neuron rauisch header

home contact program alumni application


Organizers: Jochen Braun  Frank Bremmer  Karl Gegenfurtner
Funded by the universities of Giessen, Magdeburg and Marburg

Preliminary program

Sunday 19
Arrival and welcome
Monday 20
9:00-12:00 Introduction BBG
14:00-17:00 Lecture Heinz Wässle Retina
17:00-19:00 Poster session
Tuesday 21
9:00-12:00 Lecture Karl Gegenfurtner Color
14:00-16:00 Exercise Matteo Toscani Color
16:00-19:00 Lecture Matteo Carandini Computations in Retina and LGN
Wednesday 22
9:00-12:00 Lecture Tony Movshon V1
14:00-16:00 Exercise Alexander Schütz Receptive fields and image processing
16:00-19:00 Lecture Pieter Roelfsema Mid-level vision
Evening Tony Movshon Presentation of data
Thursday 23
9:00-12:00 Lecture Pascal Mamassian Bayesian vision
14:00-16:00 Exercise Pascal Mamassian Baysian modeling
16:00-19:00 Lecture Tony Movshon Motion
Evening Pascal Mamassian How to get your work published
Friday 24
9:00-12:00 Lecture Andrew Welchman Binocular vision
14:00-16:00      
16:00-19:00 Lecture Petra Stoerig Seeing Sounds: Synaesthesia, Sensory Substitution and Crossmodal Plasticity
Evening Andrew Welchman Career development
Saturday 25
9:00-12:00 Lecture Zoe Kourtzi fMRI
14:00-17:00 Lecture Simon Thorpe Spikes and recognition
Evening Party
Sunday 26
Day off (optional afternoon trip to Marburg)
Monday 27
9:00-12:00 Lecture Frank Bremmer Parietal cortex and action
14:00-16:00 Exercise Alexander Schütz Eye movements
16:00-19:00 Lecture Stefan Treue Physiology of attention
Evening   Stefan Treue Animal rights and ethical principles
Tuesday 28
9:00-12:00 Lecture Jochen Braun Multistable perception and collective neural dynamics
14:00-16:00 Poster session
16:00-19:00 Lecture Mickey Goldberg Eye movements and attention
Evening   Mickey Goldberg History of neuroscience
Wednesday 29
9:00-12:00 Lecture Larry Maloney Perception and action
14:00-16:00 Exercise Larry Maloney Optimality and motor control
16:00-19:00 Lecture Ilona Kovacs Perceptual learning
Thursday 30
9:00-12:00 Lecture Gustavo Deco Computational neuroscience
14:00-16:00 Exercise Gustavo Deco
16:00-19:00 Lecture John-Dylan Haynes Imaging and consciousness
Evening Student presentations
Friday 31
Farewell, transfer to airport

Daily meals

8-9: Breakfast
12-2: Lunch
7-9: Dinner

Confirmed speakers

Jochen Braun, Universität Magdeburg, works on the neural basis of visual attention and awareness. More recently, he has also been interested in the context-dependence of visual association learning. He combines anatomically targeted psychophysics with computational modeling, to characterize the visual information encoded in cortical populations.

  • Pastukhov, A., Vonau, V., & Braun, J. (2012). Believable change: Bistable reversals are governed by physical plausibility. Journal of Vision, 12(1):17, 1-16. [pdf]
  • Pastukhov, A., & Braun, J. (2007). Perceptual reversals need no prompting by attention. Journal of Vision, 7(10):5, 1-17. [pdf]
  • Braun, J., & Mattia, M. (2010). Attractors and noise: Twin drivers of decisions and multistability. Neuroimage, 52(3), 740-751. [pdf]
  • Gigante, G., Mattia, M., Braun, J., & Del Giudice, P. (2009). Bistable Perception Modeled as Competing Stochastic Integrations at Two Levels. PLoS Computational Biology, 5(7), e1000430. [pdf]

Frank Bremmer, Universität Marburg, works on multisensory space and motion representation in primates (electrophysiology, fMRI, modeling, psychophysics). More recently, he started to investigate in influence of eye movements on visual processing and spatial perception.

  • Duhamel, J.-R., Bremmer, F., BenHamed, S., & Graf, W. (1997). Spatial invariance of visual
    receptive fields in parietal cortex neurons. Nature, 389, 845-848. [pdf]
  • Bremmer, F., et al. (2001). Polymodal motion processing in posterior parietal and premotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29, 287–296. [pdf]

Matteo Carandini, Institute of Ophthalmology, University College London, is mainly interestes in the early visual system and and how it does what it does. He seeks to understand how the early visual system is wired up and to find simple mathematical expressions to describe its output.

Gustavo Deco, Universitat Barcelona, works on the large-scale architecture of visual perception, attention and memory.  He uses neurodynamic modeling of interacting neural populations to account for a wide range of behavioural, single-unit, and functional imaging data (modeling).

  • Deco, G., & Rolls, E. T. (2005). Neurodynamics of biased competition and cooperation for attention: A model with spiking neurons. Journal of Neurophysiology, 94, 295-313. [pdf]
  • Deco, G., & Rolls, E. T. (2005). Attention, short-term memory, and action selection: A unifying theory. Progress in Neurobiology, 76, 236-256. [pdf]

Karl Gegenfurtner,Universität Giessen, works on color vision, natural images, and the relationship between perception and action (psychophysics).

  • Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4, 563-572. [pdf]
  • Hansen, T., Olkkonen, M., Walter, S. & Gegenfurtner, K.R. (2006) Memory modulates color appearance. Nature Neuroscience,  9, 1367-1368.

John-Dylan Haynes, Bernstein Center for Computational Neuroscience, Berlin, investigates ways to decode and predict a person’s thoughts based from functional magnetic resonance imaging (fMRI) data.

  • Haynes, J and Rees, G (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8(5):686-691.
  • Haynes, J and Rees, G (2006). Decoding mental states from brain activity in humans. Nat Rev Neurosci 7(7):523-534.

Zoe Kourtzi, University of Birmingham, focuses on imaging the neural processes in the human brain that mediate complex, adaptive cognitive functions and behaviour.

  • Li, S., Mayhew, S. D., & Kourtzi, Z. (2009). Learning shapes the representation of behavioral choice in the human brain. Neuron 62, 441-452. [pdf]
  • Li, S., Ostwald, D., Giese, M., & Kourtzi, Z. (2007). Flexible coding for categorical decisions in the human brain. J Neurosci. 27(45):12321-12330. [pdf]

Ilona Kovács, Budapest University of Technology and Economics, focuses on the development and plasticity of the human visual system, including clinical aspects (psychophysics, electrophysiology).

  • Kovács, I., Kozma, P., Fehér, Á., & Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proceedings of the National Academy of Sciences, 96(21), 12204-1220. [pdf]
  • Jandó, G., Mikó-Baráth, E., Markó, K.,Hollódy, K.,Török, B. & Kovacs, I. (2012). Early onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proceedings of the National Academy of Sciences, 109(27):11049-52 [pdf]

Pascal Mamassian, Université Paris Descartes, is interested in three-dimensional perception, bayesian modelling, motion and binocular transparency, and others.

  • Mamassian, P., Landy, M. S. and Maloney, L. T. (2002). Bayesian modelling of visual perception. In R. Rao, B. Olshausen and M. Lewicki (Eds.) Probabilistic Models of the Brain: Perception and Neural Function (pp. 13-36). Cambridge, MA: MIT Press
  • Kersten, D., Mamassian, P. & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271-304.

Larry Maloney, New York University, works on models of human performance based on mathematical statistics, physics and mathematics.

  • Ernst, M. O. & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Science, 8, 162-169.[pdf]
  • Trommershäuser, J., Maloney, L. T. & Landy M. S. (2008). Decision making, movement planning and statistical decision theory. Trends in Cognitive Science, 12, 291-297. [pdf]
  • Geisler, W.S. (1989). Sequential-ideal observer analysis of visual discriminations. Psychological Review, 96, 267-314.[pdf]
  • Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35, 389-412. [pdf]

Tony  Movshon, Center for Neural Science, New York, studies the function and development of the primate visual system, particularly the neurophysiological basis of motion perception (electrophysiology, psychophysics).

V1 Lecture:

  • Priebe, N. J., & Ferster, D. (2012). Mechanisms of Neuronal Computation in Mammalian Visual Cortex. Neuron, 75, 194-208. [pdf]
  • Lennie, P., & Movshon, J. A. (2005). Coding of color an form in the geniculostriate visual pathway. Journal of the Optical Society of America A, 22(10), 2013-2033. [pdf]
  • Rust, N. C., & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8(12), 1647-1650. [pdf]
MT Lecture:
  • Hedges, J. H., Gartshteyn, Y., Kohn, A., Rust, N. C., Shadlen, M. N, Newsome, W. T., & Movshon, J. A. (2011). Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion. Current Biology, 21(23), 2023-2028. [pdf] [movie1] [movie2] [movie3] [movie4]
  • Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns Nature Neuroscience, 9(11), 1421-1431. [pdf]
  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns. In C. Chagas, R. Gattass, & C.Gross (Eds.), Pattern Recognition Mechanisms. Pontificiae Academiae Scientiarum Scripta Varia, 54, 117-151. Rome: Vatican Press. (Reprinted in Experimental Brain Research, Supplementum 11, 117-151, 1986). [pdf]

Pieter Roelfsema, Netherlands Institute for Neurosciences, Amsterdam, is interested in how attentional processes coordinate neuronal activity in different brain areas (electrophysiology).

  • Roelfsema, P. R., Tolboom, M., & Khayat, P. S. (2007). Different Processing Phases for Features, Figures, and Selective Attention in the Primary Visual Cortex. Neuron 56, 785–792.

Petra Stoerig, Düsseldorf University, works in neuropsychology. She is particularly interested in the residual vision of blindsight patients.

  • Bevalier, D. & Neville, H. J. (2002). Cross-modal plasticity: where and how. Nature Reviews Neuroscience, 3, 443-452. [pdf]
  • Proulx, M. J. & Stoerig, P. (2006). Seeing sounds and tingling tongues: Qualia in synaesthesia and sensory substitution. Anthropology & Philosophy, 7, 135-150. [pdf]
  • Ward, J. & Mattingley, J. B. (2006). Synaesthesia: an overview of contemporary findings and controversies. Cortex, 42, 129-136. [pdf]
  • Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., & Scadden, L. (1969). Vision Substitution by Tactile Image Projection. Nature, 221, 963-964. [pdf]

Simon Thorpe, CNRS Toulouse, works on object recognition and the classification of natural scenes (psychophysics, modeling).

  • Kirchner, H. & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Research, 46, 1762-76. [pdf]
  • VanRullen, R. & Thorpe, S. J. (2002). Surfing a spike wave down the ventral stream. Vision Research, 42, 2593-615. [pdf]

Stefan Treue, German Primate Center Göttingen, works on the neural correlates of attention in primate visual cortex (electrophysiology, psychophysics, modeling).

  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317-322. [pdf]
  • Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24, 295-300. [pdf]
Heinz Wässle, Max-Planck-Institute for Brain Research Frankfurt, studies the synaptic circuits of the mammalian retina using light and electron microscopy, in order to understand their role in the transfer and processing of light signals (anatomy, electrophysiology).
  • Masland, R. H. (2001). The fundamental plan of the retina. Nature Neuroscience, 4, 877-886. [pdf]
  • He, S., et al. (2003). Seeing more clearly. Recent advances in understanding retinal circuitry. Science, 302, 408-411. [pdf]
  • Wässle, H. (2004). Parallel Processing in the Mammalian Retina. Nature Reviews Neuroscience, 5, 1-11. [pdf]
  • W&äauml;ssle, H. (2008). Decomposing a Cone's Output (Parallel Processing). In Alan I. Basbaum, Akimichi Kaneko, Gordon M. Shepherd and Gerald Westheimer (eds.). The Senses: A Comprehensive Reference, Vol 1, Vision I, Richard Masland and Thomas D. Albright. San Diego: Academic Press. [pdf]

Andrew Welchman, University of Birmingham, is interested in psychophysics and modelling of 3D vision, brain imaging and movement synchronisation.

  • Welchman, A. E., Lam, J. M., & Bülthoff, H. H. (2008). Bayesian motion estimation accounts for a surprising bias in 3D vision. Proc Natl Acad Sci USA 105, 12087-92. [pdf]
  • Welchman, A. E., Deubelius, A., Bülthoff, H. H., & Kourtzi, Z. (2005). 3D shape perception from combined depth cues in human visual cortex. Nature Neuroscience 8, 820-827. [pdf]
  • Preston, T. P., Li, S., Kourtzi, Z., & Welchman, A. E. (2006). Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain. Journal of Neuroscience 28, 11315-11327. [pdf]