Die Architektur des Gedächtnisses

Thomas Schmidt

thomas.schmidt@psychol.uni-giessen.de http://www.allpsych.uni-giessen.de/thomas/teaching/teaching.htm

Literatur

- Anderson, J. R. (2000). Learning and memory:
 An integrated approach (2nd ed.). John Wiley & Sons (Kap. 1, 5, 6, 7, 8).
- Mazur, J.E. (2004) Lernen und Gedächtnis.
 Pearson Studium.

Hermann Ebbinghaus (1850-1909)

Ebbinghaus testete eine Vp: sich selbst

 Ebbinghaus verwendete sinnlose Silben (keine früher gelernten Assoziationen)

JIH

BAZ

DAX

YOX

SUJ

XIR

WUX

LEQ

VUM

PID

KEL

WAB

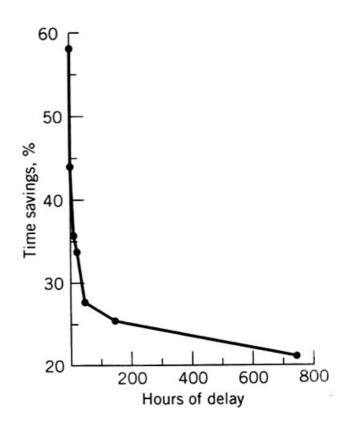
Experiment:

- Lernen einer Liste von 13 Silben, bis die Liste 2x korrekt (in korrekter Folge) wiedergeben wurde.
- Gemessen: Lernzeit
- Manipuliert wurde die Behaltensdauer (Zeit bis zum Wiedererlernen)

Messung der *Ersparnis* beim Wiederlernen:

Ersparnis = (ursprüngliche Lernzeit – aktuelle Lernzeit) / ursprüngliche Lernzeit

 \rightarrow Beispiel: 600 s - 300 s = 300 s; 300/600 = .50 = 50%


Die Behaltenskurve (retention curve)

Anderson (2000): Viele Lern- und Vergessenskurven entsprechen Potenzfunktionen:

$$y(t) = y_0 t^a$$

y(t) ist die Gedächtnisleistung zum Zeitpunkt t, y_0 ist die anfängliche Leistung, und a bestimmt, wie schnell gelernt (positives a) oder vergessen wird (negatives a)

FIGURE 1.1 Ebbinghaus's retention function showing the percentage of time saved as a function of delay. Ebbinghaus used delays from 20 minutes to 31 days.

Aus Anderson (2000, S. 7)

Zeitliche Organisation des Gedächtnisses

- Ultrakurzzeitgedächtnis (sensorische Register)
 - Sehr kurzfristiges Aufrechterhalten modalitätsspezifischer Information
 - Millisekunden bis Sekunden
- Kurzzeit- und Arbeitsgedächtnis
 - Kurzfristiges Behalten & Manipulieren von Information
 - Sekunden bis Minuten
- Langzeitgedächtnis
 - Längerfristiges Behalten von Information
 - Minuten bis Jahre

Sperling (1960)

"Ganzberichts-Experiment" (whole report)

- Buchstabenmatrix wird kurzzeitig dargeboten (z.B. 50 msec)
- Aufgabe: Berichten der Buchstaben
- Ergebnis: Etwa 4 bis 5 Buchstaben

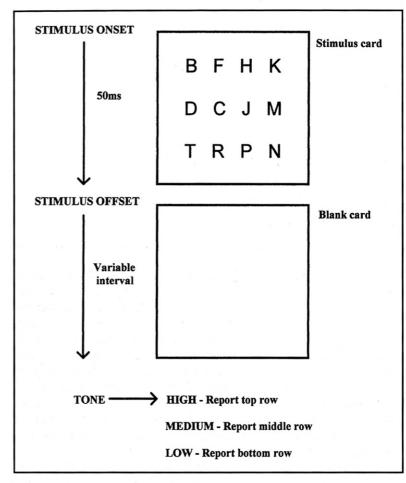
Q D S L
Z C T Q
W R V M

P T Q D

R F G M

K B C S

S C B K


M G F R

D Q T P

Sperling (1960)

- Teilberichts-Experiment
- Vpn glauben mehr als nur 4
 Buchstaben (nach dem Ihrem Verschwinden) gesehen zu haben
- Buchstabenmatrix (50 msec)
- Ton wird kurz nach Verschwinden der Matrix dargeboten
- Die Tonhöhe zeigt an, welche Zeile berichtet werden soll (partial report)
- Ergebnis: JEDE Zeile kann fast vollständig wiedergegeben werden! → Teilberichtsvorteil

FIG. 3.1. Diagram of the sort of display used by Sperling (1960). In whole report, the subject reports non-selectively from the display: in partial report, the row indicated by the cue (tone) is to be reported. In both conditions report is after the display has terminated.

Aus Styles, 1997, S. 36

Sperling (1960)

- Messung der visuellen Persistenz: Zeitintervall zwischen Matrix und Ton wurde variiert
- Der Teilberichtsvorteil verschwindet rasch ---> sehr kurze Speicherdauer im SR

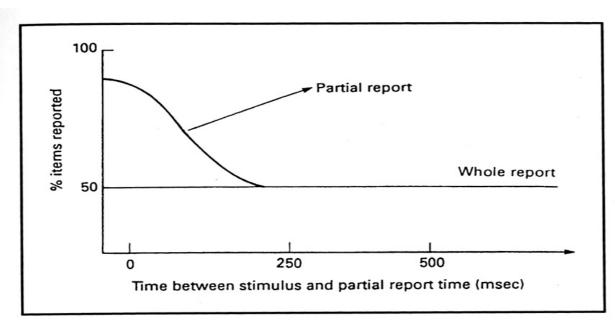


FIG. 3.2. Schematic description of results from partial report experiment, showing partial report superiority and loss of this advantage as the stimulus-cue interval increases (reprinted by permission of **Psychology** Press from Humphreys and Bruce, 1989).

- Visuelles sensorisches Gedächtnis (Register) enthält mehr Information als wiedergegeben werden kann (Teilberichtsvorteil)
 - --> komplette Repräsentation des Inhalts einer Fixation
- Schneller "Zerfall" von Repräsentationen im sensorischen Gedächtnis
- Neisser (1967): "Iconic Memory" dient als kurzzeitiger Durchgangsspeicher ("memory buffer") für flüchtige sensorische Information

- Wie ruft man Information aus dem "Icon" ab?
 - Sperling (1960): Partial-Report-Cues markieren die abzurufende Zeile; z.B. Töne, Pfeile
 - Andere Cues, z.B. Farbe, Größe oder Form, erzeugen einen unterschiedlich großen Teilberichtsvorteil
 - Auch Suche nach Reizkategorie möglich (z.B. Ziffer vs. Buchstabe)
 - Annahme: Aufmerksamkeitsverlagerungen "lesen" das Icon ab.

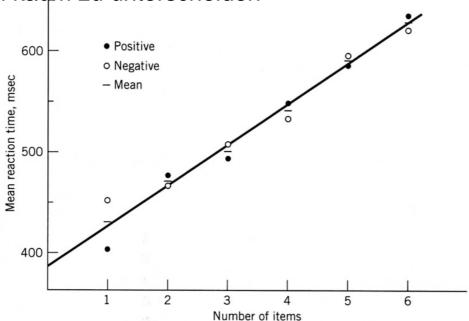
Funktion des Ikons

- Kritik von Haber (1983): Ikonisches Gedächtnis ist allenfalls dann nützlich, wenn man bei Gewitter lesen möchte.
- Aber: durch Blickbewegungen stehen häufig nur ca. 50 ms Präsentationszeit zur Verfügung.

Auditorisches sensorisches Register

- Darwin, Turvey & Crowder (1972):
 - 3 Listen von 3 Items (z.B. 4 L 6) aus drei Richtungen
 - Teilbericht: Bericht aus einer Richtung
 - Teilberichtsvorteil,
 - hält bis ca. 4 sec an
- Neisser (1967): "Echoic Memory"
- Möglicherweise identisch mit Baddeley's Konzept der "phonologischen Schleife"

Abruf aus dem Kurzzeitgedächtnis


Das Sternberg-Paradigma

Sternberg (1967):

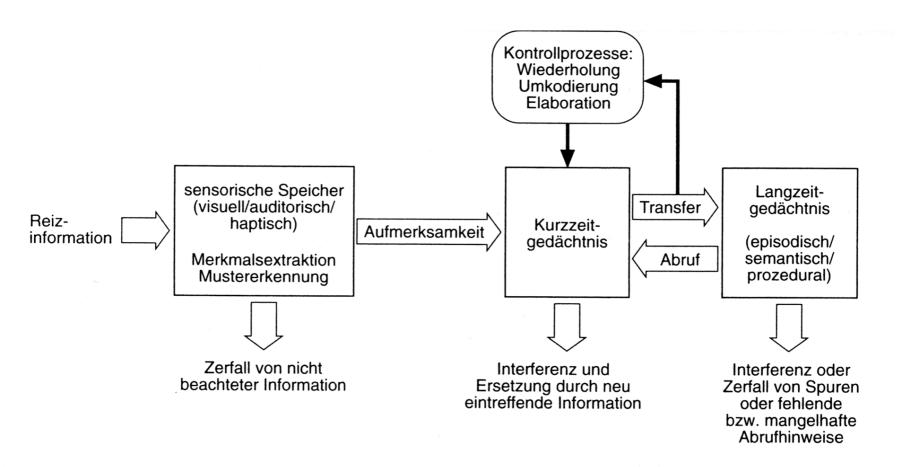
- Versuchspersonen lernen eine kurze Liste von Ziffern *(memory set):* 4, 1, 8, 5
- Länge der Liste (set size) wird variiert
- dann wird eine Ziffer genannt, und die Vp muß möglichst schnell entscheiden, ob sie zum Memory Set gehört ("positiver Test") oder nicht ("negativer Test")

- Entscheidungszeit hängt linear von der Größe des Memory Sets ab (pro Item 40 ms zusätzliche "Suchzeit" im KZG)
- Überraschung: Positive und negative Entscheidungen sind gleich schnell, d.h. der Suchprozeß scheint nicht abgebrochen zu werden, wenn das Target gefunden ist *Interpretation:*
- Sternberg (1967): serieller, erschöpfender Suchprozeß durch das gesamte KZG

• Alternativmodell: Parallele und kapazitätsbegrenzte Suche, wäre von Sternbergs Modell kaum zu unterscheiden

FIGURE 5.10 Judgment time as a function of number of items in a memory set. (From Sternberg, 1969.) *Source:* From J. Antrobus. *Cognition and affect.* Copyright © 1970. Published by Little, Brown and Company. Reprinted by permission.

Die Kognitive Wende in der Gedächtnispsychologie: Das **Multi-Speicher Modell** von Atkinson und Shiffrin (1968)



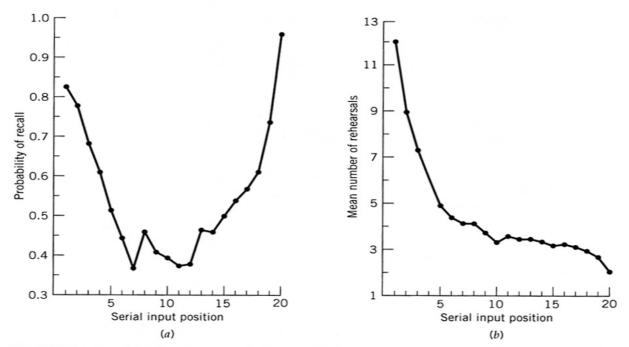
Richard Atkinson

Richard Shiffrin

Das Atkinson-Shiffrin-Modell (1968)

10.5 Skizze des Mehrspeichermodells von Atkinson und Shiffrin (1968).

(aus Goschke, 1997)


Kernaussagen des Atkinson-Shiffrin-Modells (nach Anderson, 2000):

- Rehearsal hält Information im KZG und führt zu einer Überführung der Information in das LZG
- Repräsentationsformat KZG: sensorisch;LZG: semantisch (Kodierungsunterschiede)
- Großer Unterschied in der Dauerhaftigkeit von KZG und LZG

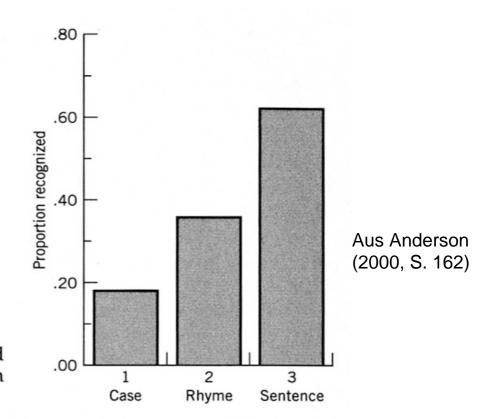
Die Rolle des Rehearsals

- >Rundus (1971):
- > Methode des freien Abrufs (free recall)
- >Vpn lesen eine Wortliste (2 sec pro Wort), sollen dabei die zu behaltenden Wörter laut artikulieren (Rehearsal)
- ➤ Aufgaben: Worte in beliebiger Reihenfolge wiedergeben→ Serielle Positionskurve

CHAPTER 1 Perspectives on Learning and Memory

FIGURE 1.12 (*a*) The mean probability of recall as a function of its serial position in the input, and (*b*) the mean number of rehearsals of an item. (From Rundus, 1971.)

- > Primacy-Effekt: Vorteil für die zuerst gelernten Items
- > Recency-Effekt: Vorteil für die zuletzt gelernten Items
- ➤ Klassische Interpretation: der Primacy-Effekt hängt von der Zahl der Rehearsals ab; der Recency-Effekt dagegen davon, daß Information noch im KZG präsent ist.


Rehearsal - Einwände & Alternativen

Glenberg, Smith & Green (1977):

- Zahl für 2 sec dargeboten; Vpn gehen davon aus, die Zahl wiedergeben zu müssen
- Behaltensintervall: irrelevantes Wort 2, 6 oder 18 Mal wiederholen
- Überraschender Test des Wortes (statt der Zahl): kein Effekt des Rehearsals ---> passives Wiederholen hilft kaum

Craik & Lockhart (1972): "Levels of processing"

Craik et al. (1975): Drei Arten von Urteilen über Wörter (physikalisch, phonologisch, semantisch)

FIGURE 5.4 Proportion of words recognized as a function of type of initial processing. (From Craik & Tulving, 1975.)

- >Je tiefer die Verarbeitung, desto besser die Gedächtnisleistung
- >Passives Rehearsal hilft wenig, aber "tiefere" Verarbeitung deutlich mehr

2. Kodierungsunterschiede STM - LTM

Behauptung:

- KZG: Sensorische Codes
- LZG: Semantische Codes

Kintsch & Buschke (1969)

- Wortliste lernen
- Eines der Wörter wurde dargeboten; Vpn mußten das folgende Wort wiedergeben (cued recall)
- 3 Bedingungen:
 - Wörter waren Homophone (gleicher Klang)
 - Wörter waren Synonyme (gleiche Bedeutung)
 - Wörter waren weder homophon noch synonym

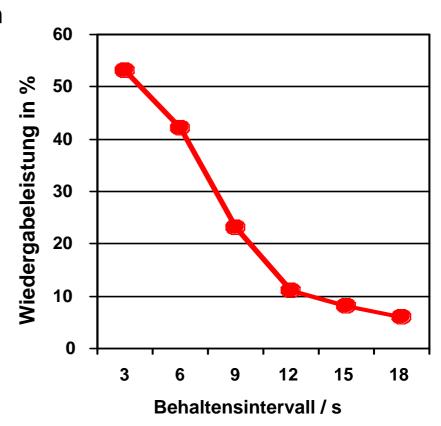
"Doppeldissoziation":

- Listenende:
 - Der Recency-Effekt wurde durch homophone Wörter gestört, nicht aber durch synonyme
 - Spricht f

 ür akustische Interferenz beim Rehearsal
- Listenanfang:
 - Primacy-Effekt wurde durch synonyme Wörter gestört, aber nicht durch homophone
 - Spricht f

 ür semantische Interferenz im KZG
- Klassische Interpretation: STM akustisch, LTM: semantisch kodiert

Dagegen: Bower & Springston (1970)


- Vergrößerte Gedächtnisspanne bei bedeutungsvollen Merkeinheiten (Chunking) (z.B. F B I C I A N S A)
- Besseres Langzeitgedächtnis für Wörter, die sich reimen
- Spricht für semantischen Effekt im STM, phonologischen Effekt im LTM
- → Sowohl phonologische als auch semantische Informationen werden sowohl im KZG als auch im LZG repräsentiert

3. Dauerhaftigkeit. Das Brown-Peterson-Paradigma

- Aufgabe: Drei Konsonanten, kurzfristig präsentiert, wiedergeben
- Behaltensintervall: in Dreiereinheiten rückwärts zählen (Ablenkaufgabe)
- Abruf nach unterschiedlich langen Behaltensintervallen

Ergebnis:

- Behalten nimmt mit der Zeit überraschend rapide ab
- Klassische Interpretation:
 - Anfängliches Vergessen: KZG
 - Unteres Leistungsniveau: LZG
- Problem:
 - Kein Leistungsabfall beim ersten Versuch

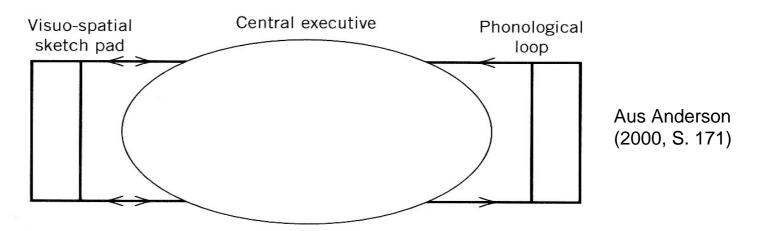
Unterschiedliche Zeitverläufe für lang- und kurzfristiges Behalten von Informationen?

- Wickelgren: Ähnliche Kurve auch bei längeren Behaltensintervallen (Tagen)
- Vergessenskurven sind generell kontinuierlich, Vergessen findet in jedem Zeitintervall mit der gleichen Rate statt → kein grundsätzlicher Unterschied zwischen lang- und kurzfristigem Behalten

Bewertung des KZG-Konzepts im Multi-Speicher-Modell

Zentrale Annahmen des Atkinson-Shiffrin-Modells sind nicht richtig:

- "bloßes" Rehearsal reicht zum Erinnern nicht aus,
- KZG und LZG codieren Information nicht grundsätzlich unterschiedlich,
- Vergessen folgt für KZG und LZG ähnlichen Gesetzmäßigkeiten.


Daraus folgt jedoch nicht, dass sich die drei unterschiedlichen Gedächtnisfunktionen (Sensorische Register, KZG, LZG) auf ein gemeinsames Gedächtnis reduzieren lassen.

Baddeleys Modell des "Working Memory"

Statt einer einfachen Durchgangsstation zum LZG ein arbeitsames, aktives, bewußtes Gedächtnis ("mental workbench")

3 Subkomponenten:

Zentrale Exekutive kontrolliert zwei "Sklavensysteme": Phonologische Schleife, visuell-räumlichen Skizzenblock

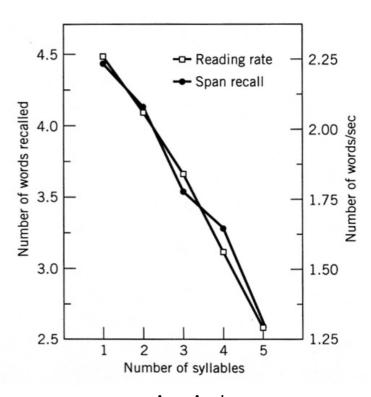
FIGURE 5.9 Baddeley's theory of working memory where a central executive coordinates a set of slave systems. *Source:* From A. D. Baddeley. *Working memory: Oxford psychology series* No. 11. Copyright © 1986. Reprinted by permission of Oxford University Press.

Phonologische Schleife (phonological loop)

Zwei Komponenten:

- Speicher *(phonological store)*: hält Info einige Sekunden, bevor die Spur verschwindet
- Subvokaler Artikulationsprozeß (articulatory rehearsal process) frischt Info durch Abruf bzw. Reartikulation auf
- ---> Gedächtnisspanne durch zeitliche Kapazität der Schleife begrenzt

Wichtigste Evidenz:


Gedächtnisspanne ist kürzer für Wörter, die mehr oder längere Silben haben (Wortlängeneffekt)

Gedächtnisspanne für Zahlen ist kürzer für Sprachen, in denen die Zahlwörter phonologisch länger sind

Phonologische Schleife

- Wortlängeneffekt: verschwindet bei "artikulatorischer Suppression", dem Artikulieren von Unsinnssilben
- Spricht für wichtige Rolle von Artikulationsprozessen innerhalb der phonologischen Schleife
- Glucksberg & Cowan (1970): Man kann die Schleife bei überraschenden Unterbrechungen einer Shadowing-Aufgabe "mental zurückspulen".

FIGURE 5.6 Number of words recalled (left-hand scale) and mean reading rate (right-hand scale) for sequences of five words as a function of the number of syllables in the words. (From Baddeley, 1986.)

Aus Anderson (2000, S. 167)

Visuell-räumlicher Notizblock

- > zwei Komponenten (R. Logie)
 - Speicher
 - Rehearsalprozeß: Durch visuelle Vorstellung (imagery)
- > Funktion:
 - Manipulation von visuell-räumlichen Repräsentationen (imagery)

Brooks (1967)

- Vpn sollen räumliche oder nicht-räumliche Sätze behalten und sich eine Matrix von Feldern vorstellen ("mental imagery")
- bessere Leistung, wenn man sich zu den Sätzen eine räumliche Anordnung der Ziffern vorstellen kann

	3	4
1	2	5
	7	6
	8	

•				٠
Spa	tial	mat	oria	ı
Jua	LIGI	HIIGH	CIIa	

In the starting square put a 1. In the next square to the *right* put a 2. In the next square *up* put a 3. In the next square to the *right* put a 4. In the next square *down* put a 5. In the next square *down* put a 6. In the next square to the *left* put a 7. In the next square *down* put an 8.

Nonsense material

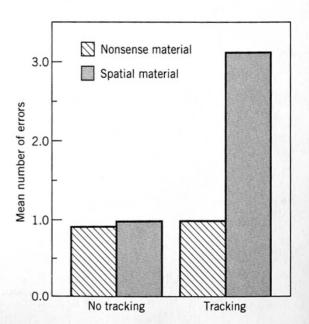

In the starting square put a 1. In the next square to the *quick* put a 2. In the next square to the *good* put a 3. In the next square to the *quick* put a 4. In the next square to the *bad* put a 5. In the next square to the *bad* put a 6. In the next square to the *slow* put a 7. In the next square to the *bad* put an 8.

FIGURE 5.7 Example of material used by Baddeley in his study of the visuo-spatial sketch pad. *Source:* From A. D. Baddeley, S. Grant, E. Wight, and N. Thomson. *Attention and Performance V*, Volume 5. Imagery and Visual Working Memory. Copyright © 1975 by Academic Press. Reprinted by permission.

➤ Baddeley et al. (1975):

➤ Zweitaufgabe: einen sich bewegenden Lichtreiz mit einem Stift verfolgen ---> stört nur bei räumlichem Material in der Imagery-Bedingung

FIGURE 5.8 The influence of concurrent tracking on memory span for spatial and nonspatial sequences. (From Baddeley et al., 1975.)

