A5
Prof. Dr. Drewing (apl.)

Serielle Integration und die Steuerung von Explorationsbewegungen beim aktiven Fühlen

Geplante Forschung

Projekt A5 untersucht, wie Menschen mehrphasige natürliche Explorationsbewegungen beim aktiven Fühlen steuern. In der ersten Förderperiode konnten wir zeigen, dass ein Zusammenspiel sensomotorischer Steuer- und Regelprozesse für die Kontrolle exploratorischer Bewegungen zentral ist, und dass die seriell aufgenommene sensorische Information unter Bedingungen von Gedächtniszerfall und Adaptation integriert wird. In der zweiten Förderperiode soll unser Kalman-Filter Modell serieller Integration genau getestet und verfeinert werden, und zwar hinsichtlich seiner Vorhersagen für die haptische Wahrnehmung  und die Kontrollle exploratischer Bewegung als auch hinsichtlich einer Erweiterung auf natürliche multi-sensorische Wahrnehmungssituationen und auf wissensbasierte Wahrnehmung. Schließlich soll die Rolle einfacher Reizmerkmale bei der Kontrolle exploratorischer Bewegungen untersucht werden. Wir erwarten, dass Menschen verfügbare Information optimal nutzen und auf dieser Basis auch haptische Explorationen auf eine optimale Wahrnehmung hin feinabstimmen.

Laufende Forschung

Projekt A5 untersucht, wie Menschen mehrphasige natürliche Explorationsbewegungen beim aktiven Fühlen steuern. An den Beispielen Weichheits- und Rauhheitswahrnehmung wird untersucht, welche Rolle prädiktive und sensorische Signale bei der Steuerung von Explorationen spielen, und wie diese Signale während der Exploration zu einem Perzept des Stimulus integriert werden. Ein quantitatives Modell der Steuerung mehrphasiger Explorationen soll erstellt und einer ersten Evaluation unterzogen werden. Wir erwarten, dass Explorationen auf eine optimale Wahrnehmung hin feinabgestimmt werden und, dass prädiktive Signale die Effizienz dieser Abstimmung erhöhen.

Neue Projektrelevante Veröffentlichungen
Billino, J., & Drewing, K. (2018). Age effects on visuo-haptic length discrimination: Evidence for optimal integration of senses in senior adults. Multisensory Research, 31(3-4), 273-300. find paper DOI
Cavdan M., Freund A., Trieschmann AK., Doerschner K., Drewing K. (2020). From Hate to Love: How Learning Can Change Affective Responses to Touched Materials. In: Nisky I., Hartcher-O’Brien J., Wiertlewski M., Smeets J. (eds) "Haptics: Science, Technology, Applications". EuroHaptics 2020. Lecture Notes in Computer Science, vol 12272. Springer, Cham. find paper.
Drewing , K. (2018). The extent of skin bending rather than action possibilities explains why holes feel larger with the tongue than with the finger. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 535. find paper
Drewing, K. (2018, June). Judged Roughness as a Function of Groove Frequency and Groove Width in 3D-Printed Gratings. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 258-269). Springer, Cham. find paper DOI
Drewing, K. & Lezkan, A. (2021). Masking interferes with haptic texture perception from sequential exploratory movements. Attention, Perception, & Psychophysics, 1-11. find paper DOI
Drewing, K., Hitzel, E., & Scocchia, L. (2018). The haptic and the visual flash-lag effect and the role of flash characteristics. PloS one, 13(1), e0189291. find paper
Drewing, K., Weyel, C., Celebi, H., & Kaya, D. (2018). Systematic relations between affective and sensory material dimensions in touch. IEEE Transactions on Haptics. find paper
Lezkan, A., & Drewing, K. (2018a). Processing of haptic texture information over sequential exploration movements. Attention, Perception, & Psychophysics, 80(1), 177-192. find paper DOI
Lezkan, A., Drewing, K. (2018b). Interdependences between finger movement direction and haptic perception of oriented textures. PLoS ONE 13(12): e0208988. find paper DOI
Lezkan, A., Metzger, A., & Drewing, K. (2018). Active Haptic Exploration of Softness: Indentation Force is Systematically Related to Prediction, Sensation and Motivation. Frontiers in Integrative Neuroscience, 12, 59 find paper DOI
Metzger A., Drewing K. (2020). Switching Between Objects Improves Precision in Haptic Perception of Softness. In: Nisky I., Hartcher-O’Brien J., Wiertlewski M., Smeets J. (eds) "Haptics: Science, Technology, Applications". EuroHaptics 2020. Lecture Notes in Computer Science, vol 12272. Springer, Cham. find paper.
Metzger, A., & Drewing, K (2019b). Memory influences haptic perception of softness. Scientific Reports, 9(1), 1-10. find paper
Metzger, A., & Drewing, K. (2019a). Effects of Stimulus Exploration Length and Time on the Integration of Information in Haptic Softness Discrimination. IEEE transactions on haptics. find paper DOI
Metzger, A., Lezkan, A., & Drewing, K. (2018). Integration of serial sensory information in haptic perception of softness. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 551. DOI find paper
Metzger, A., Mueller, S., Fiehler, K., & Drewing, K. (2019). Top-down modulation of shape and roughness discrimination in active touch by covert attention. Attention, Perception, & Psychophysics, 81(2), 462-475. find paper DOI
Metzger, A., Toscani, M., Akbarinia, A., Valsecchi, M. & Drewing, K. (2021). Deep neural network model of haptic saliency. Scientific Reports, 11(1). find paper
Metzger, A., Toscani, M., Valsecchi, M., & Drewing, K. (2018, June). Haptic Saliency Model for Rigid Textured Surfaces. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 389-400). Springer, Cham. find paper DOI
Mueller, S., de Haas, B., Metzger, A., Drewing, K., & Fiehler, K. (2019). Neural correlates of top-down modulation of haptic shape versus roughness perception. Human Brain Mapping, 1-13. find paper. DOI
Wolf, C., & Drewing, K. (2020). The size-weight illusion comes along with improved weight discrimination. PloS one, 15(7), e0236440. find paper. DOI
Wolf, C., Tiest, W. M. B., & Drewing, K. (2018). A mass-density model can account for the size-weight illusion. PloS one, 13(2), e0190624. find paper DOI
Zoeller A.C., Drewing K. (2020). Systematic Adaptation of Exploration Force to Exploration Duration in Softness Discrimination. In: Nisky I., Hartcher-O’Brien J., Wiertlewski M., Smeets J. (eds) "Haptics: Science, Technology, Applications". EuroHaptics 2020. Lecture Notes in Computer Science, vol 12272. Springer, Cham. find paper.
Zoeller A.C., Drewing K. A. (2020). Systematic Comparison of Perceptual Performance in Softness Discrimination with Different Fingers. Atten Percept Psychophys 82, 3696–3709 (2020). find paper. DOI
Zoeller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W., & Drewing, K. (2019). Integration of prior knowledge during haptic exploration depends on information type. Journal of vision, 19(4), 20-20. find paper DOI
Zöller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W., & Drewing, K. (2018, June). Influence of Different Types of Prior Knowledge on Haptic Exploration of Soft Objects. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 413-424). Springer, Cham. find paper DOI
Ältere projektrelevante Veröffentlichungen
Cellini, C., Scocchia, L., & Drewing, K. (2016). The buzz-lag effect. Experimental brain research, 10, 2849-2857. find paper
Drewing, K. (2008). Shape Discrimination in Active Touch: Effects of Exploratory Direction and Their Exploitation. In M. Ferre (Ed.) Haptics: Perception, Devices and Scenarios. Lecture Notes in Computer Science, 5024 (pp. 219-228). Springer: Heidelberg.
Drewing, K. (2012). After experience with the task humans actively optimize shape discrimination in touch by utilizing effects of exploratory movement direction. Acta Psychologica 141, 295-303.
Drewing, K. (2016). Low-Amplitude Textures Explored with the Bare Finger: Roughness Judgments Follow an Inverted U-Shaped Function of Texture Period Modified by Texture Type. Haptics: Perception, Devices, Control, and Applications (pp. 206-217). Springer: Heidelberg. DOI find paper
Drewing, K. & Aschersleben G. (2003). Reduced timing variability during bimanual coupling: a role for sensory information. The Quarterly Journal of Experimental Psychology. A 66(2), 329-350.
Drewing, K. & Ernst, M. O. (2006). Integration of force and position cues for shape perception through active touch. Brain Research, 1078, 92-100.
Drewing, K. & Kaim, L. (2009). Haptic Shape Perception from Force and Position Signals Varies with Exploratory Movement Direction and the Exploring Finger. Attention, Perception & Psychophysics 71(5), 1174-1184.
Drewing, K., Bruckbauer, S., & Szoke, D. (2015). Felt hole size depends on force and on the pliability of the effector. World Haptics Conference, 2015 IEEE (pp. 100-105). IEEE. find paper
Drewing, K., Lezkan, A., & Ludwig, S. (2011). Texture Discrimination in Active Touch: Effects of the Extension of the Exploration and their Exploitation. In C. Basodogan, S. Choi, M. Harders, L. Jones, & Y. Yokokohji (Eds.) Conference Proceedings – IEEE World Haptics Conference 2011 (pp. 215-220), The Institute of Electrical and Electronics Engineers (IEEE) Catalog Number CFP11365-USB.
Kaim, L. & Drewing, K. (2010). Exploratory pressure influences haptic shape perception via force signals. Attention, Perception & Psychophysics 72, 823-38.
Kaim, L. & Drewing, K. (2011). Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Transactions on Haptics 4. 242-252.
Lezkan, A. & Drewing, K. (2014). Unequal - but fair? Weights in the serial integration of haptic texture information. Haptics: Neuroscience, Devices, Modeling, and Applications (pp. 386-392). Springer: Heidelberg. DOI find paper
Lezkan, A. & Drewing, K. (2016). Going against the grain – Texture orientation affects direction of exploratory movement. Haptics: Perception, Devices, Control, and Applications (pp. 430-440). Springer: Heidelberg. DOI find paper
Lezkan, A. Manuel, S.G. Colgate, J.E., Klatzky, R.L,. Peshkin, M.A. & Drewing, K. (2016). Multiple Fingers – One Gestalt. IEEE Transactions on Haptics 99. DOI find paper
Lezkan, A., & Drewing, K. (2015). Predictive and sensory signals systematically lower peak forces in the exploration of softer objects. World Haptics Conference, 2015 IEEE (pp. 69-74). IEEE. DOI find paper
Metzger, A. & Drewing, K. (2016). Haptic aftereffect of softness. Lecture Notes in Computer Science. Haptics: Perception, Devices, Control, and Applications (pp. 23-32). Springer: Heidelberg. DOI find paper
Metzger, A., & Drewing, K. (2015). Haptically perceived softness of deformable stimuli can be manipulated by applying external forces during the exploration. World Haptics Conference, 2015 IEEE (pp. 75-81). IEEE.DOI find paper
Metzger, A., Drewing, K. (2017). The longer the first stimulus is explored in softness discrimination the longer it can be compared to the second one. Worldhaptics Conference 2017, IEEE, in press. DOI find paper