neuron rauisch header

home contact program alumni application

Organizers: Jochen Braun  Wolfgang Einhäuser-Treyer   Karl Gegenfurtner
Funded by the Volkswagen-Foundation

Preliminary program

Sunday 4
Arrival and welcome
Monday 5
9:00-12:00 Introduction BEG
14:00-17:00 Lecture Heinz Wässle Retina
17:00-19:00 Poster session
Tuesday 6
9:00-12:00 Lecture Karl Gegenfurtner Color
14:00-16:00 Exercise Matteo Toscani Color
16:00-19:00 Lecture Kevan Martin Anatomical and functional connectivity
Wednesday 7
9:00-12:00 Lecture Tony Movshon V1
14:00-16:00 Exercise Wyeth Bair Computational models of V1
16:00-19:00 Lecture Pieter Roelfsema Mid-level vision
20:00 Discussion Tony Movshon Effective visual presentations
Thursday 8
9:00-12:00 Lecture Tony Movshon MT
14:00-16:00 Exercise Wyeth Bair Motion models
16:00-19:00 Lecture Bob Kentridge Visual awareness
20:00 Discussion    
Friday 9
9:00-12:00 Lecture Wolfgang Einhäuser-Treyer Real-world vision
14:00-16:00 Exercise Wolfgang Einhäuser-Treyer Natural images
16:00-19:00 Lecture Jan Koenderink Shape
20:00 Discussion Karl Gegenfurtner How to get your work published
Saturday 10
9:00-12:00 Lecture Anitha Pasupathy Shape representations in extrastriate cortex
14:00-17:00 Lecture Wyeth Bair Computational models of the ventral cortex
20:00 Banquet & Party
Sunday 11
Day off
Monday 12
9:00-12:00 Lecture Larry Maloney Perception and action
14:00-16:00 Exercise Larry Maloney Probabilistic approaches to vision
16:00-19:00 Lecture Andrew Welchman Depth perception
20:00 Discussion Andrew Welchman Career development
Tuesday 13
9:00-12:00 Lecture Roland Fleming Shape, illumination and material
14:00-16:00 Exercise Roland Fleming Computer graphics
16:00-19:00 Lecture Mickey Goldberg Eye movements and attention
20:00 Discussion Mickey Goldberg History of neuroscience
Wednesday 14
9:00-12:00 Lecture Stefan Treue Physiology of attention
14:00-16:00 Exercise Matteo Valsecchi Eye movement data analysis
16:00-19:00 Lecture Jochen Braun Stochastic dynamics of perception
20:00 Discussion Stefan Treue Animal rights
Thursday 15
9:00-12:00 Lecture Ilona Kovacs Perceptual learning
14:00-17:00 Lecture Zoe Kourtzi fMRI
20:00 Student presentations
Friday 16
Farewell, transfer to airport

Daily meals

8-9: Breakfast
12-2: Lunch
7-9: Dinner

Confirmed speakers

Wyeth Bair, University of Washington, aims to understand neural circuitry and neural coding in the cerebral cortex of the primate visual system. He approaches this problem by recording directly from neurons in the functioning brain in vivo and by creating and refining large scale spiking neural network models that run on parallel computers (see

  • Bair, W., & Movshon, J.A. (2004). Adaptive temporal integration of motion in direction-selective cells in macaque visual cortex. The Journal of Neuroscience, 24, 7305-7323. [pdf]
  • Baker, P. M., & Bair, W. (2012). Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models. The Journal of Neuroscience, 32(26), 8800-8816. [pdf]
  • Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of neurophysiology, 88(5), 2530-2546. [pdf]

Jochen Braun, Universität Magdeburg, studies the dynamics of cooperative processes in mid-level vision, such as perceptual organization, multi-stable perception, and visual attention. To this end, he combines detailed visual psychophysics with dynamic models of the collective activity of (highly idealized) cortical columns (see

  • Braun, J., & Mattia, M. (2010). Attractors and noise: Twin drivers of decisions and multistability. Neuroimage, 52(3), 740-751. [pdf]
  • Pastukhov, A., Garcia-Rodriguez, P.E., Haenicke, J., Guillamon, A., Deco, G., & Braun, J. (2013). Multi-stable perception balances stability and sensitivity. Front. Comput. Neurosci, 7: 17. [pdf]

Wolfgang Einhäuser-Treyer, TU Chemnitz, works on attention and eye movements during natural-scene processing and in real-world tasks, and uses rivalry to study commonalities between perception, action and decision-making.

  • Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci USA, 105(5): 1704-1709. [pdf]
  • 't Hart, B.M., & Einhäuser, W. (2012). Mind the step: complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Exp Brain Res, 223(2): 233-249. [pdf]

Roland Fleming, Universität Giessen, works on perception of shape, illumination and materials (psychophysics, computer graphics, modeling).

  • Fleming, R.W. (2014). Visual Perception of Materials and their Properties. Vision Research, 94, 62-75. [pdf]
  • Muryy, A., Welchman, A.E., Blake, A. and R.W. Fleming (2013). Specular reflections and the estimation of shape from binocular disparity. Proceedings of the National Academy of Sciences, 110(6): 2413-2418. [pdf]

Karl Gegenfurtner, Universität Giessen, works on color vision, natural images, and the relationship between perception and action (psychophysics).

  • Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4, 563-572. [pdf]
  • Hansen, T., Olkkonen, M., Walter, S. & Gegenfurtner, K.R. (2006) Memory modulates color appearance. Nature Neuroscience,  9, 1367-1368. [pdf]

Michael Goldberg, Columbia University, New York studies the physiology of cognitive processes to understand how the brain accomplishes visual attention, spatial perception, and decision-making ( psychophysics, neurophysiology)

  • Bisley, J. W. & Goldberg, M. E. (2003). The role of the parietal cortex in the neural processing of saccadic eye movements. Adv Neurology, 93, 141-157. [pdf]
  • Colby, C. L. & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319-349. [pdf]
  • Bob Kentridge, University of Durham, examines the relationship between visual attention and visual consciousness as well as the perception of the material properties of objects..

    • Kentridge, R.W., Heywood, C.A., & Weiskrantz, L. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologica 42, 831-835. [pdf]
    • Kentridge, R.W., Nijboer, T.C.W., & Heywood, C.A. (2008). Attended but unseen: Visual attention is not sufficient for visual awareness. Neuropsychologica 46, 864-869. [pdf]
    • Norman, L.J., Heywood, C.A., & Kentridge, R.W. (2013). Object-Based Attention Without Awareness. Psychological Science. 24(6),836-844. [pdf]

    Jan Koenderink, Leuven University and Giessen University, is a Dutch mathematician and psychologist known for his researches on visual perception, computer vision, and geometry.

    • Koenderink, J.J. (1984). The structure of images. Biological Cybernetics, 50, 363-370. [pdf]
    • Koenderink, J.J. (1986). Optic flow. Vision Research, 26, 161-180. [pdf]
    • Koenderink, J.J., & van Doorn, A.J. (1991). Affine structure from motion. Journal of the Optical Society of America A-Optics Image Science and Vision, 8, 377-385. [pdf]

    Zoe Kourtzi, University of Cambridge, focuses on imaging the neural processes in the human brain that mediate complex, adaptive cognitive functions and behaviour.

    • Li, S., Mayhew, S. D., & Kourtzi, Z. (2009). Learning shapes the representation of behavioral choice in the human brain. Neuron 62, 441-452. [pdf]
    • Li, S., Ostwald, D., Giese, M., & Kourtzi, Z. (2007). Flexible coding for categorical decisions in the human brain. J Neurosci. 27(45):12321-12330. [pdf]

    Ilona Kovács, Budapest University of Technology and Economics, focuses on the development and plasticity of the human visual system, including clinical aspects (psychophysics, electrophysiology).

    • Kovács, I., Kozma, P., Fehér, Á., & Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proceedings of the National Academy of Sciences, 96(21), 12204-1220. [pdf]
    • Jandó, G., Mikó-Baráth, E., Markó, K.,Hollódy, K.,Török, B. & Kovacs, I. (2012). Early onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proceedings of the National Academy of Sciences, 109(27):11049-52 [pdf]

    Larry Maloney, New York University, works on models of human performance based on mathematical statistics, physics and mathematics.

    • Ernst, M. O. & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Science, 8, 162-169.[pdf]
    • Trommershäuser, J., Maloney, L. T. & Landy M. S. (2008). Decision making, movement planning and statistical decision theory. Trends in Cognitive Science, 12, 291-297. [pdf]
    • Geisler, W.S. (1989). Sequential-ideal observer analysis of visual discriminations. Psychological Review, 96, 267-314.[pdf]
    • Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35, 389-412. [pdf]

    Kevan Martin, Universität Zürich, studies the principles underlying neocortical computation; he combines anatomical (on the level of single synapses) and functional connectivity with fundamental models of neocortical circuitry.

    • Douglas, R.J., & Martin, K.A. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci., 27, 419–451. [pdf]
    • Douglas, R.J., & Martin, K.A. (2012). Behavioral architecture of the cortical sheet. Curr Biol, 22(24):R1033-8. [pdf]
    • Martin K.A., & Schröder, S. (2013). Functional heterogeneity in neighboring neurons of cat primary visual cortex in response to both artificial and natural stimuli. J Neurosci, 33(17):7325-44. [pdf]

    Tony  Movshon, Center for Neural Science, New York, studies the function and development of the primate visual system, particularly the neurophysiological basis of motion perception (electrophysiology, psychophysics).

    V1 Lecture:

    • Priebe, N. J., & Ferster, D. (2012). Mechanisms of Neuronal Computation in Mammalian Visual Cortex. Neuron, 75, 194-208. [pdf]
    • Lennie, P., & Movshon, J. A. (2005). Coding of color an form in the geniculostriate visual pathway. Journal of the Optical Society of America A, 22(10), 2013-2033. [pdf]
    • Rust, N. C., & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8(12), 1647-1650. [pdf]
    MT Lecture:
    • Hedges, J. H., Gartshteyn, Y., Kohn, A., Rust, N. C., Shadlen, M. N, Newsome, W. T., & Movshon, J. A. (2011). Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion. Current Biology, 21(23), 2023-2028. [pdf] [movie1] [movie2] [movie3] [movie4]
    • Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns Nature Neuroscience, 9(11), 1421-1431. [pdf]
    • Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns. In C. Chagas, R. Gattass, & C.Gross (Eds.), Pattern Recognition Mechanisms. Pontificiae Academiae Scientiarum Scripta Varia, 54, 117-151. Rome: Vatican Press. (Reprinted in Experimental Brain Research, Supplementum 11, 117-151, 1986). [pdf]

    Anitha Pasupathy, University of Washington ,works on the neural basis of visual shape perception and recognition, the ability to identify and recognize objects from all angles, distances, and in almost any lighting condition. She uses single cell neurophysiological studies in awake monkeys, behavioral manipulations, computational modeling and reversible inactivation techniques to investigate how the information reaching our eyes is represented in the neural activity patterns in the brain, how these representations are transformed in successive stages and finally how these representations inform behavior.

    • Pasupathy, A., & Brincat, S. L. (2012). Population Coding of Object Contour Shape in V4 and Posterior Inferotemporal Cortex. In: Visual Population Codes: Toward a Common Multivariate Framework for Cell Recording and Functional Imaging, 189. [pdf]
    • Bushnell, B. N., Harding, P. J., Kosai, Y., & Pasupathy, A. (2011). Partial occlusion modulates contour-based shape encoding in primate area V4. The Journal of Neuroscience, 31(11), 4012-4024. [pdf]
    • Bushnell, B. N., & Pasupathy, A. (2012). Shape encoding consistency across colors in primate V4. Journal of Neurophysiology, 108(5), 1299-1308. [pdf]
    • Pasupathy, A., & Connor, C. E. (2002). Population coding of shape in area V4. Nature neuroscience, 5(12), 1332-1338. [pdf]

    Pieter Roelfsema, Netherlands Institute for Neurosciences, Amsterdam, is interested in how attentional processes coordinate neuronal activity in different brain areas (electrophysiology).

    • Roelfsema, P. R., Tolboom, M., & Khayat, P. S. (2007). Different Processing Phases for Features, Figures, and Selective Attention in the Primary Visual Cortex. Neuron 56, 785–792. [pdf]

    Stefan Treue, German Primate Center Göttingen, works on the neural correlates of attention in primate visual cortex (electrophysiology, psychophysics, modeling).

    • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317-322. [pdf]
    • Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24, 295-300. [pdf]
    Heinz Wässle, Max-Planck-Institute for Brain Research Frankfurt, studies the synaptic circuits of the mammalian retina using light and electron microscopy, in order to understand their role in the transfer and processing of light signals (anatomy, electrophysiology).
    • Masland, R. H. (2001). The fundamental plan of the retina. Nature Neuroscience, 4, 877-886. [pdf]
    • He, S., et al. (2003). Seeing more clearly. Recent advances in understanding retinal circuitry. Science, 302, 408-411. [pdf]
    • Wässle, H. (2004). Parallel Processing in the Mammalian Retina. Nature Reviews Neuroscience, 5, 1-11. [pdf]
    • Wässle, H. (2008). Decomposing a Cone's Output (Parallel Processing). In Alan I. Basbaum, Akimichi Kaneko, Gordon M. Shepherd and Gerald Westheimer (eds.). The Senses: A Comprehensive Reference, Vol 1, Vision I, Richard Masland and Thomas D. Albright. San Diego: Academic Press. [pdf]

    Andrew Welchman, University of Cambridge, is interested in psychophysics and modelling of 3D vision, brain imaging and movement synchronisation.

    • Welchman, A. E., Lam, J. M., & Bülthoff, H. H. (2008). Bayesian motion estimation accounts for a surprising bias in 3D vision. Proc Natl Acad Sci USA 105, 12087-92. [pdf]
    • Welchman, A. E., Deubelius, A., Bülthoff, H. H., & Kourtzi, Z. (2005). 3D shape perception from combined depth cues in human visual cortex. Nature Neuroscience 8, 820-827. [pdf]
    • Preston, T. P., Li, S., Kourtzi, Z., & Welchman, A. E. (2006). Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain. Journal of Neuroscience 28, 11315-11327. [pdf]