haptic exploration depends on information type. Journal of vision, 19(4), 20-20. find paper DOI
Zoeller, A.C., & Drewing K. (2020a). Systematic Adaptation of Exploration Force to Exploration Duration in Softness Discrimination. In: Nisky I., Hartcher-O’Brien J., Wiertlewski M., Smeets J. (eds) "Haptics: Science, Technology, Applications". EuroHaptics 2020. Lecture Notes in Computer Science, vol 12272. Springer, Cham. find paper DOI
Zöller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W., & Drewing, K. (2018, June). Influence of Different Types of Prior Knowledge on Haptic Exploration of Soft Objects. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 413-424). Springer, Cham. find paper DOI
former project-related publications
Cellini, C., Scocchia, L., & Drewing, K. (2016). The buzz-lag effect. Experimental brain research, 10, 2849-2857. find paper
Drewing , K. (2018). The extent of skin bending rather than action possibilities explains why holes feel larger with the tongue than with the finger. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 535. find paper
Drewing, K. (2016). Low-Amplitude Textures Explored with the Bare Finger: Roughness Judgments Follow an Inverted U-Shaped Function of Texture Period Modified by Texture Type. Haptics: Perception, Devices, Control, and Applications (pp. 206-217). Springer: Heidelberg. find paper DOI
Drewing, K., Bruckbauer, S., & Szoke, D. (2015). Felt hole size depends on force and on the pliability of the effector. World Haptics Conference, 2015 IEEE (pp. 100-105). IEEE. find paper
Lezkan, A. & Drewing, K. (2014). Unequal - but fair? Weights in the serial integration of haptic texture information. Haptics: Neuroscience, Devices, Modeling, and Applications (pp. 386-392). Springer: Heidelberg. find paper DOI
Lezkan, A. & Drewing, K. (2016). Going against the grain – Texture orientation affects direction of exploratory movement. Haptics: Perception, Devices, Control, and Applications (pp. 430-440). Springer: Heidelberg. find paper DOI
Lezkan, A. Manuel, S.G. Colgate, J.E., Klatzky, R.L,. Peshkin, M.A. & Drewing, K. (2016). Multiple Fingers – One Gestalt. IEEE Transactions on Haptics ,9(2), 255-266. find paper DOI
Lezkan, A., & Drewing, K. (2015). Predictive and sensory signals systematically lower peak forces in the exploration of softer objects. World Haptics Conference, 2015 IEEE (pp. 69-74). IEEE. find paper DOI
Metzger, A. & Drewing, K. (2016). Haptic aftereffect of softness. Lecture Notes in Computer Science. Haptics: Perception, Devices, Control, and Applications (pp. 23-32). Springer: Heidelberg. find paper DOI
Metzger, A., & Drewing, K. (2015). Haptically perceived softness of deformable stimuli can be manipulated by applying external forces during the exploration. World Haptics Conference, 2015 IEEE (pp. 75-81). IEEE. find paper DOI
Metzger, A., Drewing, K. (2017). The longer the first stimulus is explored in softness discrimination the longer it can be compared to the second one. Worldhaptics Conference 2017 (pp. 31-36), IEEE. find paper DOI
Metzger, A., Lezkan, A., & Drewing, K. (2018). Integration of serial sensory information in haptic perception of softness. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 551. find paper DOI
Metzger, A., Mueller, S., Fiehler, K., & Drewing, K. (2019). Top-down modulation of shape and roughness discrimination in active touch by covert attention. Attention, Perception, & Psychophysics, 81(2), 462-475. find paper DOI