neuron rauisch header

home contact program alumni application


Organizers: Wolfgang Einhäuser-Treyer   Roland Fleming   Alexander Schütz
Funded by the Center for Mind, Brain and Behavior at
Justus-Liebig University Gießen and Philipps-University Marburg.

Program

Sunday 1
Arrival and welcome
20:00 Introduction ETFS
Monday 2
09:00-12:00 Lecture Tony Movshon Elements of vision
13:30-15:30 Poster session
15:30-18:30 Lecture Michal Rivlin Retina
20:00 Discussion Tony Movshon Effective visual presentations
Tuesday 3
09:00-12:00 Lecture Farran Briggs LGN
13:30-15:30 Exercise Wolfgang Einhäuser Natural scenes
15:30-18:30 Lecture Karl Gegenfurtner Color
20:00 Discussion Karl Gegenfurtner How to get your work published
Wednesday 4
09:00-12:00 Lecture Tony Movshon Cortex / Motion
13:30-15:30 Exercise Karl Gegenfurtner Color
15:30-18:30 Lecture Hendrikje Nienborg Cortical decision making
20:00 Discussion Roland Fleming Career planning
Thursday 5
09:00-12:00 Lecture Wolfgang Einhäuser Natural scenes
15:30-18:30 Lecture Roland Fleming Material perception
Friday 6
09:00-12:00 Lecture Pieter Roelfsema Mid-level vision
13:30-15:30 Exercise Roland Fleming Computer graphics
15:30-18:30 Lecture Anitha Pasupathy Ventral cortex
Saturday 7
09:00-12:00 Lecture Uta Noppeney Multisensory perception
14:00-17:00 Lecture Felix Wichmann Deep learning
18:30 Dinner & Party
Sunday 8
11:00-18:00 Trip to Marburg
Monday 9
09:00-12:00 Lecture Andrew Welchman Depth
13:30-15:30 Exercise Felix Wichmann Deep learning
15:30-18:30 Lecture Wyeth Bair Models of the ventral cortex
20:00 Discussion Stefan Treue Animal research
Tuesday 10
09:00-12:00 Lecture Stefan Treue Physiology of attention
13:30-15:30 Poster session
15:30-18:30 Lecture James Bisley Eye movements and attention
Wednesday 11
09:00-12:00 Lecture Alexander Schütz Eye movements and perception
13:30-16:30 Lecture Pascal Mamassian Confidence
16:30-18:30 Exercise Pascal Mamassian (Bayesian) modeling
20:00 Feverish work on student projects
Thursday 12
09:00-12:00 Lecture Zoe Kourtzi fMRI
14:00-17:00 Lecture Holly Bridge Visual awareness
20:00 Student presentations
Friday 13
Farewell, transfer to airport

Daily meals

07:30-09:00: Breakfast
10:30: Coffee
12:30-13:30: Lunch
15:00: Coffee
18:30-20:00: Dinner

Confirmed speakers

Wyeth Bair, University of Washington , aims to understand neural circuitry and neural coding in the cerebral cortex of the primate visual system. He approaches this problem by recording directly from neurons in the functioning brain in vivo and by creating and refining large scale spiking neural network models that run on parallel computers (see http://www.imodel.org).

  • Pospisil, D. A., & Bair, W. (2021). The unbiased estimation of the fraction of variance explained by a model. PLoS computational biology, 17(8), e1009212. [pdf]
  • Entezari S, Bair W (2019) Artiphysiology reveals visual preferences underlying V4-like blur selectivity in a deep convolutional neural network. [pdf]
  • Kim T, Bair W, Pasupathy A (2019) Neural coding for shape and texture in macaque area V4. J Neurosci 39:4760-4774. [pdf]
  • Pospisil, D. A., Pasupathy, A., & Bair, W. (2018). 'Artiphysiology'reveals V4-like shape tuning in a deep network trained for image classification. Elife, 7, e38242. [pdf]
  • Baker, P. M., & Bair, W. (2016). A model of binocular motion integration in MT neurons. Journal of Neuroscience, 36(24), 6563-6582. [pdf]
  • Oleskiw TD, Pasupathy A, Bair W (2014). Spectral receptive fields do not explain tuning for boundary curvature in V4 neurons. J Neurophysiol 112:2114-2122. [pdf]

James Bisley, University of California, Los Angeles, studies the neuronal mechanisms underlying the allocation of visual attention and the guidance of eye movements.

  • Mirpour, K., & Bisley, J. W. (2021). The roles of the lateral intraparietal area and frontal eye field in guiding eye movements in free viewing search behavior. Journal of Neurophysiology, 125(6), 2144-2157. [pdf]
  • Bisley, J. W., & Mirpour, K. (2019). The neural instantiation of a priority map. Current opinion in psychology, 29, 108-112. [pdf]
  • Arcizet, F., Mirpour, K., Foster, D. J., & Bisley, J. W. (2018). Activity in LIP, but not V4, matches performance when attention is spread. Cerebral Cortex, 28(12), 4195-4209. [pdf]
  • Bisley, J. W., Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81-86. [pdf]

Holly Bridge, University of Oxford, aims to understand how the visual system can process input following the loss of V1 due to stroke or trauma. Using a combination of MRI approaches and behavioural testing her group is investigating the neural structures that may underlie any residual vision and how this vision could be improved.

  • Bridge, H. (2020). Loss of visual cortex and its consequences for residual vision. Current Opinion in Physiology, 16, 21-26. [pdf]
  • Ajina, S., Jünemann, K., Sahraie, A., & Bridge, H. (2021). Increased visual sensitivity and occipital activity in patients with hemianopia following vision rehabilitation. Journal of Neuroscience, 41(28), 5994-6005. [pdf]
  • Ajina, S., & Bridge, H. (2018). Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS biology, 16(7), e2005769. [pdf]
  • Ajina, S., & Bridge, H. (2017). Blindsight and unconscious vision: what they teach us about the human visual system. The Neuroscientist, 23(5), 529-541. [pdf]

Farran Briggs, University of Rochester, studies relationships between structure and function among neurons and circuits in the early visual system, with a focus on corticogeniculate feedback, and the role of visual attention in modulating activity in early visual circuits.

  • Hasse, JM, & Briggs, F (2017) Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Proceedings of the National Academy of Sciences, 114(30), E6222-E6230. [pdf]
  • Murphy, AJ, Shaw, L, Hasse, JM, Goris, RL, & Briggs, F (2021) Optogenetic activation of corticogeniculate feedback stabilizes response gain and increases information coding in LGN neurons. Journal of Computational Neuroscience, 49(3), 259-271. [pdf]
  • Briggs, F (2020) Role of feedback connections in central visual processing. Annual Review of Vision Science, 6, 313-334. [pdf]

Wolfgang Einhäuser-Treyer, TU Chemnitz , works on attention and eye movements during natural-scene processing and in real-world tasks, and uses rivalry to study commonalities between perception, action and decision-making.

  • Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci USA, 105(5) : 1704-1709. [pdf]
  • 't Hart, B.M., & Einhäuser, W. (2012). Mind the step: complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Exp Brain Res, 223(2): 233-249. [pdf]

Roland Fleming, Universität Giessen, works on perception of shape, illumination and materials (psychophysics, computer graphics, modeling).

  • Fleming, R.W. (2014). Visual Perception of Materials and their Properties. Vision Research, 94, 62-75. [pdf]
  • Muryy, A., Welchman, A.E., Blake, A. and R.W. Fleming (2013). Specular reflections and the estimation of shape from binocular disparity. Proceedings of the National Academy of Sciences, 110(6): 2413-2418. [pdf]

Karl Gegenfurtner, Universität Giessen , works on on the relationship between low level sensory processes, higher level visual cognition, and sensorimotor integration.

  • Witzel, C., & Gegenfurtner, K. R. (2018). Color perception: Objects, constancy, and categories. Annual Review of Vision Science, 4, 475-499. [pdf]
  • Gegenfurtner, K.R. & Kiper, D.C. (2003) Color vision. Annual Review of Neuroscience, 26, 181-206. [pdf]
  • Gil Rodríguez, R., Hedjar, L., Toscani, M., Guarnera, D., Guarnera, G.C. & Gegenfurtner, K.R. (2024) Color Constancy mechanisms in virtual reality environments. Journal of Vision, 25(5), 6. [pdf]

Zoe Kourtzi, University of Cambridge, focuses on imaging the neural processes in the human brain that mediate complex, adaptive cognitive functions and behaviour.

  • Li, S., Mayhew, S. D., & Kourtzi, Z. (2009). Learning shapes the representation of behavioral choice in the human brain. Neuron 62, 441-452. [pdf]
  • Li, S., Ostwald, D., Giese, M., & Kourtzi, Z. (2007). Flexible coding for categorical decisions in the human brain. J Neurosci. 27(45):12321-12330. [pdf]

Pascal Mamassian, École Normale Supérieure, works on 3D, motion, and time perception, with an emphasis on sequential effects and confidence judgments.

  • Kiani, R., & Shadlen, M. N. (2009). Representation of confidence associated with a decision by neurons in the parietal cortex. Science, 324(5928), 759–764. [pdf]
  • Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329(5998), 1541–1543. [pdf]
  • Mamassian, P. (2016). Visual confidence. Annual Review of Vision Science, 2(1), 459–481. [pdf]
  • Mamassian, P. & Gardelle, V. de. (2022). Modeling perceptual confidence and the Confidence Forced-Choice paradigm. Psychological Review, 129(5), 976–998. [pdf]

Tony Movshon, Center for Neural Science, New York, studies the function and development of the primate visual system, particularly the neurophysiological basis of motion perception (electrophysiology, psychophysics).

Elements of vision:

  • Marr DC (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, chapter 1. MIT press. [pdf]
  • Enroth-Cugell C, Robson JG (1984). Functional Characteristics and Diversity of Cat Retinal Ganglion Cells. Investigative Ophthalmology and Visual Science 25: 250-267. [pdf]
  • Adelson EH, Bergen J (1991). The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, Landy MS, Movshon JA, eds. MIT Press. [pdf]
  • Lennie P, Movshon JA (2005). Coding of color and form in the geniculostriate visual pathway. J Opt Soc Am A 22: 2013-2033. [pdf]
  • Roska B & Meister M (2014) The retina dissects the visual scene into distinct features. In The New Visual Neurosciences (Werner, JS, Chalupa, LM, eds), pp 163–182. Cambridge, MA: MIT Press. [pdf]
  • Jazayeri, M, & Afraz, A (2017). Navigating the neural space in search of the neural code. Neuron, 93(5), 1003-1014. [pdf]
  • Krakauer, JW, Ghazanfar, AA, Gomez-Marin, A, MacIver, MA, & Poeppel, D (2017). Neuroscience needs behavior: correcting a reductionist bias. Neuron, 93(3), 480-490. [pdf]
  • Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau K-W, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM (2022). Origins of direction selectivity in primate retina. Nature Communications. (Supplement to figure 1 only) [pdf]
Motion:
  • Adelson EA & Bergen JR (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 2:284-99. [pdf]
  • Emerson RC, Bergen JR, Adelson EH (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 32:203-18. [pdf]
  • Rust NC, Mante V, Simoncelli EP & Movshon JA (2006). How MT cells analyze the motion of visual patterns. Nature Neuroscience, 9(11), 1421-1431. [pdf]
  • Manning T & Britten K (2017) Motion Processing in Primates (Oxford Encyclopedia of Neuroscience). [pdf]
  • Wienecke, CF, Leong, JC, & Clandinin, TR (2018). Linear summation underlies direction selectivity in Drosophila. Neuron, 99(4), 680-688. [pdf]
  • Vanni, S, Hokkanen, H, Werner, F, & Angelucci, A. (2020). Anatomy and physiology of macaque visual cortical areas V1, V2, and V5/MT: bases for biologically realistic models. Cerebral Cortex, 30(6), 3483-3517. [pdf]

Hendrikje Nienborg, NIH, aims to understand mechanisms of visually guided decisions and how these are influenced by cognitive, behavioral, and internal state. Her work relies predominantly on multichannel extracellular recordings from cortical areas in behaving mammalian animals combined with psychophysics, eye-tracking, videography and computational modeling.

  • Shadlen, Britten, Newsome, Movshon. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci. 1996 Feb 15;16(4):1486-510. [pdf]
  • Nienborg, Cumming. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature. 2009 May 7;459(7243):89-92 [pdf]
  • Mante, Sussillo, Shenoy, Newsome. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature. 2013 Nov 7;503(7474):78-84. [pdf]
  • Macke, Nienborg. Choice (-history) correlations in sensory cortex: cause or consequence? Curr Opin Neurobiol. 2019 Oct;58:148-154. [pdf]
  • Quinn, Seillier, Butts, Nienborg. Decision-related feedback in visual cortex lacks spatial selectivity. Nat Commun. 2021 Jul 22;12(1):4473. [pdf]
  • Okazawa, Kiani. Neural Mechanisms That Make Perceptual Decisions Flexible. Annu Rev Physiol. 2023 Feb 10;85:191-215. [pdf]
  • Talluri, Kang, Lazere, Quinn, Kaliss, Yates, Butts, Nienborg. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat Neurosci. 2023 Nov;26(11):1953-1959. [pdf]
Uta Noppeney, Donders Institute for Brain, Cognition and Behaviour, investigates how the brain enables us to perceive, understand and interact effectively with the multisensory world around us. To define the underlying computations and neural mechanisms in the healthy and diseased human brain my lab combines behavioural, computational modelling (Bayesian, neural network) and neuroimaging (fMRI, MEG, EEG).

  • Noppeney U (2021) Perceptual inference, learning and attention in a multisensory world. Annual Review of Neuroscience. 44:449-473. [pdf]
  • Meijer D, Noppeney U (2020) Computational models of multisensory integration. In: Multisensory perception: From Laboratory to Clinic. Eds. Sathian K & Ramachandran VS. Academic Press/Elsevier. pp. 113-133. [pdf]
  • Ferrari A, Noppeney U (2021) Attention controls multisensory perception via two distinct mechanisms at different levels of the cortical hierarchy. PLOS Biology. 19(11):e3001465. doi: 10.1371/journal.pbio.3001465. [pdf]
  • Rohe T, Ehlis AC, Noppeney U (2019) The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nature Communications. 10(1):1907. doi: 10.1038/s41467-019-09664-2. [pdf]
  • Meijer D, Veselic S, Calafiore C, Noppeney U (2019) Integration of audiovisual spatial signals is not consistent with maximum likelihood estimation. Cortex. Pre-Registered Report. 119:74-88. doi: 10.1016/j.cortex.2019.03.026. [pdf]

Anitha Pasupathy, University of Washington, works on the neural basis of visual shape perception and recognition, the ability to identify and recognize objects from all angles, distances, and in almost any lighting condition. She uses single cell neurophysiological studies in awake monkeys, behavioral manipulations, computational modeling and reversible inactivation techniques to investigate how the information reaching our eyes is represented in the neural activity patterns in the brain, how these representations are transformed in successive stages and finally how these representations inform behavior.

  • Pasupathy, A., Popovkina, D. V., & Kim, T. (2020). Visual functions of primate area V4. Annual review of vision science, 6, 363. [pdf]
  • Pasupathy, A., Kim, T., & Popovkina, D. V. (2019). Object shape and surface properties are jointly encoded in mid-level ventral visual cortex. Current opinion in neurobiology, 58, 199-208. [web]
  • Pasupathy, A., El-Shamayleh, Y., & Popovkina, D. V. (2018). Visual shape and object perception. In S. Murray Sherman (Ed.). Oxford research encyclopedia of neuroscience [pdf]
  • Kim, T., Bair, W., & Pasupathy, A. (2019). Neural coding for shape and texture in macaque area V4. Journal of Neuroscience, 39(24), 4760-4774. [pdf]
  • Oleskiw, T. D., Nowack, A., & Pasupathy, A. (2018). Joint coding of shape and blur in area V4. Nature communications, 9(1), 1-13. [pdf]
  • Fyall, A. M., El-Shamayleh, Y., Choi, H., Shea-Brown, E., & Pasupathy, A. (2017). Dynamic representation of partially occluded objects in primate prefrontal and visual cortex. Elife, 6, e25784. [pdf]
  • Pasupathy, A., & Connor, C. E. (2002). Population coding of shape in area V4. Nature neuroscience, 5(12), 1332-1338. [pdf]
  • Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: position-specific tuning for boundary conformation. Journal of neurophysiology, 86, 2505-2519 [pdf]

Michal Rivlin, Weizmann Institute of Science, studies dynamic computations in retinal circuits and their mechanisms (electrophysiology, calcium imaging, modeling).

  • Rivlin-Etzion M., Grimes W. N. & Rieke F. (2018). Flexible Neural Hardware Supports Dynamic Computations in Retina. Trends in Neurosciences, 41 (4):224-237. [web]
  • Warwick R. A., Kaushansky N., Sarid N., Golan A. & Rivlin-Etzion M. (2018). Inhomogeneous Encoding of the Visual Field in the Mouse Retina. Current biology, 28 (5):655-665. [pdf]
  • Rivlin-Etzion M., Wei W. & Feller M. B. (2012). Visual Stimulation Reverses the Directional Preference of Direction-Selective Retinal Ganglion Cells. Neuron, 76 (3):518-525. [pdf]

Pieter Roelfsema, Netherlands Institute for Neurosciences, Amsterdam, is interested in how attentional processes coordinate neuronal activity in different brain areas (electrophysiology).

  • Roelfsema, P. R., & Holtmaat, A. (2018). Control of synaptic plasticity in deep cortical networks. Nature Reviews Neuroscience, 19(3), 166. [pdf]
  • van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R. (2018). The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science, 360(6388), 537-542. [pdf]
  • Mashour, G.A., Roelfsema, P.R. Changeux, J.-P. and Dehaene, S. (2020) Conscious processing and the global neuronal workspace hypothesis, Neuron 105, 776-798. [pdf]
  • Chen, X. Wang, F., Fernandez, E. and Roelfsema, P.R. (2020) Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370, 1191-1196. [pdf]
  • Kirchberger, L., Mukherjee, S., Schnabel, U.H., van Beest, E.H., Barsegyan, A., Levelt, C.N. Heimel, J.A., Lorteije, J.A.M., van der Togt, C., Self, M.W. and Roelfsema, P.R. (2021) The essential role of feedback processing for figure-ground perception in mice, Science Advances, 7, eabe1833. [pdf]
  • Roelfsema, P.R. (2023) Solving the binding problem: assemblies form when neurons enhance their firing rate – they don’t need to oscillate or synchronize. Neuron, 111, 1003-1019. [pdf]

Alexander Schütz, University of Marburg, works on the relationship of eye movements and perception.

  • Schütz, A. C., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2008). Improved visual sensitivity during smooth pursuit eye movements. Nature Neuroscience, 11(10), 1211-1216. [pdf]
  • Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: a selective review. Journal of Vision, 11(5):9, 1-30. [pdf]
  • Spering, M., Schütz, A. C., Braun, D.I., & Gegenfurtner, K. R. (2011). Keep your eyes on the ball: Smooth pursuit eye movements enhance prediction of visual motion. Journal of Neurophysiology, 105(4), 1756-1767. [pdf]
  • Wolf, C., & Schütz, A. C. (2015). Trans-saccadic integration of peripheral and foveal feature information is close to optimal. Journal of Vision, 16(16):1, 1-18. [pdf]
  • Stewart, E. E. M., Valsecchi, M., & Schütz, A. C. (2020). A review of interactions between peripheral and foveal vision. Journal of Vision, 20(12):2, 1-35. [pdf]

Stefan Treue, German Primate Center Göttingen, works on the neural correlates of attention in primate visual cortex (electrophysiology, psychophysics, modeling).

  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6) , 317-322. [pdf]
  • Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24 , 295-300. [pdf]

Andrew Welchman, Ieso Digital Health, is interested in psychophysics and modelling of 3D vision, brain imaging and movement synchronisation.

  • Ban H & Welchman AE (2015) fMRI analysis-by-synthesis reveals a dorsal hierarchy that extracts surface slant. Journal of Neuroscience, 35, 9823-35. [pdf]
  • Goncalves NR, Ban H, Sánchez-Panchuelo RM, Francis ST, Schluppeck D & Welchman AE (2015) 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. Journal of Neuroscience, 35, 3056-72. [pdf]
  • Chang DHF, Mevorach C, Kourtzi Z & Welchman AE (2014) Training transfers the limits on perception from parietal to ventral cortex. Current Biology 24, 2445–2450. [pdf]
  • Ban H, Preston TJ, Meeson A & Welchman AE (2012) The integration of motion and disparity cues to depth in dorsal visual cortex. Nature Neuroscience, 15, 636-43. [pdf]

Felix Wichmann, Eberhard Karls Universität Tübingen, works on spatial vision, lightness- and brightness as well as object recognition, combining psychophysical experiments, computational modeling and machine learning..

  • Kriegeskorte, N. (2015). Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing. Annual Review of Vision Science, 1(1), 417–446. [pdf]
  • Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., & Wichmann, F. A. (2020). Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11), 665–673. [pdf]
  • Wichmann, F. A., & Geirhos, R. (2023). Are deep neural networks adequate behavioural models of human visual perception? Annual Review of Vision Science, 9, 501–524 [pdf]