neuron rauisch header

home contact program alumni application

Organizers: Wolfgang Einhäuser-Treyer   Roland Fleming   Alexander Schütz
Funded by Justus-Liebig University Gießen and Philipps-University Marburg.

Preliminary program

Sunday 2
Arrival and welcome
20:00 Introduction ETFS
Monday 3
9:00-12:00 Lecture Tony Movshon Elements of Vision
14:00-16:00 Poster session
16:00-19:00 Lecture Heinz Wässle Retina
20:00 Discussion Tony Movshon Effective visual presentations
Tuesday 4
9:00-12:00 Lecture Tony Movshon Cortex
14:00-17:00 Lecture Wolfgang Einhäuser Natural scenes
17:00-19:00 Exercise Wolfgang Einhäuser Natural scenes
20:00 Discussion Mickey Goldberg History of Neuroscience
Wednesday 5
9:00-12:00 Lecture Karl Gegenfurtner Color
14:00-16:00 Exercise Matteo Toscani Color
16:00-19:00 Lecture Mickey Goldberg Space remapping
20:00 Discussion Karl Gegenfurtner How to get your work published
Thursday 6
9:00-12:00 Lecture Pieter Roelfsema Cortical algorithms for visual perception
14:00-16:00 Exercise Wyeth Bair Computational models of V1
16:00-19:00 Lecture Andrew Welchman Depth
20:00 Discussion Andrew Welchman Career development
Friday 7
9:00-12:00 Lecture Anita Pasupathy Shape representations in extrastriate cortex
14:00-16:00 Exercise Roland Fleming Computer graphics
16:00-19:00 Lecture Wyeth Bair Computational models of the ventral cortex
Saturday 8
9:00-12:00 Lecture Roland Fleming Material perception
14:00-17:00 Lecture Alexander Schütz Eye movements and perception
20:00 Banquet & Party
Sunday 9
Day off
Monday 10
9:00-12:00 Lecture Larry Maloney Perception and action
14:00-16:00 Exercise Larry Maloney Probabilistic approaches to vision
16:00-19:00 Lecture Moritz Helmstaedter Connectomics
Tuesday 11
9:00-12:00 Lecture James Bisley Parietal cortex
14:00-16:00 Exercise Alexander Schütz Eye movement analysis
16:00-19:00 Lecture Stefan Treue Physiology of attention
20:00 Discussion Stefan Treue Animal research
Wednesday 12
9:00-12:00 Lecture Zoe Kourtzi fMRI
14:00-16:00 Exercise Yuka Sasaki fMRI analysis
16:00-19:00 Lecture Takeo Watanabe & Yuka Sasaki Perceptual learning
20:00 Feverish work on student projects
Thursday 13
9:00-12:00 Lecture Jan Brascamp Multistability
14:00-17:00 Lecture Bob Kentridge Visual awareness
20:00 Student presentations
Friday 14
Farewell, transfer to airport

Daily meals

8-9: Breakfast
12-2: Lunch
7-8: Dinner

Confirmed speakers

Wyeth Bair, University of Washington, aims to understand neural circuitry and neural coding in the cerebral cortex of the primate visual system. He approaches this problem by recording directly from neurons in the functioning brain in vivo and by creating and refining large scale spiking neural network models that run on parallel computers (see

  • Bair, W., & Movshon, J.A. (2004). Adaptive temporal integration of motion in direction-selective cells in macaque visual cortex. The Journal of Neuroscience, 24, 7305-7323. [pdf]
  • Baker, P. M., & Bair, W. (2012). Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models. The Journal of Neuroscience, 32(26), 8800-8816. [pdf]
  • Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of neurophysiology, 88(5), 2530-2546. [pdf]

James Bisley, University of California, Los Angeles

Jan Brascamp, Michigan State University, studies the neural processes of interpretation and selection that allow sensation (the retinas detecting light) to turn into conscious visual perception (seeing). He investigates these processes by presenting observers with ambiguous or conflicting visual input. This approach provides an exceptional window into the visual system trying creating a perceptual interpretation based on sensory input and, indeed, switching between interpretations over time even though the input stays the same.

  • Brascamp, J., Sterzer, P., Blake, R., & Knapen, T. (2018). Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. Annual review of psychology, 69, 77-103. [pdf]
  • Brascamp, J., Blake, R., & Knapen, T. (2015). Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception. Nature neuroscience, 18(11), 1672-1678. [pdf]
  • Brascamp, J. W., & Blake, R. (2012). Inattention abolishes binocular rivalry: Perceptual evidence. Psychological Science, 23(10), 1159-1167. [pdf]

Wolfgang Einhäuser-Treyer, TU Chemnitz, works on attention and eye movements during natural-scene processing and in real-world tasks, and uses rivalry to study commonalities between perception, action and decision-making.

  • Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci USA, 105(5) : 1704-1709. [pdf]
  • 't Hart, B.M., & Einhäuser, W. (2012). Mind the step: complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Exp Brain Res, 223(2): 233-249. [pdf]

Roland Fleming, Universität Giessen, works on perception of shape, illumination and materials (psychophysics, computer graphics, modeling).

  • Fleming, R.W. (2014). Visual Perception of Materials and their Properties. Vision Research, 94, 62-75. [pdf]
  • Muryy, A., Welchman, A.E., Blake, A. and R.W. Fleming (2013). Specular reflections and the estimation of shape from binocular disparity. Proceedings of the National Academy of Sciences, 110(6): 2413-2418. [pdf]

Karl Gegenfurtner, Universität Giessen, works on color vision, natural images, and the relationship between perception and action (psychophysics).

  • Gegenfurtner, K.R., Bloj, M. & Toscani, M. (2015) The many colours of the dress. Current Biology, 25, R543-R544. [pdf]
  • Toscani, M., Valsecchi, M. & Gegenfurtner, K.R. (2013) Optimal sampling of visual information for lightness judgments. Proceedings of the National Academy of Sciences USA, 110(27), 11163-11168. [pdf]
  • Hansen, T., Olkkonen, M., Walter, S. & Gegenfurtner, K.R. (2006) Memory modulates color appearance. Nature Neuroscience,  9, 1367-1368. [pdf]
  • Gegenfurtner, K.R. & Kiper, D.C. (2003) Color vision. Annual Review of Neuroscience, 26, 181-206. [pdf]

Michael Goldberg, Columbia University, New Yorkstudies the physiology of cognitive processes to understand how the brain accomplishes visual attention, spatial perception, and decision-making ( psychophysics, neurophysiology)

  • Wang, X., M. Zhang, I. S. Cohen and M. E. Goldberg (2007). "The proprioceptive representation of eye position in monkey primary somatosensory cortex." Nat Neurosci 10(5): 640-646. [pdf]
  • Bisley, J. W. and M. E. Goldberg (2010). "Attention, Intention, and Priority in the Parietal Lobe." Annu Rev Neurosci 33: 1-21 [pdf]
  • Ipata, A., A. Gee and M. Goldberg (2012). "Feature attention evokes task-specific pattern selectivity in V4 neurons." Proceedings of the National Academy of Sciences of the United States of America 109(42): 16778-16785. [pdf]
  • Xu, B., C. Karachi and M. Goldberg (2012). "The postsaccadic unreliability of gain fields renders it unlikely that the motor system can use them to calculate target position in space." Neuron 76(6): 1201-1209. [pdf]
  • Wang, X., C. C. Fung, S. Guan, S. Wu, M. E. Goldberg and M. Zhang (2016). "Perisaccadic Receptive Field Expansion in the Lateral Intraparietal Area." Neuron 90(2): 400-409. [pdf]

Moritz Helmstaedter, Max Planck Institute for Brain Research

Bob Kentridge, University of Durham, examines the relationship between visual attention and visual consciousness as well as the perception of the material properties of objects..

  • Kentridge, R.W., Heywood, C.A., & Weiskrantz, L. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologica 42, 831-835. [pdf]
  • Kentridge, R.W., Nijboer, T.C.W., & Heywood, C.A. (2008). Attended but unseen: Visual attention is not sufficient for visual awareness. Neuropsychologica 46, 864-869. [pdf]
  • Norman, L.J., Heywood, C.A., & Kentridge, R.W. (2013). Object-Based Attention Without Awareness. Psychological Science. 24(6),836-844. [pdf]

Zoe Kourtzi, University of Cambridge, focuses on imaging the neural processes in the human brain that mediate complex, adaptive cognitive functions and behaviour.

  • Li, S., Mayhew, S. D., & Kourtzi, Z. (2009). Learning shapes the representation of behavioral choice in the human brain. Neuron 62, 441-452. [pdf]
  • Li, S., Ostwald, D., Giese, M., & Kourtzi, Z. (2007). Flexible coding for categorical decisions in the human brain. J Neurosci. 27(45):12321-12330. [pdf]

Larry Maloney, New York University, works on models of human performance based on mathematical statistics, physics and mathematics.

  • Ernst, M. O. & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Science, 8, 162-169. [pdf]
  • Trommershäuser, J., Maloney, L. T. & Landy M. S. (2008). Decision making, movement planning and statistical decision theory. Trends in Cognitive Science, 12, 291-297. [pdf]
  • Geisler, W.S. (1989). Sequential-ideal observer analysis of visual discriminations. Psychological Review, 96, 267-314. [pdf]
  • Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35, 389-412. [pdf]

Tony Movshon, Center for Neural Science, New York, studies the function and development of the primate visual system, particularly the neurophysiological basis of motion perception (electrophysiology, psychophysics).

V1 Lecture:

  • Priebe, N. J., & Ferster, D. (2012). Mechanisms of Neuronal Computation in Mammalian Visual Cortex. Neuron, 75 , 194-208. [pdf]
  • Lennie, P., & Movshon, J. A. (2005). Coding of color an form in the geniculostriate visual pathway. Journal of the Optical Society of America A, 22(10) , 2013-2033. [pdf]
  • Rust, N. C., & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8(12) , 1647-1650. [pdf]
MT Lecture:
  • Hedges, J. H., Gartshteyn, Y., Kohn, A., Rust, N. C., Shadlen, M. N, Newsome, W. T., & Movshon, J. A. (2011). Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion. Current Biology, 21(23) , 2023-2028. [pdf] 
  • Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns Nature Neuroscience, 9(11) , 1421-1431. [pdf]
  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns. In C. Chagas, R. Gattass, & C.Gross (Eds.), Pattern Recognition Mechanisms. Pontificiae Academiae Scientiarum Scripta Varia, 54, 117-151. Rome: Vatican Press. (Reprinted in Experimental Brain Research, Supplementum 11, 117-151, 1986). [pdf]

Anitha Pasupathy, University of Washington ,works on the neural basis of visual shape perception and recognition, the ability to identify and recognize objects from all angles, distances, and in almost any lighting condition. She uses single cell neurophysiological studies in awake monkeys, behavioral manipulations, computational modeling and reversible inactivation techniques to investigate how the information reaching our eyes is represented in the neural activity patterns in the brain, how these representations are transformed in successive stages and finally how these representations inform behavior.

  • Pasupathy, A., & Brincat, S. L. (2012). Population Coding of Object Contour Shape in V4 and Posterior Inferotemporal Cortex. In: Visual Population Codes: Toward a Common Multivariate Framework for Cell Recording and Functional Imaging, 189. [pdf]
  • Bushnell, B. N., Harding, P. J., Kosai, Y., & Pasupathy, A. (2011). Partial occlusion modulates contour-based shape encoding in primate area V4. The Journal of Neuroscience, 31(11), 4012-4024. [pdf]
  • Bushnell, B. N., & Pasupathy, A. (2012). Shape encoding consistency across colors in primate V4. Journal of Neurophysiology, 108(5), 1299-1308. [pdf]
  • Pasupathy, A., & Connor, C. E. (2002). Population coding of shape in area V4. Nature neuroscience, 5(12), 1332-1338. [pdf]

Pieter Roelfsema, Netherlands Institute for Neurosciences, Amsterdam, is interested in how attentional processes coordinate neuronal activity in different brain areas (electrophysiology).

  • Lorteije, J.A.M., Zylberberg, A., Ouellette, B.G., De Zeeuw, C.I., Sigman, M. & Roelfsema, P.R. (2015) The formation of hierarchical decisions in the visual cortex. Neuron, 87, 1344­1356. [pdf]
  • Roelfsema, P. R., & de Lange, F. P. (2016). Early visual cortex as a multiscale cognitive blackboard. Annual Review of Vision Science, 2, 131-151. [pdf]
  • Roelfsema, P. R., & Holtmaat, A. (2018). Control of synaptic plasticity in deep cortical networks. Nature Reviews Neuroscience, 19(3), 166. [pdf]
  • van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R. (2018). The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science, 360(6388), 537-542. [pdf]

Yuka Sasaki, Brown University

Alexander Schütz, University of Marburg, works on the relationship of eye movements and perception.

  • Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: a selective review. Journal of Vision, 11(5):9, 1-30. [pdf]
  • Schütz, A. C., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2008). Improved visual sensitivity during smooth pursuit eye movements. Nature Neuroscience, 11(10), 1211-1216. [pdf]
  • Wolf, C., & Schütz, A. C. (2015). Trans-saccadic integration of peripheral and foveal feature information is close to optimal. Journal of Vision, 16(16):1, 1-18. [pdf]

Stefan Treue, German Primate Center Göttingen, works on the neural correlates of attention in primate visual cortex (electrophysiology, psychophysics, modeling).

  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6) , 317-322. [pdf]
  • Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24 , 295-300. [pdf]

Takeo Watanabe, Brown University

Andrew Welchman, University of Cambridge, is interested in psychophysics and modelling of 3D vision, brain imaging and movement synchronisation.

  • Ban H & Welchman AE (2015) fMRI analysis-by-synthesis reveals a dorsal hierarchy that extracts surface slant. Journal of Neuroscience, 35, 9823-35. [pdf]
  • Goncalves NR, Ban H, Sánchez-Panchuelo RM, Francis ST, Schluppeck D & Welchman AE (2015) 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. Journal of Neuroscience, 35, 3056-72. [pdf]
  • Chang DHF, Mevorach C, Kourtzi Z & Welchman AE (2014) Training transfers the limits on perception from parietal to ventral cortex. Current Biology 24, 2445–2450. [pdf]
  • Ban H, Preston TJ, Meeson A & Welchman AE (2012) The integration of motion and disparity cues to depth in dorsal visual cortex. Nature Neuroscience, 15, 636-43. [pdf]