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If we completely understand how a phenomenon works, we should be able to produce it ourselves. However, the
individual differences in color appearance observed with #theDress seem to be a peculiarity of that photo, and it
remains unclear how the proposed mechanisms underlying #theDress can be generalized to other images. Here, we
developed a simple algorithm that transforms any image with bicolored objects into an image with the properties of
#theDress. We measured the colors perceived in such images and compared them to those perceived in #theDress.
Color adjustments confirmed that observers strongly differ in how they perceive the colors of the new images in a
similar way as for #theDress. Most importantly, these differences were not unsystematic, but correlated with how
observers perceive #theDress. These results imply that the color distribution is sufficient to produce the striking
individual differences in color perception originally observed with #theDress—at least as long as the image appears
realistic and hence compels the viewer to make assumptions about illuminations and surfaces. The algorithm can
be used for stimulus production beyond this study. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.381311

1. INTRODUCTION

Individual differences may originate from a small number of
common perceptual factors; thus, investigating them may help
to understand fundamental determinants of perception [1].
The malleability of color appearance by implicit assumptions
has been brought to the spotlight by the striking individual
differences in the perception of #theDress. Some observers see
the dress in that photo as white and gold, while others perceive
it as blue and black. We will call this phenomenon #theDress
effect.

Independent laboratories across the world provided evidence
that the perceived colors depend on what lighting conditions
observers assume in the scene in the photo: Observers who
assume the dress is in the shadow tend to see its colors as white–
gold; those who assume that it is in bright, direct light see it as
blue–black ([2–12]; for review, see [13]). However, many of
those observations are merely correlational: When the dress
in the photo is seen in a certain color (e.g., white–gold), the
illumination is judged correspondingly (e.g., dark and bluish).
It seems plausible that the assumption about the illumina-
tion causes the perception of the dress; yet, the inverse causal
relationship cannot be excluded with certainty, namely, that
observers infer the illumination based on the color that they
see on the dress. It could also be that a yet unknown other
cause determines both the perceived color of the dress and the
illumination; see, e.g., [14–17].

Additional evidence suggests that the differences in
interpretation are possible because the sensory color signal

(chromaticities) of the dress is distributed along the day-
light locus, the curve along which natural daylight varies
[6–12,18–20]. Rotating chromaticities away from the daylight
locus (while keeping luminance information) reduce the indi-
vidual differences. Individual differences completely disappear
when rotated 180 deg [19,20]. However, these observations
merely show that the distribution along the daylight locus is nec-
essary for the individual differences. It does not prove that the
color distribution is sufficient to elicit those striking differences
in color perception, or whether there are other properties of
that photo that are necessary to produce #theDress effects. To
date, the effects on color appearance observed with #theDress
remain a peculiarity of that photo, and it is unclear whether
the proposed mechanisms underlying #theDress are general
principles that affect the color appearance of other images. Yet,
if we completely understand how a phenomenon works, we
should be able to produce it ourselves.

This is the purpose of the present study. We developed an
algorithm to transform photos into images with properties
like #theDress. We then measured color appearance and color
naming for those new variants of #theDress and tested whether
they produce similar individual differences as #theDress.

2. METHOD

In previous experiments, we observed that repeated viewing of
#theDress may contaminate measurements of color appearance
[20]. We wanted to make sure that similarities between the new
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images and #theDress do not emerge due to observers’ tendency
to provide consistent answers across trials within a session.
For this reason, we first measured #theDress in a preliminary
online study, in which #theDress was seen before the new images
were seen. Then, we did the inverse in the laboratory: we first
measured the new images, and then #theDress. Cross validation
between the online and laboratory measurements allowed us to
assess the role of the sequencing for our results. The average time
between the two measurements was 12 days (SD 29 days).

A. Participants

Seventy participants (56 women, 14 men; average age
23.3± 5.1 years) took part in the laboratory experiment.
Seventy-two observers (57 women, 15 men; 23.3± 4.9 years)
participated in the preliminary online survey. Of those, 69
participants took part in both the laboratory and the online
measurement. All observers were students of the Justus-Liebig-
University Gießen and were compensated by eight Euros per
hour or course credit. None of the observers had any color defi-
ciencies as tested by self-report (online survey) and the HRR
polychromatic plates [21].

B. Apparatus

In the lab, stimuli were presented on a computer monitor with
a spatial resolution of 1920×1200 pixels, a refresh rate of 59
Hz, and a color resolution of 10 bits per channel. CIE xyY1931
specifications of the channels were R = [0.6851, 0.3110,
27.1]; G = [0.2133, 0.7267, 69.4]; B = [0.1521, 0.0450,
4.7]. RGB values in the lab and in the online experiment were
characterized relative to that monitor, and the monitor white
point (xyY1931 = [0.3337, 0.3515, 101.2]) was assumed for
CIELUV transformations.

C. Stimuli

From previous investigations, we know that the background has
little importance for the individual differences in the perception
of #theDress [3,5,12,20,22]. For this reason, we could simplify
#theDress by cutting the dress from its original background and
showing it on a uniform black background.

Figure 1 illustrates our algorithm for producing #theDress-
like images. A precondition of the algorithm is that the image
to be processed includes two parts with a lighter and a darker
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Fig. 1. Illustration of algorithm. The first step is the projection of the chromaticities of #theDress onto the first principal component. Panel (A)
reproduces the original photo of #theDress with a black background. Panel (B) represents the distribution of chromaticities of #theDress in CIELUV
color space. The black line corresponds to the first principal component of those chromaticities. Panel (C) shows the image that corresponds to the
chromaticities projected onto the first principal component [black line in (B)]. In the second step, the same is done with a new image, such as the
photo of a jacket [panels (D)–(F)]. To project the bluish chromaticities onto the lighter and the brownish chromaticities onto the darker patterns, the
algorithm mirrors chromaticities when necessary. This is the reason the jacket is red in panel (F) and green in panel (G) after mirroring chromaticities
[cf. reddish and green line in panels (E) and (H)]. Then the chromaticities [greenish line in panel (H)] are projected onto the principal component of
#theDress, and mean and standard deviation are set to those of #theDress [bluish line in panel (H)]. Panel (I) illustrates the resulting image. In [23], a
MATLAB algorithm is available to try out the algorithm illustrated here.
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color of arbitrary chromaticities. In the example, this was a red–
black jacket [Fig. 1(D)]. The algorithm starts with projecting
the chromatic distribution of #theDress [Fig. 1(B)] onto the
first principal component of that distribution, implying that
chromaticities vary only along one hue direction [black line in
Fig. 1(B)]. Figure 1(C) shows the resulting image of the dress.
The projection onto the principal component barely changes
the appearance of #theDress, as can be seen by comparing
Fig. 1(C) with the original #theDress in Fig. 1(A).

We apply the same procedure to the new images, as illustrated
with the example of the jacket in Figs. 1(D)–1(F). Note again
that the transformation of the image is barely visible [Fig. 1(D)
versus Fig. 1(F)].

Then, the chromaticities along the principal component of
the new image are projected onto the principal component of
#theDress. Our algorithm ascertains that the chromaticities of
the lighter part of the new image are projected onto the lighter
bluish part of #theDress, and the chromaticities from the darker
brownish part of the new image are projected onto the darker
part of #theDress. For this, our algorithm calculates the corre-
lation between L* and the principal component in #theDress
and the new image. If the signs of the correlations differ, the
chromaticities of the lighter part of the new image would project
onto the darker part of #theDress. In this case, our algorithm
inverts the chromaticities of the new image, which is equivalent
to mirroring the distribution along the hue direction. Due to
this inversion, the jacket in Fig. 1(F) becomes green in Fig. 1(G),
and the greenish line of the jacket in Fig. 1(H) is oriented to the
opposite direction of the line in Fig. 1(E).

After projecting chromaticities of the new image onto those
of #theDress, we also set the mean and the standard deviation
of the distribution of the new image to the ones of #theDress
[Fig. 1(H)]. Figure 1(I) shows the resulting image of the jacket.
To try out the algorithm, a MATLAB program and example
images are available in [23].

In addition to the jacket in Fig. 1, we processed three images
with this algorithm, showing a tie, an egg, and a fish [Figs. 2(A)–
2(C)]. We added a fifth image to this set [Fig. 2(D)]. That image
is based on a photo of sandals that appeared on BuzzFeed on
November 20, 2016 [24]. That photo has a similar chromatic
distribution as #theDress and produces very similar individual
differences as #theDress [20,24]. Here, we cut out a “peephole”
of that photo to remove shape information about the identity
of the sandals in that photo. Then, we processed the image with
our algorithm [23] so that chromaticities align with one hue
direction. The resulting image allowed us to test whether objects
in the photo need to be recognizable to produce individual
differences, or whether the chromatic distribution is sufficient.
As can be seen from Figs. 1 and 2, each of these images has a

Fig. 2. Stimuli. Images in panels (A)–(D) were created with the
algorithm illustrated in Fig. 1 and implemented by the code file [23].
For #theDress and jacket, see Figs. 1(C) and 1(I).

light, more bluish, and a dark, more brownish, part with colors
close to those of the body and lace of #theDress.

D. Online Survey

The procedure for the online survey followed the one described
in detail by Witzel et al. [5]. It consisted of four parts. In the first,
observers entered personal information (gender, age, glasses,
color deficiencies).

In the second part, observers were asked to choose a color
term to describe the color of the lace and the body of #theDress
by selecting one of 14 color terms, respectively. The color terms
were the 11 basic color terms (pink, red, orange, yellow, green,
blue, purple, brown, black, gray, and white), plus gold, bronze,
and silver. After that, participants answered three questions
about the light that illuminates the dress: (1) “Is the dress in the
shadow?” with the response options: “Yes,” “No,” or “I don’t
know”; (2) “From which direction is the dress illuminated?”
From “the front” (the direction of the observer), “the back”
(same light as in the background), “Both,” or “I don’t know”;
(3) “Is the dress illuminated by the flash of the camera?” “Yes,”
“No,” or “I don’t know. Then, we asked observers to rate the
brightness and color of the light that illuminates the dress. They
could choose a number between 0 and 10. For the brightness
judgments, 0 meant dark and 10 light. The color judgments
concerned the blue–yellow hue direction, with a rating of 0
meaning blue, 5 colorless and 10 yellow. Two questions about
the illumination of the whole scene followed. (1) “The dress is
illuminated by the same light as the background”: “Yes,” “No,”
“I don’t know”; (2) “The photo is overexposed”: “Yes,” “No,”
“I don’t know.”

In the third part, observers chose color terms to describe each
part of the jacket, tie, egg, fish, and peephole. Finally, a fourth
part asked observers whether they have seen #theDress before,
whether they can switch the way they see the dress, and what
color the dress has in reality.

E. Laboratory Experiment

In the laboratory experiment, observers completed the color
naming and then color adjustment tasks described previously
[12] for the two parts of the object in each image (Fig. 3). For
each image, the lighter part was judged first. The image was
presented in the center of the screen, and observers named the
color of that part using 13 color terms (the same as the survey,
but without silver). Then the image was displayed on the left
side of the screen, and on the right side a disk was shown in a
random color. The observer adjusted the color of the disk so that

Fig. 3. Procedure of laboratory experiment. Sequence of naming
and adjustments for the jacket. In this example, the sequence continues
with the tie after the jacket. In the experiment, the sequence of images
was randomized except that #theDress was always the last sequence of
the experimental session.
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it matched the color they perceived in the image. After finishing
this sequence for the light part, they did the same for the dark
part of the respective object.

The observer did this first for all new images (i.e., without
#theDress). The order of the blocks with each image was ran-
dom. For all observers, the very last block consisted of color
naming and color matching for #theDress. While participants
saw #theDress before seeing any other image in the online sur-
vey, they saw the other images before seeing #theDress in the
laboratory experiment.

3. RESULTS

A few observers reported that they mixed up adjustments and
naming for the respective two parts of some of the objects. For
some observers who did not mention this during the experi-
ment, it seemed obvious from the raw data. For the main results
below, we swapped the adjustments and color terms of the two
parts if it was obvious (e.g., if the brownish part was adjusted or
named blue and the bluish part brown or black). We also deleted
responses in which observers gave the same response to the dark
and light parts (e.g., body and lace). We did this to exclude the
possibility that observers who consistently swapped or repeated
answers produced spurious correlations across observers. In any
case, the main results also held for the uncorrected raw data—
just correlations were slightly lower; we will provide additional
information on this in each section below. The raw data are
available on Zenodo [25].

A. Adjustments

There was one observer who made almost the same adjust-
ments (Euclidean distance <10) for the two parts of the dress,
the jacket, the egg, and the peephole, and there were two such
observers for the fish. These data were excluded from the
analyses below.

Figure 4 illustrates the color adjustments of the disk to match
the lighter (blue circles) and darker (yellow circles) of the images.
As for the matches of #theDress, the adjustments of each part of
tie, jacket, fish, and peephole were distributed along the blue–
yellow direction. Adjustments of the egg were more scattered
across color space [Fig. 4(D)].

Following an earlier approach [12], we projected each
observer’s adjustments onto the first principal component of
the six dimensions, i.e., lightness, u∗, and v∗ for the two parts of
each image (cf. red lines in Fig. 4). Table 1 reports the explained
variance and weights of the first principal component for each
of the six dimensions. The first principal component explained
72% of the variance of #theDress, 47% of the tie, 58% of the
jacket, 38% of the egg, 47% of the fish, and 58% of the peephole
[blue bars in Fig. 8(A)]. The scores of the principal component
provide a single point for each observer in the six-dimensional
space. Positive values of the scores corresponded to data points
towards the light, yellowish direction of color space. For all
images, the blue–yellow dimension (v∗) of either the lighter or
the darker part (tie) of the object yielded the highest weight on
the principal component (bold numbers in Table 1).

Correlations across observers between the scores of the first
principal component are a way to determine whether individual

-100

-50

0

50

100
DRESS

  N=69
A TIE

  N=70
B

-100

-50

0

50

100
JACKET

  N=69
C EGG

  N=69
D

-40 -20 0 20 40 60 80

green-red [u*]

-100

-50

0

50

100
FISH

  N=68
E

-40 -20 0 20 40 60 80

green-red [u*]

PEEPHOLE
  N=69

F

Fig. 4. Adjustments. Green–red (u∗) color dimension on the x axis,
blue–yellow (v∗) on the y axis. Each data point represents the match of
one participant, blue for the light part of the image, and yellow for the
dark one. Red lines represent the first principal component of the color
adjustments projected onto the u∗ v∗ plane. Note that the two red
lines are two parts of the same principal component in six-dimensional
space. This is possible because four dimensions, i.e., u∗ and v∗ for the
dark and the light part, respectively, are represented in the same u∗ v∗

plane for illustration purposes (for details, see [12]).

Table 1. First Principal Component of Adjustments

Expl
Var

a
Light Part

b
Dark Part

c

L∗ u∗ v∗ L∗ u∗ v∗

Dress 72.0 0.24 0.16 0.60 0.27 0.37 0.59
Tie 47.5 0.30 0.13 0.57 0.29 0.35 0.60
Jacket 58.2 0.17 0.20 0.85 0.20 0.23 0.33
Egg 37.9 −0.06 0.32 0.86 0.12 0.22 0.29
Fish 46.5 0.19 0.23 0.85 0.28 0.15 0.29
Peep 58.2 0.25 0.20 0.61 0.30 0.34 0.56

aExplained variance in percent.
bPrincipal component weights of the light part.
cPrincipal component weights of the dark part.

differences of the responses are related across images [5,20,26].
So, we calculated correlations across observers between scores
for #theDress and those for each new image. Figure 5 illus-
trates the correlations through scatter plots. The scores for all
images were positively correlated with those for #theDress.
The tie (r (67)= 0.59, P < 0.001), the jacket (r (66)= 0.54,
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Fig. 5. Correlations of adjustments. Scores of the first principal
component of #theDress color adjustments are shown along the x axis,
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score computed on one participant. Pearson’s correlation coefficients
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P < 0.001), and the peephole (r (66)= 0.55, P < 0.001)
yielded the highest, the fish (r (65)= 0.40, P < 0.001), and
the egg (r (66)= 0.25, P = 0.04) the lowest correlations [see
blue bars in Fig. 8(C)]. All correlations were also significant with
the uncorrected data except for the egg.

B. Naming (Laboratory)

Figure 6 illustrates naming answers for #theDress and the new
images in the laboratory experiment. The light part of all images
was mostly called blue or white, and in a fewer cases also purple
(upper charts in Fig. 6). The dark part of all images was mostly
described as gold, black, brown, or bronze (lower charts in
Fig. 6). The fish [Fig. 6(E)] yielded different responses than
the other images: There were fewer individual differences for
the light part because most observers called it “blue,” and most
observers described the dark part with the achromatic color
terms black or gray instead of gold or brown. For #theDress, the
jacket, and the fish, five observers gave the same answer to both
parts; this was the case for four observers with the tie and the
peephole, and for seven observers with the egg. These answers
were excluded from the analyses below.

To assess the systematic variation of color naming across
observers, we adopted an earlier approach [5] to calculate nam-
ing scores: We coded each of the 14 color terms as a dummy
variable (1 = chosen, 0 = not chosen), separately for the light
and the dark part (e.g., body and lace). Then we performed prin-
cipal component analyses with those 28 binary variables. The
first principal component represents the correlations in naming
between the two parts. For example, a combination used by
many observers, e.g., blue for the body and black for the lace of
#theDress, yields a score with a high absolute value. Whether
the minima and maxima of the scores coincide with −1 and 1
depends on the relative frequencies of responses. To calculate
the naming scores, we shifted the scores so that the minimum
and maximum naming score is −1 and 1. The x axis in Fig. 7
illustrates the naming scores with the example of #theDress.

For all stimuli, the naming score yielded a minimum (−1)
for blue and black, and a maximum (+1) for white and gold.
Scores in between were color-term combinations that were
less often combined. For example, the naming scores around
−0.5 for #theDress in Fig. 7 corresponded to blue–brown
and blue–bronze, scores around 0 to blue–gold, purple–blue,
and purple–bronze, and values around 0.5 to purple–gold, and
combinations of white with brown, yellow, and bronze.

We calculated correlations between those naming scores and
the adjustment scores, as illustrated for #theDress in Fig. 7. The
naming scores were positively correlated with the adjustments
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scores for all images [all P < 0.001; see blue bars in Fig. 8(B)].
These correlations suggest that naming scores convey similar
information as the adjustment scores.

We tested for similarities between #theDress and the new
images by correlating naming scores of the new images
with those of the dress. All correlations were highly signifi-
cant (P < 0.001) and confirmed those observed with the
adjustments [green bars in Fig. 8(C)].

C. Online Survey

The answers to #theDress of one of the 72 observers were
excluded because he gave the same answer for body and lace
(gray). We calculated naming scores for the naming data from
the online survey in the same way as above for the laboratory
naming data. We correlated the online naming scores with the
adjustment and naming scores from the laboratory for each
image [see green and yellow bars in Fig. 8(B)]. All correlations
were highly significant (P < 0.001), indicating similarity
between responses in the online survey and those in the lab-
oratory experiment. The only exception was the correlation
between online naming and adjustments for the egg, which
was much lower than the other correlations [r (66)= 0.32,
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P = 0.007; see black dot in Fig. 8(B)] and did not reach
significance with the uncorrected data.

The online survey reproduced the results from the labora-
tory, with naming scores for all new images being significantly
correlated with those for #theDress (all r (69) > 0.55, all
P < 0.001). In fact, for all but the fish, the correlations were
highest for the online naming than for the other measurements
[yellow bars in Fig. 8(C)]. These results were the same with the
uncorrected data (all P < 0.001).

As previously [5], we tested whether the questions on the
assumptions about the scene and the illumination were related
to #theDress. The assumptions concerned #theDress, not the
new images. We calculated correlations between the naming
scores and the ratings (0 to 10) of illumination brightness and
color (yellow–blue). #theDress was negatively correlated with
brightness (r (69)= − 0.30, P = 0.01) and positively with
yellow–blue judgments (r (69)= 0.31, P = 0.008).

We tested the relationship between color perception and
qualitative questions about assumptions by calculating point-
biserial correlations (the statistics of which correspond to t-tests
for independent samples). Observers who assumed the dress
was in the shadow tended to answer color terms with a higher
score, i.e., towards white–gold [r (63)= 0.48, P < 0.001; six
observers answered they did not know]. Conversely, observers
who answered the photo was overexposed tended to answer
blue–black [r (57)=−0.34, P = 0.009]. The results for the
questions about shadow and overexposure could be reproduced
when using the dress score from naming in laboratory [shadow:
r (58)= 0.39, P = 0.002; overexposed: r (51)=−0.31,
P = 0.02], and the adjustment scores [r (60)= 0.27,
P = 0.04; overexposed: r (54)=−0.30, P = 0.03]. The
other questions, such as those about the flash and the direc-
tion of illumination (see Method section) did not yield any
significant correlation. The results support the idea that the
assumptions about the dress being in the shadow and the photo
being overexposed are strongly related to the perceived colors of
#theDress.

D. Cross Validation

A final open question is whether the observed correlations
between #theDress and the new images can partially be
explained by a response bias: Observers might tend to give
similar responses across trials, even with different images, when
conducting the measurements in one experimental session.
To address this issue, we compared the responses between the
laboratory and the online measurements.

Figure 8(D) reports correlations between responses to
#theDress and the other images across the three types of mea-
surements. The online measurements of #theDress were done
before seeing the other images. In contrast, the adjustments of
the new images were done before adjusting #theDress. For this
reason, the correlations between these two measurements [dark
green bars in Fig. 8(D)] are of particular interest. The lowest of
these correlations occurred for the egg, and was still significant
[r (66)= 0.25, P = 0.04]. However, all combinations across
measurements yielded significant correlations [Fig. 8(D)].
Again, results were all reproduced with the uncorrected data
except for two nonsignificant correlations involving the egg.

Overall, the positive correlations show that responses to the
new images are related to the perception of #theDress, and that
this main result is independent of sequencing and robust to
measurement noise across the different types of measurements.

4. DISCUSSION

Figure 8 summarizes the results of all three measurements, the
adjustments and naming in the laboratory, and the naming
in the online survey. For all images, a high amount of vari-
ance in the individual differences of the adjustments could be
explained by one principal component [Fig. 8(A)]. All three
kinds of measurements provided evidence for a correlation
between the perception of #theDress and the new images
[Figs. 8(C) and 8(D)]. Yet, principal components and cor-
relations do not fully explain the total variance, and the egg
and maybe also the fish seemed not to correlate as well with
#theDress as the other images [Fig. 8(D)].

A. Adjustment and Naming Scores

Figure 8(A) shows how much variance was explained by the first
principal component, indicating how representative the adjust-
ment and naming scores were for the respective measurements.
The measurements of #theDress (left group of bars) tended to
follow most closely the linear trend captured by the principal
component [see Fig. 4(A)]. For the other images, the adjust-
ments (blue bars) seem to be better represented by the scores
than the naming data (green and yellow bars). This is likely due
to the data format and the approach to producing the naming
scores.

Figure 8(B) illustrates the similarities of the three kinds of
measurements. Responses to #theDress (left group of bars) are
most consistent across the three measurements. This might be
related to the higher variance explained by the principal com-
ponent for responses to #theDress [see Fig. 8(A)]. Correlations
involving adjustment scores (blue and green bars) were lower
than those between laboratory and online naming (yellow bars)
for all images except for the fish.

Adjustments and color naming capture different aspects of
the individual differences and have different advantages and dis-
advantages. Adjustments, relying on direct perceptual matches,
are better suited to capturing the individual differences in per-
ceived color than color naming, which confounds individual
differences in perception with differences in naming. Color
naming varies across observers (e.g., [27–29]). General variation
in color naming adds to the similarities across images. For exam-
ple, an observer who has a larger blue category would be more
likely to call all images blue than an observer with a smaller blue
category. As a result, color naming might confound two kinds
of individual differences, one concerning the individual differ-
ence due to #theDress effect and one due to general differences
in naming. In this way, correlations of naming scores might
potentially overestimate individual differences in perception.

In addition, adjustments provide more precise color specifica-
tions in three-dimensional color-space than color terms, which
do not distinguish between the many perceivable colors within
each category. At the same time, color adjustments in three-
dimensional color space constitute a technical challenge to naïve
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observers. Most naïve observers are unaware of color-opponency
and have difficulties navigating through the two-dimensional
chromatic plane. The fact that lightness had to be adjusted inde-
pendently (to avoid effects of the asymmetric gamut) added to
the complexity of the adjustment task. In contrast, color naming
is rather straightforward and does not require any understand-
ing of color space. This might produce additional noise in the
adjustment as compared to the naming task.

For all measurements, some observers reported pressing the
wrong key by accident. We corrected data that was obviously
swapped between the dark and light parts and deleted data when
the same answer was given for the dark and the light part. The
raw data provided very similar results, hence confirming that the
main results do not depend on the noise produced by erroneous
responses. Nevertheless, there were certainly some erroneous
responses left in the data that we could not correct or delete.
These erroneous responses might well have added noise and
reduced the variance explained by principal components and
correlations.

In any case, all results provide evidence for systematic indi-
vidual differences in color perception in the new images similar
to those observed in #theDress. The cross validation between
laboratory measurements and online survey further shows that
those correlations cannot be attributed to effects of presentation
sequences. We cannot completely exclude the possibility that
observers memorize their answers and try to be consistent across
the two sessions (online and laboratory); however, we think
this is very unlikely, given the time between the sessions. The
differences across objects also contradict a general tendency to
give consistent answers because such a tendency should not vary
across objects.

B. Main Determinants of Individual Differences

Our findings allow us to pinpoint three sufficient conditions to
produce #theDress effects. First, our algorithm focuses on the
major blue–yellowish hue direction of #theDress and excludes
the role of the chromatic distribution away from that color
direction. Following preliminary measurements [20], we used
a modified version of #theDress that differed from the original
in two respects: it was a cutout of the dress pasted on a black
background, and its chromatic distribution was projected to the
major, yellow–blue hue direction. However, the appearance of
#theDress barely changes when its chromaticities are projected
to one hue direction [see Fig. 1(C)]. In addition, our version
produces very similar individual differences as the original.
In previous studies, we measured individual differences for
#theDress with background and complete chromatic distri-
bution. The first component of the adjustments in the present
study (72%) explained a higher amount of variance than in a
previous study with the original #theDress [62%, cf. Fig. 6(A)
in Ref. [12]]. This suggests that the systematic variability across
observers was higher when projecting the distribution to the
major hue direction. In addition, naming results were also very
similar in this [Fig. 5(A)] and in previous studies [Fig. 5 in Ref.
[12]; Figs. 4(A)–4(C) in Ref. [5]].

Hence, neither the projection to one hue direction nor
the background seems to play a major role for the individual
differences in perception. Previous studies have shown that a

specific background can bias the perception of #theDress. This
is the case when the background is unambiguous and specifies
the light that illuminates the dress [7,8,12], or when it changes
color perception due to local contrast [30]. However, the obser-
vations made here are in line with previous findings that the
background of #theDress is largely irrelevant for the individual
differences as long as the background is ambiguous [3,22,30].
They also explain why only assumptions about the illumination
of the dress, but not assumptions about the background are
related to the perception of #theDress (Fig. 11 in Ref. [5]).

Second, our algorithm requires input images to have a dark
and a light chromatic part. Lightness might play an important
role for #theDress effects. Perceived lightness varies across
observers for #theDress, and lightness has a positive weight on
the first principal component of all images except the lighter
part of the egg (see Table 1). In addition, lightness induction
modulates the colors seen in #theDress [30,31]. The role of
lightness in #theDress effects could be explained by an earlier
finding, according to which observers infer different lightness
based on different assumptions about the illumination [32].
However, a gray-scale version of #theDress does not produce
individual differences [9,19], suggesting that lightness variation
alone cannot explain #theDress effects.

It seems to be the combination of a dark part with a brown-
ish hue and a light part with a bluish hue that is essential for
the ambiguous interpretation of the images. This is shown
by the observation that individual differences in perception
break down when rotating the color distribution of the dress
by 180 deg [9,19,20]. The 180 deg rotation does not allow for
attributing the bluish tint on the dress to shadow because the
relationship between lightness and chromaticities does not allow
for that [9].

Evidence for the important role of implicit assumptions
about lighting and shadow has also been replicated in this
study. The correlations between #theDress and lightness and
blue–yellow ratings, shadow answers, and overexposure answers
replicate those observed previously [5–12]. The fact that the
question about the flash did not reproduce the significant effect
observed by Witzel et al. [5] may be attributed to the much lower
sample size (N = 500 in Ref. [5]). Answers to the question
about the direction of the illumination did not yield any cor-
relation. This finding is at odds with the one of Chetverikov
and Ivanchei [2]. They found that people who perceive the
dress as blue-and-black are likely to consider the light source as
frontal. Given the replicability of the question about shadow
across different studies (see also [4]), we think that assumed
shadow might be the most important assumption behind those
individual differences in color perception.

Third, the peephole image showed a cutout of a photo of
sandals that had a similar chromatic distribution as #theDress.
Previously, we showed that individual differences in the percep-
tion of those sandals are strongly correlated with perceptions of
#theDress [20]. Here, we presented only the cutout. This makes
the content of the image barely recognizable. The observed
correlations between peephole and #theDress suggest that the
individual differences in perception do not depend on recogniz-
ability, i.e., whether the observer recognizes the objects in the
scene.
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At the same time, we know from previous studies [3,22] that
the color distribution alone, without any meaningful content,
is not sufficient to produce individual differences. Hesslinger
and Carbon [3] dissected the dress in squares of different sizes
and scrambled the squares. The smaller the square, the less the
image looked like a real material, and the smaller the individual
differences. From those previous observations, together with
our observation for the peephole, we take that the objects do not
need to be recognizable to produce individual differences; but
they must look like real material.

In sum, the hue direction of the chromatic distribution, the
dark and light components, and the realism of the images were
the only similarities between the new images and #theDress.
The individual differences in the perception of the new images
and the correlations with #theDress show that these features are
sufficient to produce #theDress effect. So, the stripes and body
shape of the dress in #theDress photo are not critical for the indi-
vidual differences in color perception. Instead, the distribution
of the chromaticities from bright bluish colors to dark brownish
colors is the critical feature of this phenomenon.

Our algorithm can be of great use for other studies. By now,
#theDress is world-famous. In this study, most observers (67
of 72, i.e., 93%) responded that they knew the image before
completing our online survey (cf. 78% in Ref. [7], 73% in
Ref. [5], 89% in Ref. [22]). It is possible that this prior knowl-
edge influences what observers see or lead observers to answer
according to their knowledge rather than their perception [8].
Such effects of prior knowledge might reduce or interact with
#theDress effects, and studies most likely want to avoid confu-
sion between perception and knowledge. In this case, studies
can use our algorithm for producing new sets of stimuli to elicit
#theDress effects while making sure that observers did not see
those images ever before.

C. Other Determinants

However, the correlations between #theDress and the new
images were not complete [see Fig. 8(D)]. In particular, the egg
produced lower correlations [see Figs. 8(C) and 8(D)], and the
fish yielded different naming patterns [Fig. 6(E)] than tie, jacket,
and peephole. These observations imply that the effectiveness
of our algorithm depends on properties of the images beyond
the color distribution, dark–light components, and realism (see
Section 4.B). Still other factors might modulate the magnitude
of #theDress effects.

It is generally known that many properties of photos can
affect color and material appearance [32–37]. For example,
#theDress, the tie, and the jacket are all fabrics. The fish and the
egg might have different material properties than fabrics. One
such material property is gloss. Perceived gloss has been shown
to be related to the perceived color of #theDress [5]. Our algo-
rithm does not map the gloss of #theDress to the new images,
and we did not control for gloss in the stimulus sampling.
Therefore, the gloss of our new images is likely to vary. On visual
inspection [Fig. 2(C)], the fish seems to lack gloss, and that
might be the reason for smaller #theDress effects with the fish.
Another candidate material property is translucency. According
to Fig. 2(C), the fish seems to feature some translucency at the
fins. Much of the yellowishness from #theDress seems to be

mapped to the translucent part of those fins. Still another can-
didate property is the spatial distribution of chromaticities. In
Fig. 2(B), the blue spots in the lower, shaded area of the egg look
particularly saturated. This concentration of saturated blue does
not seem as visible in #theDress and the other images [Figs. 1(A)
and 2]. The high saturation could contradict an effect of shadow
on a white egg. These particularities of the fish and the egg might
undermine the ambiguity of illumination assumptions and
#theDress effect. In addition, quail eggs are typically white with
brown spots. Knowledge about typical colors (memory colors)
affects color appearance (for review, see [13]), which might also
counteract individual differences.

Here, the role of gloss, translucency, saturation, memory
colors, or still other properties of the images remain hypothetical
because our study does not allow for identifying determinants
beyond the color distribution. Starting from our observations,
future studies may quantify and systematically control the
effects of other image properties (e.g., [32–37]) and evaluate
their role in #theDress effects as we have done it for the color
distribution in this study.

Finally, while our results show that the color distribution is
sufficient, newest findings suggest that it might not be a neces-
sary condition for individual differences in color perception.
Those findings show that individual differences can be found
for images with color distributions that do not align with the
blue–yellow hue direction of #theDress [38,39]. Interestingly,
those observations contrast with previous ones, according to
which #theDress effects reduce for colors away from the blue–
yellow hue direction [19,20]. For the moment, how far the
individual differences revealed by the new images are related to
those of #theDress remains an open question. Our approach of
correlating individual differences across images [5,20,26] could
help clarify the relationship between the phenomena.

5. CONCLUSION

#theDress is not unique. We developed a simple algorithm
that produces new images with color distributions similar to
#theDress. Our findings showed that those images elicited indi-
vidual differences in color perception similar to those observed
with #theDress. These observations suggest that the object in
the photo (i.e., the dress) is of little importance; instead, the
color distribution is a sufficient condition to produce individual
differences in color perception with other pictures. It seems
unnecessary that the depicted objects be recognizable, but they
need to look like real materials so that the viewer makes assump-
tions about the illumination to make sense of image. Other
factors, such as gloss, translucency, spatial information, and
memory colors might also affect individual differences. In future
developments, these additional factors could be integrated into
our algorithm to modulate the strength of #theDress effect. In
any case, the current version of the algorithm is already usable in
studies that want to exclude effects of prior knowledge about the
famous #theDress when investigating #theDress effects.
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